metrics.py 17.3 KB
Newer Older
C
chenxuyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
chenxuyi 已提交
14
"""predefined metrics"""
C
chenxuyi 已提交
15 16 17

import sys
import os
C
chenxuyi 已提交
18 19
import six

C
chenxuyi 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
import numpy as np
import itertools
import logging

import paddle.fluid as F
import paddle.fluid.layers as L
import sklearn.metrics

log = logging.getLogger(__name__)

__all__ = [
    'Metrics', 'F1', 'Recall', 'Precision', 'Mrr', 'Mean', 'Acc', 'ChunkF1',
    'RecallAtPrecision'
]


class Metrics(object):
C
chenxuyi 已提交
37 38
    """Metrics base class"""

C
chenxuyi 已提交
39
    def __init__(self):
C
chenxuyi 已提交
40
        """doc"""
C
chenxuyi 已提交
41 42 43 44
        self.saver = []

    @property
    def tensor(self):
C
chenxuyi 已提交
45
        """doc"""
C
chenxuyi 已提交
46 47 48
        pass

    def update(self, *args):
C
chenxuyi 已提交
49
        """doc"""
C
chenxuyi 已提交
50 51 52
        pass

    def eval(self):
C
chenxuyi 已提交
53
        """doc"""
C
chenxuyi 已提交
54 55 56 57
        pass


class Mean(Metrics):
C
chenxuyi 已提交
58 59
    """doc"""

C
chenxuyi 已提交
60
    def __init__(self, t):
C
chenxuyi 已提交
61
        """doc"""
C
chenxuyi 已提交
62 63 64 65
        self.t = t
        self.reset()

    def reset(self):
C
chenxuyi 已提交
66
        """doc"""
C
chenxuyi 已提交
67 68 69 70
        self.saver = np.array([])

    @property
    def tensor(self):
C
chenxuyi 已提交
71
        """doc"""
C
chenxuyi 已提交
72 73 74 75
        self.t.persistable = True
        return self.t,

    def update(self, args):
C
chenxuyi 已提交
76
        """doc"""
C
chenxuyi 已提交
77 78 79 80 81
        t, = args
        t = t.reshape([-1])
        self.saver = np.concatenate([self.saver, t])

    def eval(self):
C
chenxuyi 已提交
82
        """doc"""
C
chenxuyi 已提交
83 84 85 86
        return self.saver.mean()


class Ppl(Mean):
C
chenxuyi 已提交
87 88
    """doc"""

C
chenxuyi 已提交
89
    def eval(self):
C
chenxuyi 已提交
90
        """doc"""
C
chenxuyi 已提交
91 92 93 94
        return np.exp(self.saver.mean())


class Acc(Mean):
C
chenxuyi 已提交
95 96
    """doc"""

C
chenxuyi 已提交
97
    def __init__(self, label, pred):
C
chenxuyi 已提交
98
        """doc"""
C
chenxuyi 已提交
99 100 101 102 103
        self.eq = L.equal(pred, label)
        self.reset()

    @property
    def tensor(self):
C
chenxuyi 已提交
104
        """doc"""
C
chenxuyi 已提交
105 106 107 108 109
        self.eq.persistable = True
        return self.eq,


class MSE(Mean):
C
chenxuyi 已提交
110 111
    """doc"""

C
chenxuyi 已提交
112
    def __init__(self, label, pred):
C
chenxuyi 已提交
113
        """doc"""
C
chenxuyi 已提交
114 115 116 117 118 119
        diff = pred - label
        self.mse = diff * diff
        self.reset()

    @property
    def tensor(self):
C
chenxuyi 已提交
120
        """doc"""
C
chenxuyi 已提交
121 122 123 124 125
        self.mse.persistable = True
        return self.mse,


class Cosine(Mean):
C
chenxuyi 已提交
126 127
    """doc"""

C
chenxuyi 已提交
128
    def __init__(self, label, pred):
C
chenxuyi 已提交
129
        """doc"""
C
chenxuyi 已提交
130 131 132 133 134
        self.cos = L.cos_sim(label, pred)
        self.reset()

    @property
    def tensor(self):
C
chenxuyi 已提交
135
        """doc"""
C
chenxuyi 已提交
136 137 138 139 140
        self.cos.persistable = True
        return self.cos,


class Precision(Metrics):
C
chenxuyi 已提交
141 142
    """doc"""

C
chenxuyi 已提交
143
    def __init__(self, label, pred):
C
chenxuyi 已提交
144
        """doc"""
C
chenxuyi 已提交
145 146 147 148 149
        self.label = label
        self.pred = pred
        self.reset()

    def reset(self):
C
chenxuyi 已提交
150
        """doc"""
C
chenxuyi 已提交
151 152 153 154 155
        self.label_saver = np.array([], dtype=np.bool)
        self.pred_saver = np.array([], dtype=np.bool)

    @property
    def tensor(self):
C
chenxuyi 已提交
156
        """doc"""
C
chenxuyi 已提交
157 158 159 160 161
        self.label.persistable = True
        self.pred.persistable = True
        return self.label, self.pred

    def update(self, args):
C
chenxuyi 已提交
162
        """doc"""
C
chenxuyi 已提交
163 164 165 166 167 168 169 170 171 172 173
        label, pred = args
        label = label.reshape([-1]).astype(np.bool)
        pred = pred.reshape([-1]).astype(np.bool)
        if label.shape != pred.shape:
            raise ValueError(
                'Metrics precesion: input not match: label:%s pred:%s' %
                (label, pred))
        self.label_saver = np.concatenate([self.label_saver, label])
        self.pred_saver = np.concatenate([self.pred_saver, pred])

    def eval(self):
C
chenxuyi 已提交
174
        """doc"""
C
chenxuyi 已提交
175 176 177 178 179 180
        tp = (self.label_saver & self.pred_saver).astype(np.int64).sum()
        t = self.label_saver.astype(np.int64).sum()
        return tp / t


class Recall(Precision):
C
chenxuyi 已提交
181 182
    """doc"""

C
chenxuyi 已提交
183
    def eval(self):
C
chenxuyi 已提交
184
        """doc"""
C
chenxuyi 已提交
185 186 187 188 189 190
        tp = (self.label_saver & self.pred_saver).astype(np.int64).sum()
        p = (self.label_saver).astype(np.int64).sum()
        return tp / p


class F1(Precision):
C
chenxuyi 已提交
191 192
    """doc"""

C
chenxuyi 已提交
193
    def eval(self):
C
chenxuyi 已提交
194
        """doc"""
C
chenxuyi 已提交
195 196 197 198 199 200 201 202 203
        tp = (self.label_saver & self.pred_saver).astype(np.int64).sum()
        t = self.label_saver.astype(np.int64).sum()
        p = self.pred_saver.astype(np.int64).sum()
        precision = tp / (t + 1.e-6)
        recall = tp / (p + 1.e-6)
        return 2 * precision * recall / (precision + recall + 1.e-6)


class Auc(Metrics):
C
chenxuyi 已提交
204 205
    """doc"""

C
chenxuyi 已提交
206
    def __init__(self, label, pred):
C
chenxuyi 已提交
207
        """doc"""
C
chenxuyi 已提交
208 209 210 211 212
        self.pred = pred
        self.label = label
        self.reset()

    def reset(self):
C
chenxuyi 已提交
213
        """doc"""
C
chenxuyi 已提交
214 215 216 217 218
        self.pred_saver = np.array([], dtype=np.float32)
        self.label_saver = np.array([], dtype=np.bool)

    @property
    def tensor(self):
C
chenxuyi 已提交
219
        """doc"""
C
chenxuyi 已提交
220 221 222 223 224
        self.pred.persistable = True
        self.label.persistable = True
        return [self.pred, self.label]

    def update(self, args):
C
chenxuyi 已提交
225
        """doc"""
C
chenxuyi 已提交
226 227 228 229 230 231 232
        pred, label = args
        pred = pred.reshape([-1]).astype(np.float32)
        label = label.reshape([-1]).astype(np.bool)
        self.pred_saver = np.concatenate([self.pred_saver, pred])
        self.label_saver = np.concatenate([self.label_saver, label])

    def eval(self):
C
chenxuyi 已提交
233
        """doc"""
C
chenxuyi 已提交
234 235 236 237 238 239 240
        fpr, tpr, thresholds = sklearn.metrics.roc_curve(
            self.label_saver.astype(np.int64), self.pred_saver)
        auc = sklearn.metrics.auc(fpr, tpr)
        return auc


class RecallAtPrecision(Auc):
C
chenxuyi 已提交
241 242
    """doc"""

C
chenxuyi 已提交
243
    def __init__(self, label, pred, precision=0.9):
C
chenxuyi 已提交
244
        """doc"""
C
chenxuyi 已提交
245 246 247 248
        super(RecallAtPrecision, self).__init__(label, pred)
        self.precision = precision

    def eval(self):
C
chenxuyi 已提交
249
        """doc"""
C
chenxuyi 已提交
250 251 252 253 254 255 256 257 258 259
        self.pred_saver = self.pred_saver.reshape(
            [self.label_saver.size, -1])[:, -1]
        precision, recall, thresholds = sklearn.metrics.precision_recall_curve(
            self.label_saver, self.pred_saver)
        for p, r in zip(precision, recall):
            if p > self.precision:
                return r


class PrecisionAtThreshold(Auc):
C
chenxuyi 已提交
260 261
    """doc"""

C
chenxuyi 已提交
262
    def __init__(self, label, pred, threshold=0.5):
C
chenxuyi 已提交
263
        """doc"""
C
chenxuyi 已提交
264 265 266 267
        super().__init__(label, pred)
        self.threshold = threshold

    def eval(self):
C
chenxuyi 已提交
268
        """doc"""
C
chenxuyi 已提交
269 270 271 272 273 274 275
        infered = self.pred_saver > self.threshold
        correct_num = np.array(infered & self.label_saver).sum()
        infer_num = infered.sum()
        return correct_num / (infer_num + 1.e-6)


class Mrr(Metrics):
C
chenxuyi 已提交
276 277
    """doc"""

C
chenxuyi 已提交
278
    def __init__(self, qid, label, pred):
C
chenxuyi 已提交
279
        """doc"""
C
chenxuyi 已提交
280 281 282 283 284 285
        self.qid = qid
        self.label = label
        self.pred = pred
        self.reset()

    def reset(self):
C
chenxuyi 已提交
286
        """doc"""
C
chenxuyi 已提交
287 288 289 290 291 292
        self.qid_saver = np.array([], dtype=np.int64)
        self.label_saver = np.array([], dtype=np.int64)
        self.pred_saver = np.array([], dtype=np.float32)

    @property
    def tensor(self):
C
chenxuyi 已提交
293
        """doc"""
C
chenxuyi 已提交
294 295 296 297 298 299
        self.qid.persistable = True
        self.label.persistable = True
        self.pred.persistable = True
        return [self.qid, self.label, self.pred]

    def update(self, args):
C
chenxuyi 已提交
300
        """doc"""
C
chenxuyi 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313
        qid, label, pred = args
        if not (qid.shape[0] == label.shape[0] == pred.shape[0]):
            raise ValueError(
                'Mrr dimention not match: qid[%s] label[%s], pred[%s]' %
                (qid.shape, label.shape, pred.shape))
        self.qid_saver = np.concatenate(
            [self.qid_saver, qid.reshape([-1]).astype(np.int64)])
        self.label_saver = np.concatenate(
            [self.label_saver, label.reshape([-1]).astype(np.int64)])
        self.pred_saver = np.concatenate(
            [self.pred_saver, pred.reshape([-1]).astype(np.float32)])

    def eval(self):
C
chenxuyi 已提交
314 315 316
        """doc"""

        def _key_func(tup):
C
chenxuyi 已提交
317 318
            return tup[0]

C
chenxuyi 已提交
319
        def _calc_func(tup):
C
chenxuyi 已提交
320 321 322 323 324 325
            ranks = [
                1. / (rank + 1.)
                for rank, (_, l, p) in enumerate(
                    sorted(
                        tup, key=lambda t: t[2], reverse=True)) if l != 0
            ]
C
chenxuyi 已提交
326 327 328 329
            if len(ranks):
                return ranks[0]
            else:
                return 0.
C
chenxuyi 已提交
330 331

        mrr_for_qid = [
C
chenxuyi 已提交
332
            _calc_func(tup)
C
chenxuyi 已提交
333 334 335
            for _, tup in itertools.groupby(
                sorted(
                    zip(self.qid_saver, self.label_saver, self.pred_saver),
C
chenxuyi 已提交
336 337
                    key=_key_func),
                key=_key_func)
C
chenxuyi 已提交
338 339 340 341 342 343
        ]
        mrr = np.float32(sum(mrr_for_qid) / len(mrr_for_qid))
        return mrr


class ChunkF1(Metrics):
C
chenxuyi 已提交
344 345
    """doc"""

C
chenxuyi 已提交
346
    def __init__(self, label, pred, seqlen, num_label):
C
chenxuyi 已提交
347
        """doc"""
C
chenxuyi 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        self.label = label
        self.pred = pred
        self.seqlen = seqlen
        self.null_index = num_label - 1
        self.label_cnt = 0
        self.pred_cnt = 0
        self.correct_cnt = 0

    def _extract_bio_chunk(self, seq):
        chunks = []
        cur_chunk = None

        for index in range(len(seq)):
            tag = seq[index]
            tag_type = tag // 2
            tag_pos = tag % 2

            if tag == self.null_index:
                if cur_chunk is not None:
                    chunks.append(cur_chunk)
                    cur_chunk = None
                continue

            if tag_pos == 0:
                if cur_chunk is not None:
                    chunks.append(cur_chunk)
                    cur_chunk = {}
                cur_chunk = {"st": index, "en": index + 1, "type": tag_type}
            else:
                if cur_chunk is None:
                    cur_chunk = {
                        "st": index,
                        "en": index + 1,
                        "type": tag_type
                    }
                    continue

                if cur_chunk["type"] == tag_type:
                    cur_chunk["en"] = index + 1
                else:
                    chunks.append(cur_chunk)
                    cur_chunk = {
                        "st": index,
                        "en": index + 1,
                        "type": tag_type
                    }

        if cur_chunk is not None:
            chunks.append(cur_chunk)
        return chunks

    def reset(self):
C
chenxuyi 已提交
400
        """doc"""
C
chenxuyi 已提交
401 402 403 404 405 406
        self.label_cnt = 0
        self.pred_cnt = 0
        self.correct_cnt = 0

    @property
    def tensor(self):
C
chenxuyi 已提交
407
        """doc"""
C
chenxuyi 已提交
408 409 410 411 412 413
        self.pred.persistable = True
        self.label.persistable = True
        self.seqlen.persistable = True
        return [self.pred, self.label, self.seqlen]

    def update(self, args):
C
chenxuyi 已提交
414
        """doc"""
C
chenxuyi 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        pred, label, seqlen = args
        pred = pred.reshape([-1]).astype(np.int32).tolist()
        label = label.reshape([-1]).astype(np.int32).tolist()
        seqlen = seqlen.reshape([-1]).astype(np.int32).tolist()

        max_len = 0
        for l in seqlen:
            max_len = max(max_len, l)

        for i in range(len(seqlen)):
            seq_st = i * max_len + 1
            seq_en = seq_st + (seqlen[i] - 2)
            pred_chunks = self._extract_bio_chunk(pred[seq_st:seq_en])
            label_chunks = self._extract_bio_chunk(label[seq_st:seq_en])
            self.pred_cnt += len(pred_chunks)
            self.label_cnt += len(label_chunks)

            pred_index = 0
            label_index = 0
            while label_index < len(label_chunks) and pred_index < len(
                    pred_chunks):
                if pred_chunks[pred_index]['st'] < label_chunks[label_index][
                        'st']:
                    pred_index += 1
                elif pred_chunks[pred_index]['st'] > label_chunks[label_index][
                        'st']:
                    label_index += 1
                else:
                    if pred_chunks[pred_index]['en'] == label_chunks[label_index]['en'] \
                            and pred_chunks[pred_index]['type'] == label_chunks[label_index]['type']:
                        self.correct_cnt += 1
                    pred_index += 1
                    label_index += 1

    def eval(self):
C
chenxuyi 已提交
450
        """doc"""
C
chenxuyi 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        if self.pred_cnt == 0:
            precision = 0.0
        else:
            precision = 1.0 * self.correct_cnt / self.pred_cnt

        if self.label_cnt == 0:
            recall = 0.0
        else:
            recall = 1.0 * self.correct_cnt / self.label_cnt

        if self.correct_cnt == 0:
            f1 = 0.0
        else:
            f1 = 2 * precision * recall / (precision + recall)

        return np.float32(f1)


class PNRatio(Metrics):
C
chenxuyi 已提交
470 471
    """doc"""

C
chenxuyi 已提交
472
    def __init__(self, qid, label, pred):
C
chenxuyi 已提交
473
        """doc"""
C
chenxuyi 已提交
474 475 476 477 478 479
        self.qid = qid
        self.label = label
        self.pred = pred
        self.saver = {}

    def reset(self):
C
chenxuyi 已提交
480
        """doc"""
C
chenxuyi 已提交
481 482 483 484
        self.saver = {}

    @property
    def tensor(self):
C
chenxuyi 已提交
485
        """doc"""
C
chenxuyi 已提交
486 487 488 489 490 491
        self.qid.persistable = True
        self.label.persistable = True
        self.pred.persistable = True
        return [self.qid, self.label, self.pred]

    def update(self, args):
C
chenxuyi 已提交
492
        """doc"""
C
chenxuyi 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506
        qid, label, pred = args
        if not (qid.shape[0] == label.shape[0] == pred.shape[0]):
            raise ValueError('dimention not match: qid[%s] label[%s], pred[%s]'
                             % (qid.shape, label.shape, pred.shape))
        qid = qid.reshape([-1]).tolist()
        label = label.reshape([-1]).tolist()
        pred = pred.reshape([-1]).tolist()
        assert len(qid) == len(label) == len(pred)
        for q, l, p in zip(qid, label, pred):
            if q not in self.saver:
                self.saver[q] = []
            self.saver[q].append((l, p))

    def eval(self):
C
chenxuyi 已提交
507
        """doc"""
C
chenxuyi 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
        p = 0
        n = 0
        for qid, outputs in self.saver.items():
            for i in range(0, len(outputs)):
                l1, p1 = outputs[i]
                for j in range(i + 1, len(outputs)):
                    l2, p2 = outputs[j]
                    if l1 > l2:
                        if p1 > p2:
                            p += 1
                        elif p1 < p2:
                            n += 1
                    elif l1 < l2:
                        if p1 < p2:
                            p += 1
                        elif p1 > p2:
                            n += 1
        pn = p / n if n > 0 else 0.0
        return np.float32(pn)


class BinaryPNRatio(PNRatio):
C
chenxuyi 已提交
530 531
    """doc"""

C
chenxuyi 已提交
532
    def __init__(self, qid, label, pred):
C
chenxuyi 已提交
533
        """doc"""
C
chenxuyi 已提交
534 535 536
        super(BinaryPNRatio, self).__init__(qid, label, pred)

    def eval(self):
C
chenxuyi 已提交
537
        """doc"""
C
chenxuyi 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        p = 0
        n = 0
        for qid, outputs in self.saver.items():
            pos_set = []
            neg_set = []
            for label, score in outputs:
                if label == 1:
                    pos_set.append(score)
                else:
                    neg_set.append(score)

            for ps in pos_set:
                for ns in neg_set:
                    if ps > ns:
                        p += 1
                    elif ps < ns:
                        n += 1
                    else:
                        continue
        pn = p / n if n > 0 else 0.0
        return np.float32(pn)


class PrecisionAtK(Metrics):
C
chenxuyi 已提交
562 563
    """doc"""

C
chenxuyi 已提交
564
    def __init__(self, qid, label, pred, k=1):
C
chenxuyi 已提交
565
        """doc"""
C
chenxuyi 已提交
566 567 568 569 570 571 572
        self.qid = qid
        self.label = label
        self.pred = pred
        self.k = k
        self.saver = {}

    def reset(self):
C
chenxuyi 已提交
573
        """doc"""
C
chenxuyi 已提交
574 575 576 577
        self.saver = {}

    @property
    def tensor(self):
C
chenxuyi 已提交
578
        """doc"""
C
chenxuyi 已提交
579 580 581 582 583 584
        self.qid.persistable = True
        self.label.persistable = True
        self.pred.persistable = True
        return [self.qid, self.label, self.pred]

    def update(self, args):
C
chenxuyi 已提交
585
        """doc"""
C
chenxuyi 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        qid, label, pred = args
        if not (qid.shape[0] == label.shape[0] == pred.shape[0]):
            raise ValueError('dimention not match: qid[%s] label[%s], pred[%s]'
                             % (qid.shape, label.shape, pred.shape))
        qid = qid.reshape([-1]).tolist()
        label = label.reshape([-1]).tolist()
        pred = pred.reshape([-1]).tolist()

        assert len(qid) == len(label) == len(pred)
        for q, l, p in zip(qid, label, pred):
            if q not in self.saver:
                self.saver[q] = []
            self.saver[q].append((l, p))

    def eval(self):
C
chenxuyi 已提交
601
        """doc"""
C
chenxuyi 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
        right = 0
        total = 0
        for v in self.saver.values():
            v = sorted(v, key=lambda x: x[1], reverse=True)
            k = min(self.k, len(v))
            for i in range(k):
                if v[i][0] == 1:
                    right += 1
                    break
            total += 1

        return np.float32(1.0 * right / total)


#class SemanticRecallMetrics(Metrics):
#    def __init__(self, qid, vec, type_id):
#        self.qid = qid
#        self.vec = vec
#        self.type_id = type_id
#        self.reset()
#
#    def reset(self):
#        self.saver = []
#
#    @property
#    def tensor(self):
#        return [self.qid, self.vec, self.type_id]
#
#    def update(self, args):
#        qid, vec, type_id = args
#        self.saver.append((qid, vec, type_id))
#
#    def eval(self):
#        dic = {}
#        for qid, vec, type_id in self.saver():
#            dic.setdefault(i, {}).setdefault(k, []).append(vec)
#        
#        for qid in dic:
#            assert len(dic[qid]) == 3
#            qvec = np.arrray(dic[qid][0])
#            assert len(qvec) == 1
#            ptvec = np.array(dic[qid][1])
#            ntvec = np.array(dic[qid][2])
#
#            np.matmul(qvec, np.transpose(ptvec))
#            np.matmul(qvec, np.transpose(ntvec))
#