未验证 提交 a09d4a6b 编写于 作者: C Chen Weihang 提交者: GitHub

Polish the Chinese API documentation of DecayedAdagradOptimizer (#1256)

* polish decayed adagrad opt zh api doc

* change the note position

* delete return and return type

* polish details

* use whole optimizer name
上级 41dc1af2
......@@ -5,177 +5,43 @@ DecayedAdagradOptimizer
.. py:class:: paddle.fluid.optimizer.DecayedAdagradOptimizer(learning_rate, decay=0.95, epsilon=1e-06, regularization=None, name=None)
Decayed Adagrad Optimizer
Decayed Adagrad优化器,可以看做是引入了衰减率的 `Adagrad <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_ 算法,用于解决使用 :ref:`cn_api_fluid_optimizer_AdagradOptimizer` 优化器时,在模型训练中后期学习率急剧下降的问题。
`原始论文 <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_
原始论文: `http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_ 中没有 ``epsilon`` 参数。但是,为了数值稳定性, 防止除0错误, 增加了这个参数
其参数更新的计算公式如下:
.. math::
moment\_out = decay*moment+(1-decay)*grad*grad
.. math::
param\_out = param-\frac{learning\_rate*grad}{\sqrt{moment\_out}+\epsilon }
参数:
- **learning_rate** (float|Variable) - 用于更新参数的学习率。可以是浮点值,也可以是具有一个浮点值作为数据元素的变量。
- **decay** (float) – 衰减率
- **regularization** - 一个正则化器,例如 ``fluid.regularizer.L2DecayRegularizer``
- **epsilon** (float) - 非常小的浮点值,为了数值稳定性
- **name** — 可选的名称前缀。
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.optimizer import DecayedAdagrad
x = layers.data( name='x', shape=[-1, 10], dtype='float32' )
trans = layers.fc( x, 100 )
cost = layers.reduce_mean( trans )
optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
optimizer.minimize(cost)
.. note::
当前, ``DecayedAdagradOptimizer`` 不支持 sparse parameter optimization
.. py:method:: apply_gradients(params_grads)
为给定的params_grads对附加优化算子,为minimize过程的第二步
在原论文中没有 ``epsilon`` 参数。但是,为了保持数值稳定性, 防止除0错误, 此处增加了这个参数。
参数:
- **params_grads** (list)- 用于优化的(param, grad)对组成的列表
返回: 附加在当前Program的算子组成的列表
返回类型: list
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
loss = network()
optimizer = fluid.optimizer.SGD(learning_rate=0.1)
params_grads = optimizer.backward(loss)
# you may append operations for params_grads here
# ...
optimizer.apply_gradients(params_grads)
.. py:method:: apply_optimize(loss, startup_program, params_grads)
为给定的params_grads对附加优化算子,为minimize过程的第二步。
参数:
- **loss** (Variable) – 用于优化过程的损失值变量
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **params_grads** (list)- 用于优化的(param, grad)对组成的列表
返回: 附加在当前Program的算子组成的列表
返回类型: list
.. py:method:: backward(loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None)
自动做diff来向当前program附加反向算子,为minimize过程的第一步。
参数:
- **loss** (Variable) – 用于优化过程的损失值变量
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **parameter_list** (list) – 待更新的Variables组成的列表
- **no_grad_set** (set|None) – 应该被无视的Variables集合
- **callbacks** (list|None) – 当为某参数附加反向算子时所要运行的callables组成的列表
返回: 附加在当前Program的算子组成的列表
返回类型: list
**代码示例**
详见apply_gradients的示例
.. py:method:: load(stat_dict)
在dygraph模式下,附带学习率衰减来加载优化器。
相关论文:`Adaptive Subgradient Methods for Online Learning and Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_
参数:
- **stat_dict** – load_persistable方法加载的dict
- **learning_rate** (float|Variable) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个值为浮点型的Variable
- **decay** (float,可选) – 衰减率,默认值为0.95
- **regularization** (WeightDecayRegularizer, 可选) - 正则化函数,用于减少泛化误差。例如可以是 :ref:`cn_api_fluid_regularizer_L2DecayRegularizer` ,默认值为None
- **epsilon** (float,可选) - 保持数值稳定性的短浮点类型值,默认值为1e-06
- **name** (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
.. note::
当前, ``DecayedAdagradOptimizer`` 不支持Sparse Parameter Optimization(稀疏参数优化)
**代码示例**
.. code-block:: python
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.nn import FC
from paddle.fluid.dygraph.base import to_variable
class MLP(fluid.Layer):
def __init__(self, name_scope):
super(MLP, self).__init__(name_scope)
self._fc1 = FC(self.full_name(), 10)
self._fc2 = FC(self.full_name(), 10)
def forward(self, inputs):
y = self._fc1(inputs)
y = self._fc2(y)
return y
with fluid.dygraph.guard():
mlp = MLP('mlp')
optimizer2 = SGDOptimizer(
learning_rate=fluid.layers.natural_exp_decay(
learning_rate=0.1,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
for batch_id, data in enumerate(train_reader()):
dy_x_data = np.array(
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
128, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label._stop_gradient = True
cost = mlp(img)
avg_loss = fluid.layers.reduce_mean(cost)
avg_loss.backward()
optimizer.minimize(avg_loss)
mlp.clear_gradients()
fluid.dygraph.save_persistables(
mlp.state_dict(), [optimizer, optimizer2], "save_dir_2")
if batch_id == 2:
break
with fluid.dygraph.guard():
mlp_load = MLP('mlp')
optimizer_load2 = SGDOptimizer(
learning_rate=fluid.layers.natural_exp_decay(
learning_rate=0.1,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
parameters, optimizers = fluid.dygraph.load_persistables(
"save_dir_2")
mlp_load.load_dict(parameters)
optimizer_load2.load(optimizers)
self.assertTrue(optimizer2._learning_rate.__dict__ == optimizer_load2._learning_rate.__dict__)
import paddle.fluid.layers as layers
from paddle.fluid.optimizer import DecayedAdagrad
x = layers.data( name='x', shape=[-1, 10], dtype='float32' )
trans = layers.fc( x, 100 )
cost = layers.reduce_mean( trans )
optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
optimizer.minimize(cost)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册