README.en.md 13.4 KB
Newer Older
M
Meiyim 已提交
1
English|[简体中文](./README.zh.md)
M
Meiyim 已提交
2

M
Meiyim 已提交
3
![./.metas/ERNIE_milestone.png](./.metas/ERNIE_milestone_en.png)
M
Meiyim 已提交
4 5 6 7 8 9 10


**Remind: This repo has been refactored, for paper re-production or backward compatibility; plase checkout to [repro branch](https://github.com/PaddlePaddle/ERNIE/tree/repro)**

ERNIE 2.0 is a continual pre-training framework for language understanding in which pre-training tasks can be incrementally built and learned through multi-task learning.
ERNIE 2.0 builds a strong basic for nearly every NLP tasks: Text Classification, Ranking, NER, machine reading comprehension, text genration and so on.

K
kirayummy 已提交
11 12
[\[more information\]](https://wenxin.baidu.com/)

M
Meiyim 已提交
13
# News
T
tangjiji 已提交
14 15 16 17 18
- Sept.24.2020: 
    - [`ERNIE-ViL`](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-vil) is **avaliable** now!
        - A **knowledge-enhanced** joint representations for vision-language tasks.
            - Constructing three **Scene Graph Prediction** tasks utilizing structured knowledge.
	    - The state-of-the-art performance on 5 downstream tasks, 1st place on [VCR leaderboad](https://visualcommonsense.com/leaderboard/).
M
Meiyim 已提交
19

N
nbcc 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
- May.20.2020:

    - Try ERNIE in "`dygraph`", with:
    	- Pretrain and finetune ERNIE with [PaddlePaddle v1.8](https://github.com/PaddlePaddle/Paddle/tree/release/1.8).
    	- Eager execution with `paddle.fluid.dygraph`.
    	- Distributed training.
    	- Easy deployment.
    	- Learn NLP in Aistudio tutorials.
    	- Backward compatibility for old-styled checkpoint
    
    - [`ERNIE-GEN`](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen) is **avaliable** now! ([link here](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen))
    	- the **state-of-the-art** pre-trained model for generation tasks, accepted by `IJCAI-2020`.
        	- A novel **span-by-span generation pre-training task**.
        	- An **infilling generation** echanism and a **noise-aware generation** method.
        	- Implemented by a carefully designed **Multi-Flow Attention** architecture.
Z
zhanghan 已提交
35
    	- You are able to `download` all models including `base/large/large-430G`.
N
nbcc 已提交
36
  
M
Meiyim 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
- Apr.30.2020: Release [ERNIESage](https://github.com/PaddlePaddle/PGL/tree/master/examples/erniesage), a novel Graph Neural Network Model using ERNIE as its aggregator. It is implemented through [PGL](https://github.com/PaddlePaddle/PGL)
- Mar.27.2020: [Champion on 5 SemEval2020 sub tasks](https://www.jiqizhixin.com/articles/2020-03-27-8)
- Dec.26.2019: [1st place on GLUE leaderboard](https://www.technologyreview.com/2019/12/26/131372/ai-baidu-ernie-google-bert-natural-language-glue/)
- Nov.6.2019: [Introducing ERNIE-tiny](https://www.jiqizhixin.com/articles/2019-11-06-9)
- Jul.7.2019: [Introducing ERNIE2.0](https://www.jiqizhixin.com/articles/2019-07-31-10)
- Mar.16.2019: [Introducing ERNIE1.0](https://www.jiqizhixin.com/articles/2019-03-16-3)

	
# Table of contents
* [Tutorials](#tutorials)
* [Setup](#setup)
* [Fine-tuning](#fine-tuning)
* [Pre-training with ERNIE 1.0](#pre-training-with-ernie-10)
* [Online inference](#online-inference)
* [Distillation](#distillation)

# Quick Tour

```python
import numpy as np
import paddle.fluid.dygraph as D
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.modeling_ernie import ErnieModel

D.guard().__enter__() # activate paddle `dygrpah` mode

model = ErnieModel.from_pretrained('ernie-1.0')    # Try to get pretrained model from server, make sure you have network connection
M
Meiyim 已提交
64
model.eval()
M
Meiyim 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')

ids, _ = tokenizer.encode('hello world')
ids = D.to_variable(np.expand_dims(ids, 0))  # insert extra `batch` dimension
pooled, encoded = model(ids)                 # eager execution
print(pooled.numpy())                        # convert  results to numpy

```

# Tutorials

Don't have GPU? try ERNIE in [AIStudio](https://aistudio.baidu.com/aistudio/index)!
(please choose the latest version and apply for a GPU environment)

C
chenxuyi 已提交
79
1. [ERNIE for beginners](https://aistudio.baidu.com/studio/edu/group/quick/join/314947)
M
Meiyim 已提交
80 81 82 83 84
1. [Sementic analysis](https://aistudio.baidu.com/aistudio/projectdetail/427482)
2. [Cloze test](https://aistudio.baidu.com/aistudio/projectdetail/433491)
3. [Knowledge distillation](https://aistudio.baidu.com/aistudio/projectdetail/439460)
4. [Ask ERNIE](https://aistudio.baidu.com/aistudio/projectdetail/456443)
5. [Loading old-styled checkpoint](https://aistudio.baidu.com/aistudio/projectdetail/493415)
M
Meiyim 已提交
85 86 87

# Setup

M
Meiyim 已提交
88 89 90 91 92
##### 1. install PaddlePaddle

This repo requires PaddlePaddle 1.7.0+, please see [here](https://www.paddlepaddle.org.cn/install/quick) for installaton instruction.

##### 2. install ernie
M
Meiyim 已提交
93 94

```script
M
Meiyim 已提交
95
pip install paddle-ernie
M
Meiyim 已提交
96 97 98 99 100
```

or 

```shell
M
Meiyim 已提交
101
git clone https://github.com/PaddlePaddle/ERNIE.git --depth 1
M
Meiyim 已提交
102
cd ERNIE
M
Meiyim 已提交
103
pip install -r requirements.txt
M
Meiyim 已提交
104
pip install -e .
M
Meiyim 已提交
105 106 107 108
```

##### 3. download pretrained models (optional)

M
Meiyim 已提交
109 110 111 112 113 114 115 116
| Model                                              | Description                                                  |abbreviation|
| :------------------------------------------------- | :----------------------------------------------------------- |:-----------|
| [ERNIE 1.0 Base for Chinese](https://ernie-github.cdn.bcebos.com/model-ernie1.0.1.tar.gz)           | L12H768A12  |ernie-1.0|
| [ERNIE Tiny](https://ernie-github.cdn.bcebos.com/model-ernie_tiny.1.tar.gz)                         | L3H1024A16  |ernie-tiny|
| [ERNIE 2.0 Base for English](https://ernie-github.cdn.bcebos.com/model-ernie2.0-en.1.tar.gz)        | L12H768A12  |ernie-2.0-en|
| [ERNIE 2.0 Large for English](https://ernie-github.cdn.bcebos.com/model-ernie2.0-large-en.1.tar.gz) | L24H1024A16 |ernie-2.0-large-en|
| [ERNIE Gen base for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-base-en.1.tar.gz)  | L12H768A12  |ernie-gen-base-en|
| [ERNIE Gen Large for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-large-en.1.tar.gz)| L24H1024A16 | ernie-gen-large-en |
Z
zhanghan17 已提交
117
| [ERNIE Gen Large 430G for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-large-430g-en.1.tar.gz)| Layer:24, Hidden:1024, Heads:16 + 430G pretrain corpus | ernie-gen-large-430g-en |
M
Meiyim 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

##### 4. download datasets
 
**English Datasets**

Download the [GLUE datasets](https://gluebenchmark.com/tasks) by running [this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e) 

the `--data_dir` option in the following section assumes a directory tree like this:

```shell
data/xnli
├── dev
│   └── 1
├── test
│   └── 1
└── train
    └── 1
```

see [demo](https://ernie-github.cdn.bcebos.com/data-mnli-m.tar.gz) data for MNLI task.

**Chinese Datasets**

| Datasets|Description|
|:--------|:----------|
| [XNLI](https://ernie-github.cdn.bcebos.com/data-xnli.tar.gz)                 |XNLI is a natural language inference dataset in 15 languages. It was jointly built by Facebook and New York University. We use Chinese data of XNLI to evaluate language understanding ability of our model. [url](https://github.com/facebookresearch/XNLI)|
| [ChnSentiCorp](https://ernie-github.cdn.bcebos.com/data-chnsenticorp.tar.gz) |ChnSentiCorp is a sentiment analysis dataset consisting of reviews on online shopping of hotels, notebooks and books.|
| [MSRA-NER](https://ernie-github.cdn.bcebos.com/data-msra_ner.tar.gz)         |MSRA-NER (SIGHAN2006) dataset is released by MSRA for recognizing the names of people, locations and organizations in text.|
| [NLPCC2016-DBQA](https://ernie-github.cdn.bcebos.com/data-dbqa.tar.gz)       |NLPCC2016-DBQA is a sub-task of NLPCC-ICCPOL 2016 Shared Task which is hosted by NLPCC(Natural Language Processing and Chinese Computing), this task targets on selecting documents from the candidates to answer the questions. [url: http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf]|
|[CMRC2018](https://ernie-github.cdn.bcebos.com/data-cmrc2018.tar.gz)|CMRC2018 is a evaluation of Chinese extractive reading comprehension hosted by Chinese Information Processing Society of China (CIPS-CL). [url](https://github.com/ymcui/cmrc2018)|


# Fine-tuning

- try eager execution with `dygraph model` :

```script
M
Meiyim 已提交
155 156 157
python3 ./ernie_d/demo/finetune_classifier_dygraph.py \
       --from_pretrained ernie-1.0 \
       --data_dir ./data/xnli  
M
Meiyim 已提交
158 159 160 161 162 163
```

- Distributed finetune

`paddle.distributed.launch` is a process manager, we use it to launch python processes on each avalible GPU devices:

M
Meiyim 已提交
164 165 166
When in distributed training, `max_steps` is used as stopping criteria rather than `epoch` to prevent dead block.
You could calculate `max_steps` with `EPOCH * NUM_TRAIN_EXAMPLES / TOTAL_BATCH`.
Also notice than we shard the train data according to device id to prevent over fitting.
M
Meiyim 已提交
167 168

demo: 
M
Meiyim 已提交
169 170 171 172
(make sure you have more than 2 GPUs, 
online model download can not work in `paddle.distributed.launch`, 
you need to run single card finetuning first to get pretrained model, or donwload and extract one manualy from [here](#section-pretrained-models)): 

M
Meiyim 已提交
173 174 175 176 177 178

```script
python3 -m paddle.distributed.launch \
./demo/finetune_classifier_dygraph_distributed.py \
    --data_dir data/mnli \
    --max_steps 10000 \
M
Meiyim 已提交
179
    --from_pretrained ernie-2.0-en
M
Meiyim 已提交
180 181 182 183 184 185 186 187 188
```


many other demo python scripts:

1. [Sentiment Analysis](./demo/finetune_sentiment_analysis_dygraph.py)
1. [Semantic Similarity](./demo/finetune_classifier_dygraph.py)
1. [Name Entity Recognition(NER)](./demo/finetune_ner_dygraph.py)
1. [Machine Reading Comprehension](./demo/finetune_mrc_dygraph.py)
M
Meiyim 已提交
189
1. [Text generation](./demo/seq2seq/README.md)
M
Meiyim 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213




**recomended hyper parameters:**

|tasks|batch size|learning rate|
|--|--|--|
| CoLA         | 32 / 64 (base)  | 3e-5                     |
| SST-2        | 64 / 256 (base) | 2e-5                     |
| STS-B        | 128             | 5e-5                     |
| QQP          | 256             | 3e-5(base)/5e-5(large)   |
| MNLI         | 256 / 512 (base)| 3e-5                     |
| QNLI         | 256             | 2e-5                     |
| RTE          | 16 / 4 (base)   | 2e-5(base)/3e-5(large)   |
| MRPC         | 16 / 32 (base)  | 3e-5                     |
| WNLI         | 8               | 2e-5                     |
| XNLI         | 512             | 1e-4(base)/4e-5(large)   |
| CMRC2018     | 64              | 3e-5                     |
| DRCD         | 64              | 5e-5(base)/3e-5(large)   |
| MSRA-NER(SIGHAN2006)  | 16     | 5e-5(base)/1e-5(large)   |
| ChnSentiCorp | 24              | 5e-5(base)/1e-5(large)   |
| LCQMC        | 32              | 2e-5(base)/5e-6(large)   |
| NLPCC2016-DBQA| 64             | 2e-5(base)/1e-5(large)   |
T
tangjiji 已提交
214
| VCR           | 64             | 2e-5(base)/2e-5(large)   |
M
Meiyim 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

# Pretraining with ERNIE 1.0

see [here](./demo/pretrain/README.md)


# Online inference

If `--inference_model_dir` is passed to `finetune_classifier_dygraph.py`, 
a deployable model will be generated at the end of finetuning and your model is ready to serve.

For details about online inferece, see [C++ inference API](./inference/README.md),
or you can start a multi-gpu inference server with a few lines of codes:

```shell
python -m propeller.tools.start_server -m /path/to/saved/inference_model  -p 8881
```

and call the server just like calling local function (python3 only):

```python
from propeller.service.client import InferenceClient
from ernie.tokenizing_ernie import ErnieTokenizer

client = InferenceClient('tcp://localhost:8881')
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
ids, sids = tokenizer.encode('hello world')
ids = np.expand_dims(ids, 0)
sids = np.expand_dims(sids, 0)
result = client(ids, sids)
```

A pre-made `inference model` for ernie-1.0 can be downloaded at [here](https://ernie.bj.bcebos.com/ernie1.0_zh_inference_model.tar.gz). 
It can be used for feature-based finetuning or feature extraction.

# Distillation

Knowledge distillation is good way to compress and accelerate ERNIE. 

For details about distillation, see [here](./distill/README.md)

L
liyukun01 已提交
256
# Citation
M
Meiyim 已提交
257

L
liyukun01 已提交
258 259 260 261 262 263 264 265 266
### ERNIE 1.0
```
@article{sun2019ernie,
  title={Ernie: Enhanced representation through knowledge integration},
  author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Chen, Xuyi and Zhang, Han and Tian, Xin and Zhu, Danxiang and Tian, Hao and Wu, Hua},
  journal={arXiv preprint arXiv:1904.09223},
  year={2019}
}
```
M
Meiyim 已提交
267

L
liyukun01 已提交
268
### ERNIE 2.0
M
Meiyim 已提交
269
```
L
liyukun01 已提交
270
@article{sun2019ernie20,
M
Meiyim 已提交
271 272
  title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding},
  author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng},
L
liyukun01 已提交
273 274
  journal={arXiv preprint arXiv:1907.12412},
  year={2019} 
M
Meiyim 已提交
275 276 277
}
```

L
liyukun01 已提交
278
### ERNIE-GEN
M
Meiyim 已提交
279 280

```
L
liyukun01 已提交
281
@article{xiao2020ernie-gen,
M
Meiyim 已提交
282 283
  title={ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation},
  author={Xiao, Dongling and Zhang, Han and Li, Yukun and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
L
liyukun01 已提交
284 285
  journal={arXiv preprint arXiv:2001.11314},
  year={2020}
M
Meiyim 已提交
286 287 288
}
```

T
tangjiji 已提交
289 290 291 292 293 294 295 296 297 298 299
### ERNIE-ViL
```
@article{yu2020ernie,
  title={ERNIE-ViL: Knowledge Enhanced Vision-Language Representations Through Scene Graph},
  author={Yu, Fei and Tang, Jiji and Yin, Weichong and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
  journal={arXiv preprint arXiv:2006.16934},
  year={2020}
}

```

M
Meiyim 已提交
300 301 302 303
For full reproduction of paper results, please checkout to `repro` branch of this repo.

### Communication

M
Meiyim 已提交
304
- [ERNIE homepage](https://wenxin.baidu.com/)
M
Meiyim 已提交
305 306
- [Github Issues](https://github.com/PaddlePaddle/ERNIE/issues): bug reports, feature requests, install issues, usage issues, etc.
- QQ discussion group: 760439550 (ERNIE discussion group).
M
Meiyim 已提交
307
- QQ discussion group: 958422639 (ERNIE discussion group-v2).
M
Meiyim 已提交
308 309
- [Forums](http://ai.baidu.com/forum/topic/list/168?pageNo=1): discuss implementations, research, etc.