will call `model_fn` and initiate user-specifed model in `propeller.RunMode.PREDICT` mode
Args:
model_class_or_model_fn(callable|propeller.train.Model): `model_class_or_model_fn` be specified in 2 ways:
1. subclass of propeller.train.Model which implements:
1. \_\_init\_\_ (hyper_param, mode, run_config)
2. forward (features) => (prediction)
3. backword (loss) => None
4. loss (predictoin) => (loss)
5. metrics (optional) (prediction) => (dict of propeller.Metrics)
2. a model_fn takes following args:
1. features
2. param
3. mode
4. run_config(optional)
1. subclass of propeller.train.Model
2. a model_fn takes following args: 1. features; 2. param; 3. mode; 4. run_config(optional)
and returns a `propeller.ModelSpec`
params: any python object, will pass to your `model_fn` or `propeller.train.Model`
run_config (propeller.RunConfig): run_config.max_steps should not be None.
train_dataset (propeller.paddle.data.Dataset): training will stop if global_step > run_config.max_steps.
eval_dataset (propeller.paddle.data.Dataset|dict): Optional, if Dict of propeller.data.Dataset were specified, will perform evluatation on every evaluation sets and report results.
eval_dataset (propeller.paddle.data.Dataset|dict): Optional, if Dict of propeller.data.Dataset were specified,
will perform evluatation on every evaluation sets and report results.
warm_start_setting (propeller.WarmStartSetting): Optional. warm start variable will overwrite model variable.
train_hooks (list of propeller.paddle.train.RunHook): Optional.
eval_hooks (list of propeller.paddle.train.RunHook): Optional.
exporters (list of propeller.paddle.train.Exporter): Optional.
'''
if_shitisnotNone:
"""
if_placeholderisnotNone:
raiseValueError('specify keyword args to this function')