README.en.md 13.8 KB
Newer Older
M
Meiyim 已提交
1
English|[简体中文](./README.zh.md)
M
Meiyim 已提交
2

M
Meiyim 已提交
3
![./.metas/ERNIE_milestone.png](./.metas/ERNIE_milestone_en.png)
M
Meiyim 已提交
4 5 6 7 8 9 10


**Remind: This repo has been refactored, for paper re-production or backward compatibility; plase checkout to [repro branch](https://github.com/PaddlePaddle/ERNIE/tree/repro)**

ERNIE 2.0 is a continual pre-training framework for language understanding in which pre-training tasks can be incrementally built and learned through multi-task learning.
ERNIE 2.0 builds a strong basic for nearly every NLP tasks: Text Classification, Ranking, NER, machine reading comprehension, text genration and so on.

K
kirayummy 已提交
11 12
[\[more information\]](https://wenxin.baidu.com/)

M
Meiyim 已提交
13
# News
M
Meiyim 已提交
14 15 16 17 18 19 20

- Dec.29.2020:
 	- Pretrain and finetune ERNIE with [PaddlePaddle v2.0](https://github.com/PaddlePaddle/Paddle/tree/release/2.0-rc).
    - New AMP(auto mixed precision) feature for every demo in this repo.
    - Introducing `Gradient accumulation`, run `ERNIE-large` with only 8G memory.

- Sept.24.2020:
T
tangjiji 已提交
21 22 23 24
    - [`ERNIE-ViL`](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-vil) is **avaliable** now!
        - A **knowledge-enhanced** joint representations for vision-language tasks.
            - Constructing three **Scene Graph Prediction** tasks utilizing structured knowledge.
	    - The state-of-the-art performance on 5 downstream tasks, 1st place on [VCR leaderboad](https://visualcommonsense.com/leaderboard/).
M
Meiyim 已提交
25

N
nbcc 已提交
26 27 28 29 30 31 32 33
- May.20.2020:

    - Try ERNIE in "`dygraph`", with:
    	- Eager execution with `paddle.fluid.dygraph`.
    	- Distributed training.
    	- Easy deployment.
    	- Learn NLP in Aistudio tutorials.
    	- Backward compatibility for old-styled checkpoint
M
Meiyim 已提交
34

N
nbcc 已提交
35 36 37 38 39
    - [`ERNIE-GEN`](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen) is **avaliable** now! ([link here](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen))
    	- the **state-of-the-art** pre-trained model for generation tasks, accepted by `IJCAI-2020`.
        	- A novel **span-by-span generation pre-training task**.
        	- An **infilling generation** echanism and a **noise-aware generation** method.
        	- Implemented by a carefully designed **Multi-Flow Attention** architecture.
Z
zhanghan 已提交
40
    	- You are able to `download` all models including `base/large/large-430G`.
M
Meiyim 已提交
41

M
Meiyim 已提交
42 43 44 45 46 47 48
- Apr.30.2020: Release [ERNIESage](https://github.com/PaddlePaddle/PGL/tree/master/examples/erniesage), a novel Graph Neural Network Model using ERNIE as its aggregator. It is implemented through [PGL](https://github.com/PaddlePaddle/PGL)
- Mar.27.2020: [Champion on 5 SemEval2020 sub tasks](https://www.jiqizhixin.com/articles/2020-03-27-8)
- Dec.26.2019: [1st place on GLUE leaderboard](https://www.technologyreview.com/2019/12/26/131372/ai-baidu-ernie-google-bert-natural-language-glue/)
- Nov.6.2019: [Introducing ERNIE-tiny](https://www.jiqizhixin.com/articles/2019-11-06-9)
- Jul.7.2019: [Introducing ERNIE2.0](https://www.jiqizhixin.com/articles/2019-07-31-10)
- Mar.16.2019: [Introducing ERNIE1.0](https://www.jiqizhixin.com/articles/2019-03-16-3)

M
Meiyim 已提交
49

M
Meiyim 已提交
50 51 52 53 54 55 56 57 58 59 60 61
# Table of contents
* [Tutorials](#tutorials)
* [Setup](#setup)
* [Fine-tuning](#fine-tuning)
* [Pre-training with ERNIE 1.0](#pre-training-with-ernie-10)
* [Online inference](#online-inference)
* [Distillation](#distillation)

# Quick Tour

```python
import numpy as np
M
Meiyim 已提交
62
import paddle as P
M
Meiyim 已提交
63 64 65 66
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.modeling_ernie import ErnieModel

model = ErnieModel.from_pretrained('ernie-1.0')    # Try to get pretrained model from server, make sure you have network connection
M
Meiyim 已提交
67
model.eval()
M
Meiyim 已提交
68 69 70
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')

ids, _ = tokenizer.encode('hello world')
M
Meiyim 已提交
71
ids = P.to_tensor(np.expand_dims(ids, 0))  # insert extra `batch` dimension
M
Meiyim 已提交
72 73 74 75 76 77 78 79 80 81
pooled, encoded = model(ids)                 # eager execution
print(pooled.numpy())                        # convert  results to numpy

```

# Tutorials

Don't have GPU? try ERNIE in [AIStudio](https://aistudio.baidu.com/aistudio/index)!
(please choose the latest version and apply for a GPU environment)

C
chenxuyi 已提交
82
1. [ERNIE for beginners](https://aistudio.baidu.com/studio/edu/group/quick/join/314947)
M
Meiyim 已提交
83 84 85 86 87
1. [Sementic analysis](https://aistudio.baidu.com/aistudio/projectdetail/427482)
2. [Cloze test](https://aistudio.baidu.com/aistudio/projectdetail/433491)
3. [Knowledge distillation](https://aistudio.baidu.com/aistudio/projectdetail/439460)
4. [Ask ERNIE](https://aistudio.baidu.com/aistudio/projectdetail/456443)
5. [Loading old-styled checkpoint](https://aistudio.baidu.com/aistudio/projectdetail/493415)
M
Meiyim 已提交
88 89 90

# Setup

M
Meiyim 已提交
91 92 93 94 95
##### 1. install PaddlePaddle

This repo requires PaddlePaddle 1.7.0+, please see [here](https://www.paddlepaddle.org.cn/install/quick) for installaton instruction.

##### 2. install ernie
M
Meiyim 已提交
96 97

```script
M
Meiyim 已提交
98
pip install paddle-ernie
M
Meiyim 已提交
99 100
```

M
Meiyim 已提交
101
or
M
Meiyim 已提交
102 103

```shell
M
Meiyim 已提交
104
git clone https://github.com/PaddlePaddle/ERNIE.git --depth 1
M
Meiyim 已提交
105
cd ERNIE
M
Meiyim 已提交
106
pip install -r requirements.txt
M
Meiyim 已提交
107
pip install -e .
M
Meiyim 已提交
108 109 110 111
```

##### 3. download pretrained models (optional)

M
Meiyim 已提交
112 113 114 115 116 117 118 119
| Model                                              | Description                                                  |abbreviation|
| :------------------------------------------------- | :----------------------------------------------------------- |:-----------|
| [ERNIE 1.0 Base for Chinese](https://ernie-github.cdn.bcebos.com/model-ernie1.0.1.tar.gz)           | L12H768A12  |ernie-1.0|
| [ERNIE Tiny](https://ernie-github.cdn.bcebos.com/model-ernie_tiny.1.tar.gz)                         | L3H1024A16  |ernie-tiny|
| [ERNIE 2.0 Base for English](https://ernie-github.cdn.bcebos.com/model-ernie2.0-en.1.tar.gz)        | L12H768A12  |ernie-2.0-en|
| [ERNIE 2.0 Large for English](https://ernie-github.cdn.bcebos.com/model-ernie2.0-large-en.1.tar.gz) | L24H1024A16 |ernie-2.0-large-en|
| [ERNIE Gen base for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-base-en.1.tar.gz)  | L12H768A12  |ernie-gen-base-en|
| [ERNIE Gen Large for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-large-en.1.tar.gz)| L24H1024A16 | ernie-gen-large-en |
Z
zhanghan17 已提交
120
| [ERNIE Gen Large 430G for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-large-430g-en.1.tar.gz)| Layer:24, Hidden:1024, Heads:16 + 430G pretrain corpus | ernie-gen-large-430g-en |
M
Meiyim 已提交
121 122

##### 4. download datasets
M
Meiyim 已提交
123

M
Meiyim 已提交
124 125
**English Datasets**

M
Meiyim 已提交
126
Download the [GLUE datasets](https://gluebenchmark.com/tasks) by running [this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
M
Meiyim 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

the `--data_dir` option in the following section assumes a directory tree like this:

```shell
data/xnli
├── dev
│   └── 1
├── test
│   └── 1
└── train
    └── 1
```

see [demo](https://ernie-github.cdn.bcebos.com/data-mnli-m.tar.gz) data for MNLI task.

**Chinese Datasets**

| Datasets|Description|
|:--------|:----------|
| [XNLI](https://ernie-github.cdn.bcebos.com/data-xnli.tar.gz)                 |XNLI is a natural language inference dataset in 15 languages. It was jointly built by Facebook and New York University. We use Chinese data of XNLI to evaluate language understanding ability of our model. [url](https://github.com/facebookresearch/XNLI)|
| [ChnSentiCorp](https://ernie-github.cdn.bcebos.com/data-chnsenticorp.tar.gz) |ChnSentiCorp is a sentiment analysis dataset consisting of reviews on online shopping of hotels, notebooks and books.|
| [MSRA-NER](https://ernie-github.cdn.bcebos.com/data-msra_ner.tar.gz)         |MSRA-NER (SIGHAN2006) dataset is released by MSRA for recognizing the names of people, locations and organizations in text.|
| [NLPCC2016-DBQA](https://ernie-github.cdn.bcebos.com/data-dbqa.tar.gz)       |NLPCC2016-DBQA is a sub-task of NLPCC-ICCPOL 2016 Shared Task which is hosted by NLPCC(Natural Language Processing and Chinese Computing), this task targets on selecting documents from the candidates to answer the questions. [url: http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf]|
|[CMRC2018](https://ernie-github.cdn.bcebos.com/data-cmrc2018.tar.gz)|CMRC2018 is a evaluation of Chinese extractive reading comprehension hosted by Chinese Information Processing Society of China (CIPS-CL). [url](https://github.com/ymcui/cmrc2018)|


# Fine-tuning

- try eager execution with `dygraph model` :

```script
M
Meiyim 已提交
158
python3 ./demo/finetune_classifier.py \
M
Meiyim 已提交
159
       --from_pretrained ernie-1.0 \
M
Meiyim 已提交
160
       --data_dir ./data/xnli
M
Meiyim 已提交
161 162
```

M
Meiyim 已提交
163 164 165 166 167
  - specify `--use_amp` to activate AMP training.
  - `--bsz` denotes global batch size for one optimization step, `--micro_bsz` denotes maximum batch size for each GPU device.
if `--micro_bsz < --bsz`, gradient accumulation will be actiavted.


M
Meiyim 已提交
168 169 170 171
- Distributed finetune

`paddle.distributed.launch` is a process manager, we use it to launch python processes on each avalible GPU devices:

M
Meiyim 已提交
172 173 174
When in distributed training, `max_steps` is used as stopping criteria rather than `epoch` to prevent dead block.
You could calculate `max_steps` with `EPOCH * NUM_TRAIN_EXAMPLES / TOTAL_BATCH`.
Also notice than we shard the train data according to device id to prevent over fitting.
M
Meiyim 已提交
175

M
Meiyim 已提交
176 177 178 179
demo:
(make sure you have more than 2 GPUs,
online model download can not work in `paddle.distributed.launch`,
you need to run single card finetuning first to get pretrained model, or donwload and extract one manualy from [here](#section-pretrained-models)):
M
Meiyim 已提交
180

M
Meiyim 已提交
181 182 183

```script
python3 -m paddle.distributed.launch \
M
Meiyim 已提交
184
./demo/finetune_classifier_distributed.py  \
M
Meiyim 已提交
185 186
    --data_dir data/mnli \
    --max_steps 10000 \
M
Meiyim 已提交
187
    --from_pretrained ernie-2.0-en
M
Meiyim 已提交
188 189 190 191 192
```


many other demo python scripts:

M
Meiyim 已提交
193 194 195 196
1. [Sentiment Analysis](./demo/finetune_sentiment_analysis.py)
1. [Semantic Similarity](./demo/finetune_classifier.py)
1. [Name Entity Recognition(NER)](./demo/finetune_ner.py)
1. [Machine Reading Comprehension](./demo/finetune_mrc.py)
M
Meiyim 已提交
197
1. [Text generation](./demo/seq2seq/README.md)
M
Meiyim 已提交
198
1. [Text classification with `paddle.static` API](./demo/finetune_classifier_static.py)
M
Meiyim 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222




**recomended hyper parameters:**

|tasks|batch size|learning rate|
|--|--|--|
| CoLA         | 32 / 64 (base)  | 3e-5                     |
| SST-2        | 64 / 256 (base) | 2e-5                     |
| STS-B        | 128             | 5e-5                     |
| QQP          | 256             | 3e-5(base)/5e-5(large)   |
| MNLI         | 256 / 512 (base)| 3e-5                     |
| QNLI         | 256             | 2e-5                     |
| RTE          | 16 / 4 (base)   | 2e-5(base)/3e-5(large)   |
| MRPC         | 16 / 32 (base)  | 3e-5                     |
| WNLI         | 8               | 2e-5                     |
| XNLI         | 512             | 1e-4(base)/4e-5(large)   |
| CMRC2018     | 64              | 3e-5                     |
| DRCD         | 64              | 5e-5(base)/3e-5(large)   |
| MSRA-NER(SIGHAN2006)  | 16     | 5e-5(base)/1e-5(large)   |
| ChnSentiCorp | 24              | 5e-5(base)/1e-5(large)   |
| LCQMC        | 32              | 2e-5(base)/5e-6(large)   |
| NLPCC2016-DBQA| 64             | 2e-5(base)/1e-5(large)   |
T
tangjiji 已提交
223
| VCR           | 64             | 2e-5(base)/2e-5(large)   |
M
Meiyim 已提交
224 225 226 227 228 229 230 231

# Pretraining with ERNIE 1.0

see [here](./demo/pretrain/README.md)


# Online inference

M
Meiyim 已提交
232
If `--inference_model_dir` is passed to `finetune_classifier_dygraph.py`,
M
Meiyim 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
a deployable model will be generated at the end of finetuning and your model is ready to serve.

For details about online inferece, see [C++ inference API](./inference/README.md),
or you can start a multi-gpu inference server with a few lines of codes:

```shell
python -m propeller.tools.start_server -m /path/to/saved/inference_model  -p 8881
```

and call the server just like calling local function (python3 only):

```python
from propeller.service.client import InferenceClient
from ernie.tokenizing_ernie import ErnieTokenizer

client = InferenceClient('tcp://localhost:8881')
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
ids, sids = tokenizer.encode('hello world')
ids = np.expand_dims(ids, 0)
sids = np.expand_dims(sids, 0)
result = client(ids, sids)
```

M
Meiyim 已提交
256
A pre-made `inference model` for ernie-1.0 can be downloaded at [here](https://ernie.bj.bcebos.com/ernie1.0_zh_inference_model.tar.gz).
M
Meiyim 已提交
257 258 259 260
It can be used for feature-based finetuning or feature extraction.

# Distillation

M
Meiyim 已提交
261
Knowledge distillation is good way to compress and accelerate ERNIE.
M
Meiyim 已提交
262

M
Meiyim 已提交
263
For details about distillation, see [here](./demo/distill/README.md)
M
Meiyim 已提交
264

L
liyukun01 已提交
265
# Citation
M
Meiyim 已提交
266

L
liyukun01 已提交
267 268 269 270 271 272 273 274 275
### ERNIE 1.0
```
@article{sun2019ernie,
  title={Ernie: Enhanced representation through knowledge integration},
  author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Chen, Xuyi and Zhang, Han and Tian, Xin and Zhu, Danxiang and Tian, Hao and Wu, Hua},
  journal={arXiv preprint arXiv:1904.09223},
  year={2019}
}
```
M
Meiyim 已提交
276

L
liyukun01 已提交
277
### ERNIE 2.0
M
Meiyim 已提交
278
```
L
liyukun01 已提交
279
@article{sun2019ernie20,
M
Meiyim 已提交
280 281
  title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding},
  author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng},
L
liyukun01 已提交
282
  journal={arXiv preprint arXiv:1907.12412},
M
Meiyim 已提交
283
  year={2019}
M
Meiyim 已提交
284 285 286
}
```

L
liyukun01 已提交
287
### ERNIE-GEN
M
Meiyim 已提交
288 289

```
L
liyukun01 已提交
290
@article{xiao2020ernie-gen,
M
Meiyim 已提交
291 292
  title={ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation},
  author={Xiao, Dongling and Zhang, Han and Li, Yukun and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
L
liyukun01 已提交
293 294
  journal={arXiv preprint arXiv:2001.11314},
  year={2020}
M
Meiyim 已提交
295 296 297
}
```

T
tangjiji 已提交
298 299 300 301 302 303 304 305 306 307 308
### ERNIE-ViL
```
@article{yu2020ernie,
  title={ERNIE-ViL: Knowledge Enhanced Vision-Language Representations Through Scene Graph},
  author={Yu, Fei and Tang, Jiji and Yin, Weichong and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
  journal={arXiv preprint arXiv:2006.16934},
  year={2020}
}

```

M
Meiyim 已提交
309 310 311 312
For full reproduction of paper results, please checkout to `repro` branch of this repo.

### Communication

M
Meiyim 已提交
313
- [ERNIE homepage](https://wenxin.baidu.com/)
M
Meiyim 已提交
314 315
- [Github Issues](https://github.com/PaddlePaddle/ERNIE/issues): bug reports, feature requests, install issues, usage issues, etc.
- QQ discussion group: 760439550 (ERNIE discussion group).
M
Meiyim 已提交
316
- QQ discussion group: 958422639 (ERNIE discussion group-v2).
M
Meiyim 已提交
317
- [Forums](http://ai.baidu.com/forum/topic/list/168?pageNo=1): discuss implementations, research, etc.