metrics.py 16.0 KB
Newer Older
C
chenxuyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import os
import numpy as np
import itertools
import logging

import paddle.fluid as F
import paddle.fluid.layers as L
import sklearn.metrics

log = logging.getLogger(__name__)

__all__ = [
    'Metrics', 'F1', 'Recall', 'Precision', 'Mrr', 'Mean', 'Acc', 'ChunkF1',
    'RecallAtPrecision'
]


class Metrics(object):
    def __init__(self):
        self.saver = []

    @property
    def tensor(self):
        pass

    def update(self, *args):
        pass

    def eval(self):
        pass


class Mean(Metrics):
    def __init__(self, t):
        self.t = t
        self.reset()

    def reset(self):
        self.saver = np.array([])

    @property
    def tensor(self):
        self.t.persistable = True
        return self.t,

    def update(self, args):
        t, = args
        t = t.reshape([-1])
        self.saver = np.concatenate([self.saver, t])

    def eval(self):
        return self.saver.mean()


class Ppl(Mean):
    def eval(self):
        return np.exp(self.saver.mean())


class Acc(Mean):
    def __init__(self, label, pred):
        self.eq = L.equal(pred, label)
        self.reset()

    @property
    def tensor(self):
        self.eq.persistable = True
        return self.eq,


class MSE(Mean):
    def __init__(self, label, pred):
        diff = pred - label
        self.mse = diff * diff
        self.reset()

    @property
    def tensor(self):
        self.mse.persistable = True
        return self.mse,


class Cosine(Mean):
    def __init__(self, label, pred):
        self.cos = L.cos_sim(label, pred)
        self.reset()

    @property
    def tensor(self):
        self.cos.persistable = True
        return self.cos,


class Precision(Metrics):
    def __init__(self, label, pred):
        self.label = label
        self.pred = pred
        self.reset()

    def reset(self):
        self.label_saver = np.array([], dtype=np.bool)
        self.pred_saver = np.array([], dtype=np.bool)

    @property
    def tensor(self):
        self.label.persistable = True
        self.pred.persistable = True
        return self.label, self.pred

    def update(self, args):
        label, pred = args
        label = label.reshape([-1]).astype(np.bool)
        pred = pred.reshape([-1]).astype(np.bool)
        if label.shape != pred.shape:
            raise ValueError(
                'Metrics precesion: input not match: label:%s pred:%s' %
                (label, pred))
        self.label_saver = np.concatenate([self.label_saver, label])
        self.pred_saver = np.concatenate([self.pred_saver, pred])

    def eval(self):
        tp = (self.label_saver & self.pred_saver).astype(np.int64).sum()
        t = self.label_saver.astype(np.int64).sum()
        return tp / t


class Recall(Precision):
    def eval(self):
        tp = (self.label_saver & self.pred_saver).astype(np.int64).sum()
        p = (self.label_saver).astype(np.int64).sum()
        return tp / p


class F1(Precision):
    def eval(self):
        tp = (self.label_saver & self.pred_saver).astype(np.int64).sum()
        t = self.label_saver.astype(np.int64).sum()
        p = self.pred_saver.astype(np.int64).sum()
        precision = tp / (t + 1.e-6)
        recall = tp / (p + 1.e-6)
        return 2 * precision * recall / (precision + recall + 1.e-6)


class Auc(Metrics):
    def __init__(self, label, pred):
        self.pred = pred
        self.label = label
        self.reset()

    def reset(self):
        self.pred_saver = np.array([], dtype=np.float32)
        self.label_saver = np.array([], dtype=np.bool)

    @property
    def tensor(self):
        self.pred.persistable = True
        self.label.persistable = True
        return [self.pred, self.label]

    def update(self, args):
        pred, label = args
        pred = pred.reshape([-1]).astype(np.float32)
        label = label.reshape([-1]).astype(np.bool)
        self.pred_saver = np.concatenate([self.pred_saver, pred])
        self.label_saver = np.concatenate([self.label_saver, label])

    def eval(self):
        fpr, tpr, thresholds = sklearn.metrics.roc_curve(
            self.label_saver.astype(np.int64), self.pred_saver)
        auc = sklearn.metrics.auc(fpr, tpr)
        return auc


class RecallAtPrecision(Auc):
    def __init__(self, label, pred, precision=0.9):
        super(RecallAtPrecision, self).__init__(label, pred)
        self.precision = precision

    def eval(self):
        self.pred_saver = self.pred_saver.reshape(
            [self.label_saver.size, -1])[:, -1]
        precision, recall, thresholds = sklearn.metrics.precision_recall_curve(
            self.label_saver, self.pred_saver)
        for p, r in zip(precision, recall):
            if p > self.precision:
                return r


class PrecisionAtThreshold(Auc):
    def __init__(self, label, pred, threshold=0.5):
        super().__init__(label, pred)
        self.threshold = threshold

    def eval(self):
        infered = self.pred_saver > self.threshold
        correct_num = np.array(infered & self.label_saver).sum()
        infer_num = infered.sum()
        return correct_num / (infer_num + 1.e-6)


class Mrr(Metrics):
    def __init__(self, qid, label, pred):
        self.qid = qid
        self.label = label
        self.pred = pred
        self.reset()

    def reset(self):
        self.qid_saver = np.array([], dtype=np.int64)
        self.label_saver = np.array([], dtype=np.int64)
        self.pred_saver = np.array([], dtype=np.float32)

    @property
    def tensor(self):
        self.qid.persistable = True
        self.label.persistable = True
        self.pred.persistable = True
        return [self.qid, self.label, self.pred]

    def update(self, args):
        qid, label, pred = args
        if not (qid.shape[0] == label.shape[0] == pred.shape[0]):
            raise ValueError(
                'Mrr dimention not match: qid[%s] label[%s], pred[%s]' %
                (qid.shape, label.shape, pred.shape))
        self.qid_saver = np.concatenate(
            [self.qid_saver, qid.reshape([-1]).astype(np.int64)])
        self.label_saver = np.concatenate(
            [self.label_saver, label.reshape([-1]).astype(np.int64)])
        self.pred_saver = np.concatenate(
            [self.pred_saver, pred.reshape([-1]).astype(np.float32)])

    def eval(self):
        def key_func(tup):
            return tup[0]

        def calc_func(tup):
            ranks = [
                1. / (rank + 1.)
                for rank, (_, l, p) in enumerate(
                    sorted(
                        tup, key=lambda t: t[2], reverse=True)) if l != 0
            ]
C
chenxuyi 已提交
259 260 261 262
            if len(ranks):
                return ranks[0]
            else:
                return 0.
C
chenxuyi 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

        mrr_for_qid = [
            calc_func(tup)
            for _, tup in itertools.groupby(
                sorted(
                    zip(self.qid_saver, self.label_saver, self.pred_saver),
                    key=key_func),
                key=key_func)
        ]
        mrr = np.float32(sum(mrr_for_qid) / len(mrr_for_qid))
        return mrr


class ChunkF1(Metrics):
    def __init__(self, label, pred, seqlen, num_label):
        self.label = label
        self.pred = pred
        self.seqlen = seqlen
        self.null_index = num_label - 1
        self.label_cnt = 0
        self.pred_cnt = 0
        self.correct_cnt = 0

    def _extract_bio_chunk(self, seq):
        chunks = []
        cur_chunk = None

        for index in range(len(seq)):
            tag = seq[index]
            tag_type = tag // 2
            tag_pos = tag % 2

            if tag == self.null_index:
                if cur_chunk is not None:
                    chunks.append(cur_chunk)
                    cur_chunk = None
                continue

            if tag_pos == 0:
                if cur_chunk is not None:
                    chunks.append(cur_chunk)
                    cur_chunk = {}
                cur_chunk = {"st": index, "en": index + 1, "type": tag_type}
            else:
                if cur_chunk is None:
                    cur_chunk = {
                        "st": index,
                        "en": index + 1,
                        "type": tag_type
                    }
                    continue

                if cur_chunk["type"] == tag_type:
                    cur_chunk["en"] = index + 1
                else:
                    chunks.append(cur_chunk)
                    cur_chunk = {
                        "st": index,
                        "en": index + 1,
                        "type": tag_type
                    }

        if cur_chunk is not None:
            chunks.append(cur_chunk)
        return chunks

    def reset(self):
        self.label_cnt = 0
        self.pred_cnt = 0
        self.correct_cnt = 0

    @property
    def tensor(self):
        self.pred.persistable = True
        self.label.persistable = True
        self.seqlen.persistable = True
        return [self.pred, self.label, self.seqlen]

    def update(self, args):
        pred, label, seqlen = args
        pred = pred.reshape([-1]).astype(np.int32).tolist()
        label = label.reshape([-1]).astype(np.int32).tolist()
        seqlen = seqlen.reshape([-1]).astype(np.int32).tolist()

        max_len = 0
        for l in seqlen:
            max_len = max(max_len, l)

        for i in range(len(seqlen)):
            seq_st = i * max_len + 1
            seq_en = seq_st + (seqlen[i] - 2)
            pred_chunks = self._extract_bio_chunk(pred[seq_st:seq_en])
            label_chunks = self._extract_bio_chunk(label[seq_st:seq_en])
            self.pred_cnt += len(pred_chunks)
            self.label_cnt += len(label_chunks)

            pred_index = 0
            label_index = 0
            while label_index < len(label_chunks) and pred_index < len(
                    pred_chunks):
                if pred_chunks[pred_index]['st'] < label_chunks[label_index][
                        'st']:
                    pred_index += 1
                elif pred_chunks[pred_index]['st'] > label_chunks[label_index][
                        'st']:
                    label_index += 1
                else:
                    if pred_chunks[pred_index]['en'] == label_chunks[label_index]['en'] \
                            and pred_chunks[pred_index]['type'] == label_chunks[label_index]['type']:
                        self.correct_cnt += 1
                    pred_index += 1
                    label_index += 1

    def eval(self):
        if self.pred_cnt == 0:
            precision = 0.0
        else:
            precision = 1.0 * self.correct_cnt / self.pred_cnt

        if self.label_cnt == 0:
            recall = 0.0
        else:
            recall = 1.0 * self.correct_cnt / self.label_cnt

        if self.correct_cnt == 0:
            f1 = 0.0
        else:
            f1 = 2 * precision * recall / (precision + recall)

        return np.float32(f1)


class PNRatio(Metrics):
    def __init__(self, qid, label, pred):
        self.qid = qid
        self.label = label
        self.pred = pred
        self.saver = {}

    def reset(self):
        self.saver = {}

    @property
    def tensor(self):
        self.qid.persistable = True
        self.label.persistable = True
        self.pred.persistable = True
        return [self.qid, self.label, self.pred]

    def update(self, args):
        qid, label, pred = args
        if not (qid.shape[0] == label.shape[0] == pred.shape[0]):
            raise ValueError('dimention not match: qid[%s] label[%s], pred[%s]'
                             % (qid.shape, label.shape, pred.shape))
        qid = qid.reshape([-1]).tolist()
        label = label.reshape([-1]).tolist()
        pred = pred.reshape([-1]).tolist()
        assert len(qid) == len(label) == len(pred)
        for q, l, p in zip(qid, label, pred):
            if q not in self.saver:
                self.saver[q] = []
            self.saver[q].append((l, p))

    def eval(self):
        p = 0
        n = 0
        for qid, outputs in self.saver.items():
            for i in range(0, len(outputs)):
                l1, p1 = outputs[i]
                for j in range(i + 1, len(outputs)):
                    l2, p2 = outputs[j]
                    if l1 > l2:
                        if p1 > p2:
                            p += 1
                        elif p1 < p2:
                            n += 1
                    elif l1 < l2:
                        if p1 < p2:
                            p += 1
                        elif p1 > p2:
                            n += 1
        pn = p / n if n > 0 else 0.0
        return np.float32(pn)


class BinaryPNRatio(PNRatio):
    def __init__(self, qid, label, pred):
        super(BinaryPNRatio, self).__init__(qid, label, pred)

    def eval(self):
        p = 0
        n = 0
        for qid, outputs in self.saver.items():
            pos_set = []
            neg_set = []
            for label, score in outputs:
                if label == 1:
                    pos_set.append(score)
                else:
                    neg_set.append(score)

            for ps in pos_set:
                for ns in neg_set:
                    if ps > ns:
                        p += 1
                    elif ps < ns:
                        n += 1
                    else:
                        continue
        pn = p / n if n > 0 else 0.0
        return np.float32(pn)


class PrecisionAtK(Metrics):
    def __init__(self, qid, label, pred, k=1):
        self.qid = qid
        self.label = label
        self.pred = pred
        self.k = k
        self.saver = {}

    def reset(self):
        self.saver = {}

    @property
    def tensor(self):
        self.qid.persistable = True
        self.label.persistable = True
        self.pred.persistable = True
        return [self.qid, self.label, self.pred]

    def update(self, args):
        qid, label, pred = args
        if not (qid.shape[0] == label.shape[0] == pred.shape[0]):
            raise ValueError('dimention not match: qid[%s] label[%s], pred[%s]'
                             % (qid.shape, label.shape, pred.shape))
        qid = qid.reshape([-1]).tolist()
        label = label.reshape([-1]).tolist()
        pred = pred.reshape([-1]).tolist()

        assert len(qid) == len(label) == len(pred)
        for q, l, p in zip(qid, label, pred):
            if q not in self.saver:
                self.saver[q] = []
            self.saver[q].append((l, p))

    def eval(self):
        right = 0
        total = 0
        for v in self.saver.values():
            v = sorted(v, key=lambda x: x[1], reverse=True)
            k = min(self.k, len(v))
            for i in range(k):
                if v[i][0] == 1:
                    right += 1
                    break
            total += 1

        return np.float32(1.0 * right / total)


#class SemanticRecallMetrics(Metrics):
#    def __init__(self, qid, vec, type_id):
#        self.qid = qid
#        self.vec = vec
#        self.type_id = type_id
#        self.reset()
#
#    def reset(self):
#        self.saver = []
#
#    @property
#    def tensor(self):
#        return [self.qid, self.vec, self.type_id]
#
#    def update(self, args):
#        qid, vec, type_id = args
#        self.saver.append((qid, vec, type_id))
#
#    def eval(self):
#        dic = {}
#        for qid, vec, type_id in self.saver():
#            dic.setdefault(i, {}).setdefault(k, []).append(vec)
#        
#        for qid in dic:
#            assert len(dic[qid]) == 3
#            qvec = np.arrray(dic[qid][0])
#            assert len(qvec) == 1
#            ptvec = np.array(dic[qid][1])
#            ntvec = np.array(dic[qid][2])
#
#            np.matmul(qvec, np.transpose(ptvec))
#            np.matmul(qvec, np.transpose(ntvec))
#