未验证 提交 ffcef883 编写于 作者: C Chen Weihang 提交者: GitHub

update parameter_list data type (#1698)

上级 f6948c31
......@@ -14,7 +14,7 @@ append_backward
参数:
- **loss** ( :ref:`api_guide_Variable` ) - 网络的损失变量。
- **parameter_list** (list [str],可选)- 指定优化器需要更新的参数名称列表。如果为 ``None`` ,则将更新所有参数。默认值为 ``None``。
- **parameter_list** (list [Variable|str],可选)- 指定优化器需要更新的参数或参数名称列表。如果为 ``None`` ,则将更新所有参数。默认值为 ``None``。
- **no_grad_set** (set [str],可选)- 在 `block0` ( :ref:`api_guide_Block` ) 中要忽略梯度的 :ref:`api_guide_Variable` 的名字的集合。所有的 :ref:`api_guide_Block` 中带有 ``stop_gradient = True`` 的所有 :ref:`api_guide_Variable` 的名字都会被自动添加到此集合中。如果该参数不为 ``None``,则会将该参数集合的内容添加到默认的集合中。默认值为 ``None``。
- **callbacks** (list [callable object],可选)- 回调函数列表。用于在反向传播构建中执行一些自定义作业。每次将新的梯度OP添加到程序中时,将调用其中的所有可调用对象。可调用对象必须有两个输入参数: :ref:`api_guide_Block` 和 ``context`` 。 :ref:`api_guide_Block` 是将被添加到新梯度算子的块。 ``context`` 是一个映射,其键是梯度 :ref:`api_guide_Variable` 名,值是对应的原始 :ref:`api_guide_Variable` 。除此之外, ``context`` 还有另一个特殊的键值对:键是字符串 ``__ current_op_desc__`` ,值是刚刚触发可调用对象的梯度OP的 ``op_desc`` 。默认值为 ``None``。
......
......@@ -56,7 +56,7 @@ Adaptive Gradient 优化器(自适应梯度优化器,简称Adagrad)可以针
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
......
......@@ -126,7 +126,7 @@ Adam优化器出自 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 的第二节
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
......
......@@ -70,7 +70,7 @@ Adamax优化器是参考 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 第7节
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
......
......@@ -50,7 +50,7 @@ Decayed Adagrad优化器,可以看做是引入了衰减率的 `Adagrad <http:/
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
......
......@@ -58,7 +58,7 @@ Deep Learning: Training BERT in 76 minutes <https://arxiv.org/pdf/1904.00962.pdf
参数:
- **loss** (Variable) – 需要最小化的损失值变量。
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
......
......@@ -60,7 +60,7 @@ MomentumOptimizer
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
......
......@@ -78,7 +78,7 @@ RMSPropOptimizer
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
......
......@@ -55,7 +55,7 @@ SGDOptimizer
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册