efx.c 63.8 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
4
 * Copyright 2005-2009 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24 25 26
#include "net_driver.h"
#include "efx.h"
#include "mdio_10g.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28

29 30
#include "mcdi.h"

31 32 33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
const char *efx_loopback_mode_names[] = {
	[LOOPBACK_NONE]		= "NONE",
42
	[LOOPBACK_DATA]		= "DATAPATH",
43 44 45 46
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
	[LOOPBACK_XAUI]  	= "XAUI",
47 48 49 50 51 52 53 54
	[LOOPBACK_GMII] 	= "GMII",
	[LOOPBACK_SGMII] 	= "SGMII",
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
55 56 57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
	[LOOPBACK_PCS]	 	= "PCS",
	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
59 60 61 62 63 64 65 66 67
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
	[LOOPBACK_XAUI_WS]  	= "XAUI_WS",
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
	[LOOPBACK_GMII_WS] 	= "GMII_WS",
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
	[LOOPBACK_PHYXS_WS]  	= "PHYXS_WS",
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

/* Interrupt mode names (see INT_MODE())) */
const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
const char *efx_interrupt_mode_names[] = {
	[EFX_INT_MODE_MSIX]   = "MSI-X",
	[EFX_INT_MODE_MSI]    = "MSI",
	[EFX_INT_MODE_LEGACY] = "legacy",
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
const char *efx_reset_type_names[] = {
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
90
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
91 92
};

93 94 95 96 97 98 99 100 101
#define EFX_MAX_MTU (9 * 1024)

/* RX slow fill workqueue. If memory allocation fails in the fast path,
 * a work item is pushed onto this work queue to retry the allocation later,
 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
 * workqueue, there is nothing to be gained in making it per NIC
 */
static struct workqueue_struct *refill_workqueue;

102 103 104 105 106 107
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

108 109 110 111 112 113 114 115 116
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
117 118
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
119
 *
120
 * This is only used in MSI-X interrupt mode
121
 */
122 123 124 125
static unsigned int separate_tx_channels;
module_param(separate_tx_channels, uint, 0644);
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
 * monitor, which checks for known hardware bugs and resets the
 * hardware and driver as necessary.
 */
unsigned int efx_monitor_interval = 1 * HZ;

/* This controls whether or not the driver will initialise devices
 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 * such devices will be initialised with a random locally-generated
 * MAC address.  This allows for loading the sfc_mtd driver to
 * reprogram the flash, even if the flash contents (including the MAC
 * address) have previously been erased.
 */
static unsigned int allow_bad_hwaddr;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 * The default (0) means to assign an interrupt to each package (level II cache)
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

184 185 186 187
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

188 189 190 191 192 193 194 195 196 197
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

198 199 200 201 202 203 204 205 206 207 208 209
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
210 211
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
228
static int efx_process_channel(struct efx_channel *channel, int budget)
229
{
B
Ben Hutchings 已提交
230
	struct efx_nic *efx = channel->efx;
231
	int spent;
232

B
Ben Hutchings 已提交
233
	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
234
		     !channel->enabled))
B
Ben Hutchings 已提交
235
		return 0;
236

237 238
	spent = efx_nic_process_eventq(channel, budget);
	if (spent == 0)
B
Ben Hutchings 已提交
239
		return 0;
240 241 242 243 244 245 246 247 248 249

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
		__efx_rx_packet(channel, channel->rx_pkt,
				channel->rx_pkt_csummed);
		channel->rx_pkt = NULL;
	}

	efx_rx_strategy(channel);

B
Ben Hutchings 已提交
250
	efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
251

252
	return spent;
253 254 255 256 257 258 259 260 261 262
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
263 264 265
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
266
	channel->work_pending = false;
267 268
	smp_wmb();

269
	efx_nic_eventq_read_ack(channel);
270 271 272 273 274 275 276 277 278 279 280
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
281
	int spent;
282 283 284 285

	EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
		  channel->channel, raw_smp_processor_id());

286
	spent = efx_process_channel(channel, budget);
287

288
	if (spent < budget) {
289 290 291 292 293 294 295
		struct efx_nic *efx = channel->efx;

		if (channel->used_flags & EFX_USED_BY_RX &&
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
296 297
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
298
					efx->type->push_irq_moderation(channel);
299
				}
300 301
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
302 303 304
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
305
					efx->type->push_irq_moderation(channel);
306
				}
307 308 309 310 311
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

312
		/* There is no race here; although napi_disable() will
313
		 * only wait for napi_complete(), this isn't a problem
314 315 316
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
317
		napi_complete(napi);
318 319 320
		efx_channel_processed(channel);
	}

321
	return spent;
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
 * Since we are touching interrupts the caller should hold the suspend lock
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	BUG_ON(!channel->used_flags);
	BUG_ON(!channel->enabled);

	/* Disable interrupts and wait for ISRs to complete */
340
	efx_nic_disable_interrupts(efx);
341 342
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
343
	if (channel->irq)
344 345 346 347 348 349
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
350
	efx_process_channel(channel, EFX_EVQ_SIZE);
351 352 353 354 355 356

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
357
	efx_nic_enable_interrupts(efx);
358 359 360 361 362 363 364 365 366 367 368
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);

369
	return efx_nic_probe_eventq(channel);
370 371 372
}

/* Prepare channel's event queue */
373
static void efx_init_eventq(struct efx_channel *channel)
374 375 376 377 378
{
	EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);

	channel->eventq_read_ptr = 0;

379
	efx_nic_init_eventq(channel);
380 381 382 383 384 385
}

static void efx_fini_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);

386
	efx_nic_fini_eventq(channel);
387 388 389 390 391 392
}

static void efx_remove_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);

393
	efx_nic_remove_eventq(channel);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

	EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
		if (efx->n_channels > efx->n_rx_queues) {
			if (channel->channel < efx->n_rx_queues) {
				type = "-rx";
			} else {
				type = "-tx";
				number -= efx->n_rx_queues;
			}
		}
		snprintf(channel->name, sizeof(channel->name),
			 "%s%s-%d", efx->name, type, number);
	}
}

462 463 464 465
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
466
static void efx_init_channels(struct efx_nic *efx)
467 468 469 470 471
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

472 473 474 475 476 477 478 479
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			      efx->type->rx_buffer_padding);
	efx->rx_buffer_order = get_order(efx->rx_buffer_len);
480 481 482 483 484

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "init chan %d\n", channel->channel);

485
		efx_init_eventq(channel);
486

487 488
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
489 490 491 492

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

493 494
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);

512 513 514
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
515 516
	channel->work_pending = false;
	channel->enabled = true;
517
	smp_wmb();
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

	napi_enable(&channel->napi_str);

	/* Load up RX descriptors */
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	if (!channel->enabled)
		return;

	EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);

539
	channel->enabled = false;
540 541 542 543 544 545 546 547 548 549 550 551 552 553
	napi_disable(&channel->napi_str);

	/* Ensure that any worker threads have exited or will be no-ops */
	efx_for_each_channel_rx_queue(rx_queue, channel) {
		spin_lock_bh(&rx_queue->add_lock);
		spin_unlock_bh(&rx_queue->add_lock);
	}
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
554
	int rc;
555 556 557 558

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

559
	rc = efx_nic_flush_queues(efx);
560 561 562 563 564
	if (rc)
		EFX_ERR(efx, "failed to flush queues\n");
	else
		EFX_LOG(efx, "successfully flushed all queues\n");

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);

	channel->used_flags = 0;
}

void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
{
	queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
607
void efx_link_status_changed(struct efx_nic *efx)
608
{
609 610
	struct efx_link_state *link_state = &efx->link_state;

611 612 613 614 615 616 617
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

B
Ben Hutchings 已提交
618 619 620 621 622
	if (efx->port_inhibited) {
		netif_carrier_off(efx->net_dev);
		return;
	}

623
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
624 625
		efx->n_link_state_changes++;

626
		if (link_state->up)
627 628 629 630 631 632
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
633
	if (link_state->up) {
B
Ben Hutchings 已提交
634
		EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
635
			 link_state->speed, link_state->fd ? "full" : "half",
636 637 638 639 640 641 642 643
			 efx->net_dev->mtu,
			 (efx->promiscuous ? " [PROMISC]" : ""));
	} else {
		EFX_INFO(efx, "link down\n");
	}

}

B
Ben Hutchings 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

672 673
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
674 675 676 677 678 679 680 681
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
682
{
B
Ben Hutchings 已提交
683 684
	enum efx_phy_mode phy_mode;
	int rc;
685

B
Ben Hutchings 已提交
686
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
687

688 689 690 691 692 693
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
	if (efx_dev_registered(efx)) {
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
	}

B
Ben Hutchings 已提交
694 695
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
696 697 698 699 700
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
701
	rc = efx->type->reconfigure_port(efx);
702

B
Ben Hutchings 已提交
703 704
	if (rc)
		efx->phy_mode = phy_mode;
705

B
Ben Hutchings 已提交
706
	return rc;
707 708 709 710
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
711
int efx_reconfigure_port(struct efx_nic *efx)
712
{
B
Ben Hutchings 已提交
713 714
	int rc;

715 716 717
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
718
	rc = __efx_reconfigure_port(efx);
719
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
720 721

	return rc;
722 723
}

724 725 726
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
727 728 729 730 731
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
732
	if (efx->port_enabled) {
733
		efx->type->push_multicast_hash(efx);
734 735
		efx->mac_op->reconfigure(efx);
	}
736 737 738
	mutex_unlock(&efx->mac_lock);
}

739 740 741 742 743 744
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "create port\n");

745 746 747
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

748 749
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
750 751 752 753 754 755 756
	if (rc)
		goto err;

	/* Sanity check MAC address */
	if (is_valid_ether_addr(efx->mac_address)) {
		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
	} else {
J
Johannes Berg 已提交
757 758
		EFX_ERR(efx, "invalid MAC address %pM\n",
			efx->mac_address);
759 760 761 762 763
		if (!allow_bad_hwaddr) {
			rc = -EINVAL;
			goto err;
		}
		random_ether_addr(efx->net_dev->dev_addr);
J
Johannes Berg 已提交
764 765
		EFX_INFO(efx, "using locally-generated MAC %pM\n",
			 efx->net_dev->dev_addr);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	}

	return 0;

 err:
	efx_remove_port(efx);
	return rc;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "init port\n");

781 782
	mutex_lock(&efx->mac_lock);

783
	rc = efx->phy_op->init(efx);
784
	if (rc)
785
		goto fail1;
786

787
	efx->port_initialized = true;
788

B
Ben Hutchings 已提交
789 790 791 792 793 794 795 796 797
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
	efx->mac_op->reconfigure(efx);

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

798
	mutex_unlock(&efx->mac_lock);
799
	return 0;
800

801
fail2:
802
	efx->phy_op->fini(efx);
803 804
fail1:
	mutex_unlock(&efx->mac_lock);
805
	return rc;
806 807 808 809 810 811 812 813
}

static void efx_start_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "start port\n");
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
814
	efx->port_enabled = true;
815 816 817

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
818
	efx->type->push_multicast_hash(efx);
819 820
	efx->mac_op->reconfigure(efx);

821 822 823
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
824
/* Prevent efx_mac_work() and efx_monitor() from working */
825 826 827 828 829
static void efx_stop_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "stop port\n");

	mutex_lock(&efx->mac_lock);
830
	efx->port_enabled = false;
831 832 833
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
834
	if (efx_dev_registered(efx)) {
835 836
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
837 838 839 840 841 842 843 844 845 846
	}
}

static void efx_fini_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "shut down port\n");

	if (!efx->port_initialized)
		return;

847
	efx->phy_op->fini(efx);
848
	efx->port_initialized = false;
849

850
	efx->link_state.up = false;
851 852 853 854 855 856 857
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying port\n");

858
	efx->type->remove_port(efx);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

	EFX_LOG(efx, "initialising I/O\n");

	rc = pci_enable_device(pci_dev);
	if (rc) {
		EFX_ERR(efx, "failed to enable PCI device\n");
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
		if (pci_dma_supported(pci_dev, dma_mask) &&
		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
			break;
		dma_mask >>= 1;
	}
	if (rc) {
		EFX_ERR(efx, "could not find a suitable DMA mask\n");
		goto fail2;
	}
	EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
		EFX_ERR(efx, "failed to set consistent DMA mask\n");
		goto fail2;
	}

910 911
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
912 913 914 915 916 917 918 919
	if (rc) {
		EFX_ERR(efx, "request for memory BAR failed\n");
		rc = -EIO;
		goto fail3;
	}
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
	if (!efx->membase) {
920
		EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
921
			(unsigned long long)efx->membase_phys,
922 923 924 925
			efx->type->mem_map_size);
		rc = -ENOMEM;
		goto fail4;
	}
926 927
	EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
		(unsigned long long)efx->membase_phys,
928
		efx->type->mem_map_size, efx->membase);
929 930 931 932

	return 0;

 fail4:
933
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
934
 fail3:
935
	efx->membase_phys = 0;
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
	EFX_LOG(efx, "shutting down I/O\n");

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
952
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
953
		efx->membase_phys = 0;
954 955 956 957 958
	}

	pci_disable_device(efx->pci_dev);
}

959 960 961 962 963
/* Get number of RX queues wanted.  Return number of online CPU
 * packages in the expectation that an IRQ balancer will spread
 * interrupts across them. */
static int efx_wanted_rx_queues(void)
{
R
Rusty Russell 已提交
964
	cpumask_var_t core_mask;
965 966 967
	int count;
	int cpu;

968
	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
R
Rusty Russell 已提交
969
		printk(KERN_WARNING
970
		       "sfc: RSS disabled due to allocation failure\n");
R
Rusty Russell 已提交
971 972 973
		return 1;
	}

974 975
	count = 0;
	for_each_online_cpu(cpu) {
R
Rusty Russell 已提交
976
		if (!cpumask_test_cpu(cpu, core_mask)) {
977
			++count;
R
Rusty Russell 已提交
978
			cpumask_or(core_mask, core_mask,
979
				   topology_core_cpumask(cpu));
980 981 982
		}
	}

R
Rusty Russell 已提交
983
	free_cpumask_var(core_mask);
984 985 986 987 988 989
	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
990 991
static void efx_probe_interrupts(struct efx_nic *efx)
{
992 993
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
994 995 996
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
997 998
		struct msix_entry xentries[EFX_MAX_CHANNELS];
		int wanted_ints;
999
		int rx_queues;
1000

1001 1002 1003 1004
		/* We want one RX queue and interrupt per CPU package
		 * (or as specified by the rss_cpus module parameter).
		 * We will need one channel per interrupt.
		 */
1005 1006 1007
		rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
		wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
		wanted_ints = min(wanted_ints, max_channels);
1008

1009
		for (i = 0; i < wanted_ints; i++)
1010
			xentries[i].entry = i;
1011
		rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
1012
		if (rc > 0) {
1013 1014 1015 1016 1017
			EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
				" available (%d < %d).\n", rc, wanted_ints);
			EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
			EFX_BUG_ON_PARANOID(rc >= wanted_ints);
			wanted_ints = rc;
1018
			rc = pci_enable_msix(efx->pci_dev, xentries,
1019
					     wanted_ints);
1020 1021 1022
		}

		if (rc == 0) {
1023 1024 1025
			efx->n_rx_queues = min(rx_queues, wanted_ints);
			efx->n_channels = wanted_ints;
			for (i = 0; i < wanted_ints; i++)
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
				efx->channel[i].irq = xentries[i].vector;
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			EFX_ERR(efx, "could not enable MSI-X\n");
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1036
		efx->n_rx_queues = 1;
1037
		efx->n_channels = 1;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
			efx->channel[0].irq = efx->pci_dev->irq;
		} else {
			EFX_ERR(efx, "could not enable MSI\n");
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1049
		efx->n_rx_queues = 1;
1050
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1051 1052 1053 1054 1055 1056 1057 1058 1059
		efx->legacy_irq = efx->pci_dev->irq;
	}
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1060
	efx_for_each_channel(channel, efx)
1061 1062 1063 1064 1065 1066 1067 1068
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1069
static void efx_set_channels(struct efx_nic *efx)
1070 1071 1072 1073
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

1074
	efx_for_each_tx_queue(tx_queue, efx) {
1075 1076
		if (separate_tx_channels)
			tx_queue->channel = &efx->channel[efx->n_channels-1];
1077 1078 1079 1080
		else
			tx_queue->channel = &efx->channel[0];
		tx_queue->channel->used_flags |= EFX_USED_BY_TX;
	}
1081

1082 1083 1084
	efx_for_each_rx_queue(rx_queue, efx) {
		rx_queue->channel = &efx->channel[rx_queue->queue];
		rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	}
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "creating NIC\n");

	/* Carry out hardware-type specific initialisation */
1095
	rc = efx->type->probe(efx);
1096 1097 1098 1099 1100 1101 1102
	if (rc)
		return rc;

	/* Determine the number of channels and RX queues by trying to hook
	 * in MSI-X interrupts. */
	efx_probe_interrupts(efx);

1103
	efx_set_channels(efx);
1104 1105

	/* Initialise the interrupt moderation settings */
1106
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1107 1108 1109 1110 1111 1112 1113 1114 1115

	return 0;
}

static void efx_remove_nic(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying NIC\n");

	efx_remove_interrupts(efx);
1116
	efx->type->remove(efx);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Create NIC */
	rc = efx_probe_nic(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create NIC\n");
		goto fail1;
	}

	/* Create port */
	rc = efx_probe_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create port\n");
		goto fail2;
	}

	/* Create channels */
	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			EFX_ERR(efx, "failed to create channel %d\n",
				channel->channel);
			goto fail3;
		}
	}
1153
	efx_set_channel_names(efx);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	return 0;

 fail3:
	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1184
	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1185 1186 1187 1188 1189
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);
1190 1191
	if (efx_dev_registered(efx))
		efx_wake_queue(efx);
1192 1193 1194 1195

	efx_for_each_channel(channel, efx)
		efx_start_channel(channel);

1196
	efx_nic_enable_interrupts(efx);
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206
	/* Switch to event based MCDI completions after enabling interrupts.
	 * If a reset has been scheduled, then we need to stay in polled mode.
	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
	 * reset_pending [modified from an atomic context], we instead guarantee
	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
	efx_mcdi_mode_event(efx);
	if (efx->reset_pending != RESET_TYPE_NONE)
		efx_mcdi_mode_poll(efx);

1207 1208 1209 1210
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1211 1212
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1213 1214 1215 1216 1217 1218
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1219

1220
	efx->type->start_stats(efx);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;

	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);

	/* Ensure that all RX slow refills are complete. */
1234
	efx_for_each_rx_queue(rx_queue, efx)
1235 1236 1237
		cancel_delayed_work_sync(&rx_queue->work);

	/* Stop scheduled port reconfigurations */
1238
	cancel_work_sync(&efx->mac_work);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1256
	efx->type->stop_stats(efx);
1257

1258 1259 1260
	/* Switch to MCDI polling on Siena before disabling interrupts */
	efx_mcdi_mode_poll(efx);

1261
	/* Disable interrupts and wait for ISR to complete */
1262
	efx_nic_disable_interrupts(efx);
1263 1264
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
1265
	efx_for_each_channel(channel, efx) {
1266 1267
		if (channel->irq)
			synchronize_irq(channel->irq);
1268
	}
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1279
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1280 1281 1282 1283
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1284
	if (efx_dev_registered(efx)) {
1285
		efx_stop_queue(efx);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		netif_tx_lock_bh(efx->net_dev);
		netif_tx_unlock_bh(efx->net_dev);
	}
}

static void efx_remove_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1307 1308 1309 1310 1311 1312 1313 1314 1315
static unsigned irq_mod_ticks(int usecs, int resolution)
{
	if (usecs <= 0)
		return 0; /* cannot receive interrupts ahead of time :-) */
	if (usecs < resolution)
		return 1; /* never round down to 0 */
	return usecs / resolution;
}

1316
/* Set interrupt moderation parameters */
1317 1318
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
			     bool rx_adaptive)
1319 1320 1321
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1322 1323
	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1324 1325 1326 1327

	EFX_ASSERT_RESET_SERIALISED(efx);

	efx_for_each_tx_queue(tx_queue, efx)
1328
		tx_queue->channel->irq_moderation = tx_ticks;
1329

1330
	efx->irq_rx_adaptive = rx_adaptive;
1331
	efx->irq_rx_moderation = rx_ticks;
1332
	efx_for_each_rx_queue(rx_queue, efx)
1333
		rx_queue->channel->irq_moderation = rx_ticks;
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}

/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

/* Run periodically off the general workqueue. Serialised against
 * efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

	EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
		  raw_smp_processor_id());
1351
	BUG_ON(efx->type->monitor == NULL);
1352 1353 1354 1355

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
	 * most of the work of check_hw() anyway. */
1356 1357 1358 1359
	if (!mutex_trylock(&efx->mac_lock))
		goto out_requeue;
	if (!efx->port_enabled)
		goto out_unlock;
1360
	efx->type->monitor(efx);
1361

1362
out_unlock:
1363
	mutex_unlock(&efx->mac_lock);
1364
out_requeue:
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1380
	struct efx_nic *efx = netdev_priv(net_dev);
1381
	struct mii_ioctl_data *data = if_mii(ifr);
1382 1383 1384

	EFX_ASSERT_RESET_SERIALISED(efx);

1385 1386 1387 1388 1389 1390
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

static int efx_init_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1405 1406
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1407 1408 1409 1410 1411 1412 1413 1414 1415
	}
	return 0;
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
1416 1417
		if (channel->napi_dev)
			netif_napi_del(&channel->napi_str);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		channel->napi_dev = NULL;
	}
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1436
	struct efx_nic *efx = netdev_priv(net_dev);
1437 1438
	struct efx_channel *channel;

1439
	efx_for_each_channel(channel, efx)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1454
	struct efx_nic *efx = netdev_priv(net_dev);
1455 1456 1457 1458 1459
	EFX_ASSERT_RESET_SERIALISED(efx);

	EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

1460 1461
	if (efx->state == STATE_DISABLED)
		return -EIO;
1462 1463
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1464 1465
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1466

1467 1468 1469 1470
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1481
	struct efx_nic *efx = netdev_priv(net_dev);
1482 1483 1484 1485

	EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

1486 1487 1488 1489 1490 1491
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
		efx_fini_channels(efx);
		efx_init_channels(efx);
	}
1492 1493 1494 1495

	return 0;
}

1496
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1497 1498
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
{
1499
	struct efx_nic *efx = netdev_priv(net_dev);
1500 1501 1502
	struct efx_mac_stats *mac_stats = &efx->mac_stats;
	struct net_device_stats *stats = &net_dev->stats;

1503
	spin_lock_bh(&efx->stats_lock);
1504
	efx->type->update_stats(efx);
1505
	spin_unlock_bh(&efx->stats_lock);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_over_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    stats->rx_fifo_errors +
			    stats->rx_missed_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1538
	struct efx_nic *efx = netdev_priv(net_dev);
1539

1540 1541 1542
	EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
		" resetting channels\n",
		atomic_read(&efx->netif_stop_count), efx->port_enabled);
1543

1544
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1545 1546 1547 1548 1549 1550
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1551
	struct efx_nic *efx = netdev_priv(net_dev);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	int rc = 0;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

	EFX_LOG(efx, "changing MTU to %d\n", new_mtu);

	efx_fini_channels(efx);
B
Ben Hutchings 已提交
1564 1565 1566 1567

	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1568
	net_dev->mtu = new_mtu;
B
Ben Hutchings 已提交
1569 1570 1571
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

1572
	efx_init_channels(efx);
1573 1574 1575 1576 1577 1578 1579

	efx_start_all(efx);
	return rc;
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1580
	struct efx_nic *efx = netdev_priv(net_dev);
1581 1582 1583 1584 1585 1586
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
J
Johannes Berg 已提交
1587 1588
		EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
			new_addr);
1589 1590 1591 1592 1593 1594
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1595 1596 1597
	mutex_lock(&efx->mac_lock);
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);
1598 1599 1600 1601

	return 0;
}

1602
/* Context: netif_addr_lock held, BHs disabled. */
1603 1604
static void efx_set_multicast_list(struct net_device *net_dev)
{
1605
	struct efx_nic *efx = netdev_priv(net_dev);
1606
	struct netdev_hw_addr *ha;
1607 1608 1609 1610
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1611
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1612 1613

	/* Build multicast hash table */
1614
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1615 1616 1617
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1618 1619
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
1620 1621 1622 1623
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
		}

1624 1625 1626 1627 1628 1629
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1630

1631 1632 1633
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1634 1635
}

S
Stephen Hemminger 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats		= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_multicast_list = efx_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
};

1652 1653 1654 1655 1656 1657 1658
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1659 1660 1661
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1662
	struct net_device *net_dev = ptr;
1663

1664 1665 1666
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1667 1668 1669 1670 1671 1672 1673 1674

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
1675 1676 1677 1678 1679 1680 1681 1682
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1683 1684 1685 1686 1687 1688 1689
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
1690
	net_dev->netdev_ops = &efx_netdev_ops;
1691 1692 1693 1694
	SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

	/* Clear MAC statistics */
1695
	efx->mac_op->update_stats(efx);
1696 1697
	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));

1698
	rtnl_lock();
1699 1700 1701 1702

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
1703
	efx_update_name(efx);
1704 1705 1706 1707 1708 1709 1710 1711

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(efx->net_dev);

1712
	rtnl_unlock();
1713

B
Ben Hutchings 已提交
1714 1715 1716 1717 1718 1719
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
		EFX_ERR(efx, "failed to init net dev attributes\n");
		goto fail_registered;
	}

1720
	return 0;
B
Ben Hutchings 已提交
1721

1722 1723 1724 1725 1726
fail_locked:
	rtnl_unlock();
	EFX_ERR(efx, "could not register net dev\n");
	return rc;

B
Ben Hutchings 已提交
1727 1728 1729
fail_registered:
	unregister_netdev(net_dev);
	return rc;
1730 1731 1732 1733 1734 1735 1736 1737 1738
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

1739
	BUG_ON(netdev_priv(efx->net_dev) != efx);
1740 1741 1742 1743 1744 1745 1746

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
	efx_for_each_tx_queue(tx_queue, efx)
		efx_release_tx_buffers(tx_queue);

1747
	if (efx_dev_registered(efx)) {
1748
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
B
Ben Hutchings 已提交
1749
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
		unregister_netdev(efx->net_dev);
	}
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
1760 1761
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
1762
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
1763 1764 1765
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
1766 1767
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);
1768
	mutex_lock(&efx->spi_lock);
B
Ben Hutchings 已提交
1769

1770
	efx_fini_channels(efx);
1771 1772
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
1773
	efx->type->fini(efx);
1774 1775
}

B
Ben Hutchings 已提交
1776 1777 1778 1779 1780
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
1781
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
1782 1783 1784
{
	int rc;

B
Ben Hutchings 已提交
1785
	EFX_ASSERT_RESET_SERIALISED(efx);
1786

1787
	rc = efx->type->init(efx);
1788
	if (rc) {
B
Ben Hutchings 已提交
1789
		EFX_ERR(efx, "failed to initialise NIC\n");
1790
		goto fail;
1791 1792
	}

1793 1794 1795
	if (!ok)
		goto fail;

1796
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1797 1798 1799 1800 1801
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
			EFX_ERR(efx, "could not restore PHY settings\n");
1802 1803
	}

1804
	efx->mac_op->reconfigure(efx);
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	efx_init_channels(efx);

	mutex_unlock(&efx->spi_lock);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
1817

1818
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
1819 1820
	mutex_unlock(&efx->mac_lock);

1821 1822 1823
	return rc;
}

1824 1825
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
1826
 *
1827
 * Caller must hold the rtnl_lock.
1828
 */
1829
int efx_reset(struct efx_nic *efx, enum reset_type method)
1830
{
1831 1832
	int rc, rc2;
	bool disabled;
1833

1834
	EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
1835

B
Ben Hutchings 已提交
1836
	efx_reset_down(efx, method);
1837

1838
	rc = efx->type->reset(efx, method);
1839 1840
	if (rc) {
		EFX_ERR(efx, "failed to reset hardware\n");
1841
		goto out;
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	}

	/* Allow resets to be rescheduled. */
	efx->reset_pending = RESET_TYPE_NONE;

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

1853
out:
1854
	/* Leave device stopped if necessary */
1855 1856 1857 1858 1859 1860
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
1861 1862
	}

1863
	if (disabled) {
1864 1865 1866 1867 1868
		EFX_ERR(efx, "has been disabled\n");
		efx->state = STATE_DISABLED;
	} else {
		EFX_LOG(efx, "reset complete\n");
	}
1869 1870 1871 1872 1873 1874 1875 1876
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
1877
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	/* If we're not RUNNING then don't reset. Leave the reset_pending
	 * flag set so that efx_pci_probe_main will be retried */
	if (efx->state != STATE_RUNNING) {
		EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
		return;
	}

	rtnl_lock();
	if (efx_reset(efx, efx->reset_pending))
		dev_close(efx->net_dev);
	rtnl_unlock();
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	if (efx->reset_pending != RESET_TYPE_NONE) {
		EFX_INFO(efx, "quenching already scheduled reset\n");
		return;
	}

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
		break;
	case RESET_TYPE_RX_RECOVERY:
	case RESET_TYPE_RX_DESC_FETCH:
	case RESET_TYPE_TX_DESC_FETCH:
	case RESET_TYPE_TX_SKIP:
		method = RESET_TYPE_INVISIBLE;
		break;
1914
	case RESET_TYPE_MC_FAILURE:
1915 1916 1917 1918 1919 1920
	default:
		method = RESET_TYPE_ALL;
		break;
	}

	if (method != type)
1921 1922
		EFX_LOG(efx, "scheduling %s reset for %s\n",
			RESET_TYPE(method), RESET_TYPE(type));
1923
	else
1924
		EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
1925 1926 1927

	efx->reset_pending = method;

1928 1929 1930 1931
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

1932
	queue_work(reset_workqueue, &efx->reset_work);
1933 1934 1935 1936 1937 1938 1939 1940 1941
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
1942
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
1943
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1944
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
1945
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1946
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
1947 1948 1949 1950
	{PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
	 .driver_data = (unsigned long) &siena_a0_nic_type},
	{PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
	 .driver_data = (unsigned long) &siena_a0_nic_type},
1951 1952 1953 1954 1955
	{0}			/* end of list */
};

/**************************************************************************
 *
1956
 * Dummy PHY/MAC operations
1957
 *
1958
 * Can be used for some unimplemented operations
1959 1960 1961 1962 1963 1964 1965 1966 1967
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
1968 1969 1970
void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
}
S
Steve Hodgson 已提交
1971 1972 1973 1974
bool efx_port_dummy_op_poll(struct efx_nic *efx)
{
	return false;
}
1975 1976 1977

static struct efx_phy_operations efx_dummy_phy_operations = {
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
1978
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
1979
	.poll		 = efx_port_dummy_op_poll,
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1998
	int i;
1999 2000 2001 2002

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2003
	mutex_init(&efx->mdio_lock);
2004
	mutex_init(&efx->spi_lock);
2005 2006 2007
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2008 2009 2010 2011 2012 2013 2014 2015
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
	efx->state = STATE_INIT;
	efx->reset_pending = RESET_TYPE_NONE;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2016
	efx->rx_checksum_enabled = true;
2017 2018 2019
	spin_lock_init(&efx->netif_stop_lock);
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
2020
	efx->mac_op = type->default_mac_ops;
2021
	efx->phy_op = &efx_dummy_phy_operations;
2022
	efx->mdio.dev = net_dev;
2023
	INIT_WORK(&efx->mac_work, efx_mac_work);
2024 2025 2026 2027 2028 2029
	atomic_set(&efx->netif_stop_count, 1);

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
		channel = &efx->channel[i];
		channel->efx = efx;
		channel->channel = i;
2030
		channel->work_pending = false;
2031
	}
2032
	for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
2033 2034 2035 2036 2037
		tx_queue = &efx->tx_queue[i];
		tx_queue->efx = efx;
		tx_queue->queue = i;
		tx_queue->buffer = NULL;
		tx_queue->channel = &efx->channel[0]; /* for safety */
B
Ben Hutchings 已提交
2038
		tx_queue->tso_headers_free = NULL;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	}
	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
		rx_queue = &efx->rx_queue[i];
		rx_queue->efx = efx;
		rx_queue->queue = i;
		rx_queue->channel = &efx->channel[0]; /* for safety */
		rx_queue->buffer = NULL;
		spin_lock_init(&rx_queue->add_lock);
		INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
	}

	efx->type = type;

	/* As close as we can get to guaranteeing that we don't overflow */
2053 2054
	BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);

2055 2056 2057 2058 2059 2060
	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2061 2062 2063 2064
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2065 2066
	if (!efx->workqueue)
		return -ENOMEM;
2067

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	return 0;
}

static void efx_fini_struct(struct efx_nic *efx)
{
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2090
	efx_nic_fini_interrupt(efx);
2091 2092
	efx_fini_channels(efx);
	efx_fini_port(efx);
2093
	efx->type->fini(efx);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	efx_unregister_netdev(efx);

2119 2120
	efx_mtd_remove(efx);

2121 2122 2123 2124
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2125
	cancel_work_sync(&efx->reset_work);
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
	EFX_LOG(efx, "shutdown successful\n");

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

	rc = efx_init_napi(efx);
	if (rc)
		goto fail2;

2153
	rc = efx->type->init(efx);
2154 2155
	if (rc) {
		EFX_ERR(efx, "failed to initialise NIC\n");
2156
		goto fail3;
2157 2158 2159 2160 2161
	}

	rc = efx_init_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise port\n");
2162
		goto fail4;
2163 2164
	}

2165
	efx_init_channels(efx);
2166

2167
	rc = efx_nic_init_interrupt(efx);
2168
	if (rc)
2169
		goto fail5;
2170 2171 2172

	return 0;

2173
 fail5:
2174
	efx_fini_channels(efx);
2175 2176
	efx_fini_port(efx);
 fail4:
2177
	efx->type->fini(efx);
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
 fail3:
	efx_fini_napi(efx);
 fail2:
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
	net_dev = alloc_etherdev(sizeof(*efx));
	if (!net_dev)
		return -ENOMEM;
2207
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2208 2209
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
			      NETIF_F_GRO);
B
Ben Hutchings 已提交
2210 2211
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2212 2213
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2214
				   NETIF_F_HIGHDMA | NETIF_F_TSO);
2215
	efx = netdev_priv(net_dev);
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	pci_set_drvdata(pci_dev, efx);
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

	EFX_INFO(efx, "Solarflare Communications NIC detected\n");

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2237
		cancel_work_sync(&efx->reset_work);
2238

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
		if (rc == 0) {
			if (efx->reset_pending != RESET_TYPE_NONE) {
				/* If there was a scheduled reset during
				 * probe, the NIC is probably hosed anyway */
				efx_pci_remove_main(efx);
				rc = -EIO;
			} else {
				break;
			}
		}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
		/* Retry if a recoverably reset event has been scheduled */
		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
		    (efx->reset_pending != RESET_TYPE_ALL))
			goto fail3;

		efx->reset_pending = RESET_TYPE_NONE;
	}

	if (rc) {
		EFX_ERR(efx, "Could not reset NIC\n");
		goto fail4;
	}

2263 2264
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2265
	efx->state = STATE_RUNNING;
2266

2267 2268 2269 2270 2271
	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

	EFX_LOG(efx, "initialisation successful\n");
2272 2273 2274 2275

	rtnl_lock();
	efx_mtd_probe(efx); /* allowed to fail */
	rtnl_unlock();
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2286
	WARN_ON(rc > 0);
2287 2288 2289 2290 2291
	EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
	free_netdev(net_dev);
	return rc;
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
	efx_fini_channels(efx);

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

	efx_init_channels(efx);

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

	efx->reset_pending = RESET_TYPE_NONE;

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

static struct dev_pm_ops efx_pm_ops = {
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2387 2388 2389 2390 2391
static struct pci_driver efx_pci_driver = {
	.name		= EFX_DRIVER_NAME,
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2392
	.driver.pm	= &efx_pm_ops,
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

	refill_workqueue = create_workqueue("sfc_refill");
	if (!refill_workqueue) {
		rc = -ENOMEM;
		goto err_refill;
	}
2420 2421 2422 2423 2424
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2425 2426 2427 2428 2429 2430 2431 2432

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2433 2434
	destroy_workqueue(reset_workqueue);
 err_reset:
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	destroy_workqueue(refill_workqueue);
 err_refill:
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2447
	destroy_workqueue(reset_workqueue);
2448 2449 2450 2451 2452 2453 2454 2455
	destroy_workqueue(refill_workqueue);
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2456 2457
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2458 2459 2460
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);