README.en.md 12.5 KB
Newer Older
M
Meiyim 已提交
1
English|[简体中文](./README.zh.md)
M
Meiyim 已提交
2

M
Meiyim 已提交
3
![./.metas/ERNIE_milestone.png](./.metas/ERNIE_milestone_en.png)
M
Meiyim 已提交
4 5 6 7 8 9 10 11 12


**Remind: This repo has been refactored, for paper re-production or backward compatibility; plase checkout to [repro branch](https://github.com/PaddlePaddle/ERNIE/tree/repro)**

ERNIE 2.0 is a continual pre-training framework for language understanding in which pre-training tasks can be incrementally built and learned through multi-task learning.
ERNIE 2.0 builds a strong basic for nearly every NLP tasks: Text Classification, Ranking, NER, machine reading comprehension, text genration and so on.

# News

N
nbcc 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
- May.20.2020:

    - Try ERNIE in "`dygraph`", with:
    	- Pretrain and finetune ERNIE with [PaddlePaddle v1.8](https://github.com/PaddlePaddle/Paddle/tree/release/1.8).
    	- Eager execution with `paddle.fluid.dygraph`.
    	- Distributed training.
    	- Easy deployment.
    	- Learn NLP in Aistudio tutorials.
    	- Backward compatibility for old-styled checkpoint
    
    - [`ERNIE-GEN`](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen) is **avaliable** now! ([link here](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen))
    	- the **state-of-the-art** pre-trained model for generation tasks, accepted by `IJCAI-2020`.
        	- A novel **span-by-span generation pre-training task**.
        	- An **infilling generation** echanism and a **noise-aware generation** method.
        	- Implemented by a carefully designed **Multi-Flow Attention** architecture.
Z
zhanghan 已提交
28
    	- You are able to `download` all models including `base/large/large-430G`.
N
nbcc 已提交
29
  
M
Meiyim 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
- Apr.30.2020: Release [ERNIESage](https://github.com/PaddlePaddle/PGL/tree/master/examples/erniesage), a novel Graph Neural Network Model using ERNIE as its aggregator. It is implemented through [PGL](https://github.com/PaddlePaddle/PGL)
- Mar.27.2020: [Champion on 5 SemEval2020 sub tasks](https://www.jiqizhixin.com/articles/2020-03-27-8)
- Dec.26.2019: [1st place on GLUE leaderboard](https://www.technologyreview.com/2019/12/26/131372/ai-baidu-ernie-google-bert-natural-language-glue/)
- Nov.6.2019: [Introducing ERNIE-tiny](https://www.jiqizhixin.com/articles/2019-11-06-9)
- Jul.7.2019: [Introducing ERNIE2.0](https://www.jiqizhixin.com/articles/2019-07-31-10)
- Mar.16.2019: [Introducing ERNIE1.0](https://www.jiqizhixin.com/articles/2019-03-16-3)

	
# Table of contents
* [Tutorials](#tutorials)
* [Setup](#setup)
* [Fine-tuning](#fine-tuning)
* [Pre-training with ERNIE 1.0](#pre-training-with-ernie-10)
* [Online inference](#online-inference)
* [Distillation](#distillation)

# Quick Tour

```python
import numpy as np
import paddle.fluid.dygraph as D
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.modeling_ernie import ErnieModel

D.guard().__enter__() # activate paddle `dygrpah` mode

model = ErnieModel.from_pretrained('ernie-1.0')    # Try to get pretrained model from server, make sure you have network connection
M
Meiyim 已提交
57
model.eval()
M
Meiyim 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')

ids, _ = tokenizer.encode('hello world')
ids = D.to_variable(np.expand_dims(ids, 0))  # insert extra `batch` dimension
pooled, encoded = model(ids)                 # eager execution
print(pooled.numpy())                        # convert  results to numpy

```

# Tutorials

Don't have GPU? try ERNIE in [AIStudio](https://aistudio.baidu.com/aistudio/index)!
(please choose the latest version and apply for a GPU environment)

C
chenxuyi 已提交
72
1. [ERNIE for beginners](https://aistudio.baidu.com/studio/edu/group/quick/join/314947)
M
Meiyim 已提交
73 74 75 76 77
1. [Sementic analysis](https://aistudio.baidu.com/aistudio/projectdetail/427482)
2. [Cloze test](https://aistudio.baidu.com/aistudio/projectdetail/433491)
3. [Knowledge distillation](https://aistudio.baidu.com/aistudio/projectdetail/439460)
4. [Ask ERNIE](https://aistudio.baidu.com/aistudio/projectdetail/456443)
5. [Loading old-styled checkpoint](https://aistudio.baidu.com/aistudio/projectdetail/493415)
M
Meiyim 已提交
78 79 80

# Setup

M
Meiyim 已提交
81 82 83 84 85
##### 1. install PaddlePaddle

This repo requires PaddlePaddle 1.7.0+, please see [here](https://www.paddlepaddle.org.cn/install/quick) for installaton instruction.

##### 2. install ernie
M
Meiyim 已提交
86 87

```script
M
Meiyim 已提交
88
pip install paddle-ernie
M
Meiyim 已提交
89 90 91 92 93
```

or 

```shell
M
Meiyim 已提交
94
git clone https://github.com/PaddlePaddle/ERNIE.git --depth 1
M
Meiyim 已提交
95
cd ERNIE
M
Meiyim 已提交
96
pip install -r requirements.txt
M
Meiyim 已提交
97
pip install -e .
M
Meiyim 已提交
98 99 100 101
```

##### 3. download pretrained models (optional)

M
Meiyim 已提交
102 103 104 105 106 107 108 109
| Model                                              | Description                                                  |abbreviation|
| :------------------------------------------------- | :----------------------------------------------------------- |:-----------|
| [ERNIE 1.0 Base for Chinese](https://ernie-github.cdn.bcebos.com/model-ernie1.0.1.tar.gz)           | L12H768A12  |ernie-1.0|
| [ERNIE Tiny](https://ernie-github.cdn.bcebos.com/model-ernie_tiny.1.tar.gz)                         | L3H1024A16  |ernie-tiny|
| [ERNIE 2.0 Base for English](https://ernie-github.cdn.bcebos.com/model-ernie2.0-en.1.tar.gz)        | L12H768A12  |ernie-2.0-en|
| [ERNIE 2.0 Large for English](https://ernie-github.cdn.bcebos.com/model-ernie2.0-large-en.1.tar.gz) | L24H1024A16 |ernie-2.0-large-en|
| [ERNIE Gen base for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-base-en.1.tar.gz)  | L12H768A12  |ernie-gen-base-en|
| [ERNIE Gen Large for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-large-en.1.tar.gz)| L24H1024A16 | ernie-gen-large-en |
Z
zhanghan 已提交
110
| [ERNIE Gen Large 430G for English](https://ernie-github.cdn.bcebos.com/model-ernie-gen-large-en.1.tar.gz)| Layer:24, Hidden:1024, Heads:16 + 430G pretrain corpus | ernie-gen-large-430g-en |
M
Meiyim 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

##### 4. download datasets
 
**English Datasets**

Download the [GLUE datasets](https://gluebenchmark.com/tasks) by running [this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e) 

the `--data_dir` option in the following section assumes a directory tree like this:

```shell
data/xnli
├── dev
│   └── 1
├── test
│   └── 1
└── train
    └── 1
```

see [demo](https://ernie-github.cdn.bcebos.com/data-mnli-m.tar.gz) data for MNLI task.

**Chinese Datasets**

| Datasets|Description|
|:--------|:----------|
| [XNLI](https://ernie-github.cdn.bcebos.com/data-xnli.tar.gz)                 |XNLI is a natural language inference dataset in 15 languages. It was jointly built by Facebook and New York University. We use Chinese data of XNLI to evaluate language understanding ability of our model. [url](https://github.com/facebookresearch/XNLI)|
| [ChnSentiCorp](https://ernie-github.cdn.bcebos.com/data-chnsenticorp.tar.gz) |ChnSentiCorp is a sentiment analysis dataset consisting of reviews on online shopping of hotels, notebooks and books.|
| [MSRA-NER](https://ernie-github.cdn.bcebos.com/data-msra_ner.tar.gz)         |MSRA-NER (SIGHAN2006) dataset is released by MSRA for recognizing the names of people, locations and organizations in text.|
| [NLPCC2016-DBQA](https://ernie-github.cdn.bcebos.com/data-dbqa.tar.gz)       |NLPCC2016-DBQA is a sub-task of NLPCC-ICCPOL 2016 Shared Task which is hosted by NLPCC(Natural Language Processing and Chinese Computing), this task targets on selecting documents from the candidates to answer the questions. [url: http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf]|
|[CMRC2018](https://ernie-github.cdn.bcebos.com/data-cmrc2018.tar.gz)|CMRC2018 is a evaluation of Chinese extractive reading comprehension hosted by Chinese Information Processing Society of China (CIPS-CL). [url](https://github.com/ymcui/cmrc2018)|


# Fine-tuning

- try eager execution with `dygraph model` :

```script
M
Meiyim 已提交
148 149 150
python3 ./ernie_d/demo/finetune_classifier_dygraph.py \
       --from_pretrained ernie-1.0 \
       --data_dir ./data/xnli  
M
Meiyim 已提交
151 152 153 154 155 156
```

- Distributed finetune

`paddle.distributed.launch` is a process manager, we use it to launch python processes on each avalible GPU devices:

M
Meiyim 已提交
157 158 159
When in distributed training, `max_steps` is used as stopping criteria rather than `epoch` to prevent dead block.
You could calculate `max_steps` with `EPOCH * NUM_TRAIN_EXAMPLES / TOTAL_BATCH`.
Also notice than we shard the train data according to device id to prevent over fitting.
M
Meiyim 已提交
160 161

demo: 
M
Meiyim 已提交
162 163 164 165
(make sure you have more than 2 GPUs, 
online model download can not work in `paddle.distributed.launch`, 
you need to run single card finetuning first to get pretrained model, or donwload and extract one manualy from [here](#section-pretrained-models)): 

M
Meiyim 已提交
166 167 168 169 170 171

```script
python3 -m paddle.distributed.launch \
./demo/finetune_classifier_dygraph_distributed.py \
    --data_dir data/mnli \
    --max_steps 10000 \
M
Meiyim 已提交
172
    --from_pretrained ernie-2.0-en
M
Meiyim 已提交
173 174 175 176 177 178 179 180 181
```


many other demo python scripts:

1. [Sentiment Analysis](./demo/finetune_sentiment_analysis_dygraph.py)
1. [Semantic Similarity](./demo/finetune_classifier_dygraph.py)
1. [Name Entity Recognition(NER)](./demo/finetune_ner_dygraph.py)
1. [Machine Reading Comprehension](./demo/finetune_mrc_dygraph.py)
M
Meiyim 已提交
182
1. [Text generation](./demo/seq2seq/README.md)
M
Meiyim 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247




**recomended hyper parameters:**

|tasks|batch size|learning rate|
|--|--|--|
| CoLA         | 32 / 64 (base)  | 3e-5                     |
| SST-2        | 64 / 256 (base) | 2e-5                     |
| STS-B        | 128             | 5e-5                     |
| QQP          | 256             | 3e-5(base)/5e-5(large)   |
| MNLI         | 256 / 512 (base)| 3e-5                     |
| QNLI         | 256             | 2e-5                     |
| RTE          | 16 / 4 (base)   | 2e-5(base)/3e-5(large)   |
| MRPC         | 16 / 32 (base)  | 3e-5                     |
| WNLI         | 8               | 2e-5                     |
| XNLI         | 512             | 1e-4(base)/4e-5(large)   |
| CMRC2018     | 64              | 3e-5                     |
| DRCD         | 64              | 5e-5(base)/3e-5(large)   |
| MSRA-NER(SIGHAN2006)  | 16     | 5e-5(base)/1e-5(large)   |
| ChnSentiCorp | 24              | 5e-5(base)/1e-5(large)   |
| LCQMC        | 32              | 2e-5(base)/5e-6(large)   |
| NLPCC2016-DBQA| 64             | 2e-5(base)/1e-5(large)   |

# Pretraining with ERNIE 1.0

see [here](./demo/pretrain/README.md)


# Online inference

If `--inference_model_dir` is passed to `finetune_classifier_dygraph.py`, 
a deployable model will be generated at the end of finetuning and your model is ready to serve.

For details about online inferece, see [C++ inference API](./inference/README.md),
or you can start a multi-gpu inference server with a few lines of codes:

```shell
python -m propeller.tools.start_server -m /path/to/saved/inference_model  -p 8881
```

and call the server just like calling local function (python3 only):

```python
from propeller.service.client import InferenceClient
from ernie.tokenizing_ernie import ErnieTokenizer

client = InferenceClient('tcp://localhost:8881')
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
ids, sids = tokenizer.encode('hello world')
ids = np.expand_dims(ids, 0)
sids = np.expand_dims(sids, 0)
result = client(ids, sids)
```

A pre-made `inference model` for ernie-1.0 can be downloaded at [here](https://ernie.bj.bcebos.com/ernie1.0_zh_inference_model.tar.gz). 
It can be used for feature-based finetuning or feature extraction.

# Distillation

Knowledge distillation is good way to compress and accelerate ERNIE. 

For details about distillation, see [here](./distill/README.md)

L
liyukun01 已提交
248
# Citation
M
Meiyim 已提交
249

L
liyukun01 已提交
250 251 252 253 254 255 256 257 258
### ERNIE 1.0
```
@article{sun2019ernie,
  title={Ernie: Enhanced representation through knowledge integration},
  author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Chen, Xuyi and Zhang, Han and Tian, Xin and Zhu, Danxiang and Tian, Hao and Wu, Hua},
  journal={arXiv preprint arXiv:1904.09223},
  year={2019}
}
```
M
Meiyim 已提交
259

L
liyukun01 已提交
260
### ERNIE 2.0
M
Meiyim 已提交
261
```
L
liyukun01 已提交
262
@article{sun2019ernie20,
M
Meiyim 已提交
263 264
  title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding},
  author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng},
L
liyukun01 已提交
265 266
  journal={arXiv preprint arXiv:1907.12412},
  year={2019} 
M
Meiyim 已提交
267 268 269
}
```

L
liyukun01 已提交
270
### ERNIE-GEN
M
Meiyim 已提交
271 272

```
L
liyukun01 已提交
273
@article{xiao2020ernie-gen,
M
Meiyim 已提交
274 275
  title={ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation},
  author={Xiao, Dongling and Zhang, Han and Li, Yukun and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
L
liyukun01 已提交
276 277
  journal={arXiv preprint arXiv:2001.11314},
  year={2020}
M
Meiyim 已提交
278 279 280 281 282 283 284 285 286 287 288
}
```

For full reproduction of paper results, please checkout to `repro` branch of this repo.

### Communication

- [Github Issues](https://github.com/PaddlePaddle/ERNIE/issues): bug reports, feature requests, install issues, usage issues, etc.
- QQ discussion group: 760439550 (ERNIE discussion group).
- [Forums](http://ai.baidu.com/forum/topic/list/168?pageNo=1): discuss implementations, research, etc.