efx.c 62.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2005-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23 24 25
#include "net_driver.h"
#include "efx.h"
#include "mdio_10g.h"
B
Ben Hutchings 已提交
26
#include "nic.h"
27

28 29 30 31 32 33 34 35 36 37 38
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
const char *efx_loopback_mode_names[] = {
	[LOOPBACK_NONE]		= "NONE",
39
	[LOOPBACK_DATA]		= "DATAPATH",
40 41 42 43
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
	[LOOPBACK_XAUI]  	= "XAUI",
44 45 46 47 48 49 50 51
	[LOOPBACK_GMII] 	= "GMII",
	[LOOPBACK_SGMII] 	= "SGMII",
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
52 53 54 55
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
	[LOOPBACK_PCS]	 	= "PCS",
	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
56 57 58 59 60 61 62 63 64
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
	[LOOPBACK_XAUI_WS]  	= "XAUI_WS",
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
	[LOOPBACK_GMII_WS] 	= "GMII_WS",
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
	[LOOPBACK_PHYXS_WS]  	= "PHYXS_WS",
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
};

/* Interrupt mode names (see INT_MODE())) */
const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
const char *efx_interrupt_mode_names[] = {
	[EFX_INT_MODE_MSIX]   = "MSI-X",
	[EFX_INT_MODE_MSI]    = "MSI",
	[EFX_INT_MODE_LEGACY] = "legacy",
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
const char *efx_reset_type_names[] = {
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
};

89 90 91 92 93 94 95 96 97
#define EFX_MAX_MTU (9 * 1024)

/* RX slow fill workqueue. If memory allocation fails in the fast path,
 * a work item is pushed onto this work queue to retry the allocation later,
 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
 * workqueue, there is nothing to be gained in making it per NIC
 */
static struct workqueue_struct *refill_workqueue;

98 99 100 101 102 103
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

104 105 106 107 108 109 110 111 112
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
113 114
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
115
 *
116
 * This is only used in MSI-X interrupt mode
117
 */
118 119 120 121
static unsigned int separate_tx_channels;
module_param(separate_tx_channels, uint, 0644);
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
 * monitor, which checks for known hardware bugs and resets the
 * hardware and driver as necessary.
 */
unsigned int efx_monitor_interval = 1 * HZ;

/* This controls whether or not the driver will initialise devices
 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 * such devices will be initialised with a random locally-generated
 * MAC address.  This allows for loading the sfc_mtd driver to
 * reprogram the flash, even if the flash contents (including the MAC
 * address) have previously been erased.
 */
static unsigned int allow_bad_hwaddr;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 * The default (0) means to assign an interrupt to each package (level II cache)
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

180 181 182 183
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

184 185 186 187 188 189 190 191 192 193
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

194 195 196 197 198 199 200 201 202 203 204 205
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
206 207
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
224
static int efx_process_channel(struct efx_channel *channel, int rx_quota)
225
{
B
Ben Hutchings 已提交
226 227
	struct efx_nic *efx = channel->efx;
	int rx_packets;
228

B
Ben Hutchings 已提交
229
	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
230
		     !channel->enabled))
B
Ben Hutchings 已提交
231
		return 0;
232

233
	rx_packets = efx_nic_process_eventq(channel, rx_quota);
B
Ben Hutchings 已提交
234 235
	if (rx_packets == 0)
		return 0;
236 237 238 239 240 241 242 243 244 245

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
		__efx_rx_packet(channel, channel->rx_pkt,
				channel->rx_pkt_csummed);
		channel->rx_pkt = NULL;
	}

	efx_rx_strategy(channel);

B
Ben Hutchings 已提交
246
	efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
247

B
Ben Hutchings 已提交
248
	return rx_packets;
249 250 251 252 253 254 255 256 257 258
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
259 260 261
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
262
	channel->work_pending = false;
263 264
	smp_wmb();

265
	efx_nic_eventq_read_ack(channel);
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	int rx_packets;

	EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
		  channel->channel, raw_smp_processor_id());

B
Ben Hutchings 已提交
282
	rx_packets = efx_process_channel(channel, budget);
283 284

	if (rx_packets < budget) {
285 286 287 288 289 290 291
		struct efx_nic *efx = channel->efx;

		if (channel->used_flags & EFX_USED_BY_RX &&
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
292 293
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
294
					efx->type->push_irq_moderation(channel);
295
				}
296 297
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
298 299 300
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
301
					efx->type->push_irq_moderation(channel);
302
				}
303 304 305 306 307
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

308
		/* There is no race here; although napi_disable() will
309
		 * only wait for napi_complete(), this isn't a problem
310 311 312
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
313
		napi_complete(napi);
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		efx_channel_processed(channel);
	}

	return rx_packets;
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
 * Since we are touching interrupts the caller should hold the suspend lock
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	BUG_ON(!channel->used_flags);
	BUG_ON(!channel->enabled);

	/* Disable interrupts and wait for ISRs to complete */
336
	efx_nic_disable_interrupts(efx);
337 338
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
339
	if (channel->irq)
340 341 342 343 344 345
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
346
	efx_process_channel(channel, EFX_EVQ_SIZE);
347 348 349 350 351 352

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
353
	efx_nic_enable_interrupts(efx);
354 355 356 357 358 359 360 361 362 363 364
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);

365
	return efx_nic_probe_eventq(channel);
366 367 368
}

/* Prepare channel's event queue */
369
static void efx_init_eventq(struct efx_channel *channel)
370 371 372 373 374
{
	EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);

	channel->eventq_read_ptr = 0;

375
	efx_nic_init_eventq(channel);
376 377 378 379 380 381
}

static void efx_fini_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);

382
	efx_nic_fini_eventq(channel);
383 384 385 386 387 388
}

static void efx_remove_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);

389
	efx_nic_remove_eventq(channel);
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

	EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
		if (efx->n_channels > efx->n_rx_queues) {
			if (channel->channel < efx->n_rx_queues) {
				type = "-rx";
			} else {
				type = "-tx";
				number -= efx->n_rx_queues;
			}
		}
		snprintf(channel->name, sizeof(channel->name),
			 "%s%s-%d", efx->name, type, number);
	}
}

458 459 460 461
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
462
static void efx_init_channels(struct efx_nic *efx)
463 464 465 466 467
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

468 469 470 471 472 473 474 475
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			      efx->type->rx_buffer_padding);
	efx->rx_buffer_order = get_order(efx->rx_buffer_len);
476 477 478 479 480

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "init chan %d\n", channel->channel);

481
		efx_init_eventq(channel);
482

483 484
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
485 486 487 488

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

489 490
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);

508 509 510
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
511 512
	channel->work_pending = false;
	channel->enabled = true;
513
	smp_wmb();
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

	napi_enable(&channel->napi_str);

	/* Load up RX descriptors */
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	if (!channel->enabled)
		return;

	EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);

535
	channel->enabled = false;
536 537 538 539 540 541 542 543 544 545 546 547 548 549
	napi_disable(&channel->napi_str);

	/* Ensure that any worker threads have exited or will be no-ops */
	efx_for_each_channel_rx_queue(rx_queue, channel) {
		spin_lock_bh(&rx_queue->add_lock);
		spin_unlock_bh(&rx_queue->add_lock);
	}
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
550
	int rc;
551 552 553 554

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

555
	rc = efx_nic_flush_queues(efx);
556 557 558 559 560
	if (rc)
		EFX_ERR(efx, "failed to flush queues\n");
	else
		EFX_LOG(efx, "successfully flushed all queues\n");

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);

	channel->used_flags = 0;
}

void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
{
	queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
603
void efx_link_status_changed(struct efx_nic *efx)
604
{
605 606
	struct efx_link_state *link_state = &efx->link_state;

607 608 609 610 611 612 613
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

B
Ben Hutchings 已提交
614 615 616 617 618
	if (efx->port_inhibited) {
		netif_carrier_off(efx->net_dev);
		return;
	}

619
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
620 621
		efx->n_link_state_changes++;

622
		if (link_state->up)
623 624 625 626 627 628
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
629
	if (link_state->up) {
B
Ben Hutchings 已提交
630
		EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
631
			 link_state->speed, link_state->fd ? "full" : "half",
632 633 634 635 636 637 638 639
			 efx->net_dev->mtu,
			 (efx->promiscuous ? " [PROMISC]" : ""));
	} else {
		EFX_INFO(efx, "link down\n");
	}

}

B
Ben Hutchings 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

668 669
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
670 671 672 673 674 675 676 677
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
678
{
B
Ben Hutchings 已提交
679 680
	enum efx_phy_mode phy_mode;
	int rc;
681

B
Ben Hutchings 已提交
682
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
683

684 685 686 687 688 689
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
	if (efx_dev_registered(efx)) {
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
	}

B
Ben Hutchings 已提交
690 691
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
692 693 694 695 696
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
697
	rc = efx->type->reconfigure_port(efx);
698

B
Ben Hutchings 已提交
699 700
	if (rc)
		efx->phy_mode = phy_mode;
701

B
Ben Hutchings 已提交
702
	return rc;
703 704 705 706
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
707
int efx_reconfigure_port(struct efx_nic *efx)
708
{
B
Ben Hutchings 已提交
709 710
	int rc;

711 712 713
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
714
	rc = __efx_reconfigure_port(efx);
715
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
716 717

	return rc;
718 719
}

720 721 722
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
723 724 725 726 727
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
728
	if (efx->port_enabled) {
729
		efx->type->push_multicast_hash(efx);
730 731
		efx->mac_op->reconfigure(efx);
	}
732 733 734
	mutex_unlock(&efx->mac_lock);
}

735 736 737 738 739 740
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "create port\n");

741 742
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
743 744 745
	if (rc)
		goto err;

746 747 748
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

749 750 751 752
	/* Sanity check MAC address */
	if (is_valid_ether_addr(efx->mac_address)) {
		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
	} else {
J
Johannes Berg 已提交
753 754
		EFX_ERR(efx, "invalid MAC address %pM\n",
			efx->mac_address);
755 756 757 758 759
		if (!allow_bad_hwaddr) {
			rc = -EINVAL;
			goto err;
		}
		random_ether_addr(efx->net_dev->dev_addr);
J
Johannes Berg 已提交
760 761
		EFX_INFO(efx, "using locally-generated MAC %pM\n",
			 efx->net_dev->dev_addr);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	}

	return 0;

 err:
	efx_remove_port(efx);
	return rc;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "init port\n");

777 778
	mutex_lock(&efx->mac_lock);

779
	rc = efx->phy_op->init(efx);
780
	if (rc)
781
		goto fail1;
782

783
	efx->port_initialized = true;
784

B
Ben Hutchings 已提交
785 786 787 788 789 790 791 792 793
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
	efx->mac_op->reconfigure(efx);

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

794
	mutex_unlock(&efx->mac_lock);
795
	return 0;
796

797
fail2:
798
	efx->phy_op->fini(efx);
799 800
fail1:
	mutex_unlock(&efx->mac_lock);
801
	return rc;
802 803 804 805 806 807 808 809
}

static void efx_start_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "start port\n");
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
810
	efx->port_enabled = true;
811 812 813

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
814
	efx->type->push_multicast_hash(efx);
815 816
	efx->mac_op->reconfigure(efx);

817 818 819
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
820
/* Prevent efx_mac_work() and efx_monitor() from working */
821 822 823 824 825
static void efx_stop_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "stop port\n");

	mutex_lock(&efx->mac_lock);
826
	efx->port_enabled = false;
827 828 829
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
830
	if (efx_dev_registered(efx)) {
831 832
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
833 834 835 836 837 838 839 840 841 842
	}
}

static void efx_fini_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "shut down port\n");

	if (!efx->port_initialized)
		return;

843
	efx->phy_op->fini(efx);
844
	efx->port_initialized = false;
845

846
	efx->link_state.up = false;
847 848 849 850 851 852 853
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying port\n");

854
	efx->type->remove_port(efx);
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

	EFX_LOG(efx, "initialising I/O\n");

	rc = pci_enable_device(pci_dev);
	if (rc) {
		EFX_ERR(efx, "failed to enable PCI device\n");
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
		if (pci_dma_supported(pci_dev, dma_mask) &&
		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
			break;
		dma_mask >>= 1;
	}
	if (rc) {
		EFX_ERR(efx, "could not find a suitable DMA mask\n");
		goto fail2;
	}
	EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
		EFX_ERR(efx, "failed to set consistent DMA mask\n");
		goto fail2;
	}

906 907
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
908 909 910 911 912 913 914 915
	if (rc) {
		EFX_ERR(efx, "request for memory BAR failed\n");
		rc = -EIO;
		goto fail3;
	}
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
	if (!efx->membase) {
916
		EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
917
			(unsigned long long)efx->membase_phys,
918 919 920 921
			efx->type->mem_map_size);
		rc = -ENOMEM;
		goto fail4;
	}
922 923
	EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
		(unsigned long long)efx->membase_phys,
924
		efx->type->mem_map_size, efx->membase);
925 926 927 928

	return 0;

 fail4:
929
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
930
 fail3:
931
	efx->membase_phys = 0;
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
	EFX_LOG(efx, "shutting down I/O\n");

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
948
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
949
		efx->membase_phys = 0;
950 951 952 953 954
	}

	pci_disable_device(efx->pci_dev);
}

955 956 957 958 959
/* Get number of RX queues wanted.  Return number of online CPU
 * packages in the expectation that an IRQ balancer will spread
 * interrupts across them. */
static int efx_wanted_rx_queues(void)
{
R
Rusty Russell 已提交
960
	cpumask_var_t core_mask;
961 962 963
	int count;
	int cpu;

964
	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
R
Rusty Russell 已提交
965
		printk(KERN_WARNING
966
		       "sfc: RSS disabled due to allocation failure\n");
R
Rusty Russell 已提交
967 968 969
		return 1;
	}

970 971
	count = 0;
	for_each_online_cpu(cpu) {
R
Rusty Russell 已提交
972
		if (!cpumask_test_cpu(cpu, core_mask)) {
973
			++count;
R
Rusty Russell 已提交
974
			cpumask_or(core_mask, core_mask,
975
				   topology_core_cpumask(cpu));
976 977 978
		}
	}

R
Rusty Russell 已提交
979
	free_cpumask_var(core_mask);
980 981 982 983 984 985
	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
986 987
static void efx_probe_interrupts(struct efx_nic *efx)
{
988 989
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
990 991 992
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
993 994
		struct msix_entry xentries[EFX_MAX_CHANNELS];
		int wanted_ints;
995
		int rx_queues;
996

997 998 999 1000
		/* We want one RX queue and interrupt per CPU package
		 * (or as specified by the rss_cpus module parameter).
		 * We will need one channel per interrupt.
		 */
1001 1002 1003
		rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
		wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
		wanted_ints = min(wanted_ints, max_channels);
1004

1005
		for (i = 0; i < wanted_ints; i++)
1006
			xentries[i].entry = i;
1007
		rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
1008
		if (rc > 0) {
1009 1010 1011 1012 1013
			EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
				" available (%d < %d).\n", rc, wanted_ints);
			EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
			EFX_BUG_ON_PARANOID(rc >= wanted_ints);
			wanted_ints = rc;
1014
			rc = pci_enable_msix(efx->pci_dev, xentries,
1015
					     wanted_ints);
1016 1017 1018
		}

		if (rc == 0) {
1019 1020 1021
			efx->n_rx_queues = min(rx_queues, wanted_ints);
			efx->n_channels = wanted_ints;
			for (i = 0; i < wanted_ints; i++)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
				efx->channel[i].irq = xentries[i].vector;
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			EFX_ERR(efx, "could not enable MSI-X\n");
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1032
		efx->n_rx_queues = 1;
1033
		efx->n_channels = 1;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
			efx->channel[0].irq = efx->pci_dev->irq;
		} else {
			EFX_ERR(efx, "could not enable MSI\n");
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1045
		efx->n_rx_queues = 1;
1046
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1047 1048 1049 1050 1051 1052 1053 1054 1055
		efx->legacy_irq = efx->pci_dev->irq;
	}
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1056
	efx_for_each_channel(channel, efx)
1057 1058 1059 1060 1061 1062 1063 1064
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1065
static void efx_set_channels(struct efx_nic *efx)
1066 1067 1068 1069
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

1070
	efx_for_each_tx_queue(tx_queue, efx) {
1071 1072
		if (separate_tx_channels)
			tx_queue->channel = &efx->channel[efx->n_channels-1];
1073 1074 1075 1076
		else
			tx_queue->channel = &efx->channel[0];
		tx_queue->channel->used_flags |= EFX_USED_BY_TX;
	}
1077

1078 1079 1080
	efx_for_each_rx_queue(rx_queue, efx) {
		rx_queue->channel = &efx->channel[rx_queue->queue];
		rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	}
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "creating NIC\n");

	/* Carry out hardware-type specific initialisation */
1091
	rc = efx->type->probe(efx);
1092 1093 1094 1095 1096 1097 1098
	if (rc)
		return rc;

	/* Determine the number of channels and RX queues by trying to hook
	 * in MSI-X interrupts. */
	efx_probe_interrupts(efx);

1099
	efx_set_channels(efx);
1100 1101

	/* Initialise the interrupt moderation settings */
1102
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1103 1104 1105 1106 1107 1108 1109 1110 1111

	return 0;
}

static void efx_remove_nic(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying NIC\n");

	efx_remove_interrupts(efx);
1112
	efx->type->remove(efx);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Create NIC */
	rc = efx_probe_nic(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create NIC\n");
		goto fail1;
	}

	/* Create port */
	rc = efx_probe_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create port\n");
		goto fail2;
	}

	/* Create channels */
	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			EFX_ERR(efx, "failed to create channel %d\n",
				channel->channel);
			goto fail3;
		}
	}
1149
	efx_set_channel_names(efx);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	return 0;

 fail3:
	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1180
	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1181 1182 1183 1184 1185
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);
1186 1187
	if (efx_dev_registered(efx))
		efx_wake_queue(efx);
1188 1189 1190 1191

	efx_for_each_channel(channel, efx)
		efx_start_channel(channel);

1192
	efx_nic_enable_interrupts(efx);
1193

1194 1195 1196 1197
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1198 1199
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1200 1201 1202 1203 1204 1205
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1206

1207
	efx->type->start_stats(efx);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;

	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);

	/* Ensure that all RX slow refills are complete. */
1221
	efx_for_each_rx_queue(rx_queue, efx)
1222 1223 1224
		cancel_delayed_work_sync(&rx_queue->work);

	/* Stop scheduled port reconfigurations */
1225
	cancel_work_sync(&efx->mac_work);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1243
	efx->type->stop_stats(efx);
1244

1245
	/* Disable interrupts and wait for ISR to complete */
1246
	efx_nic_disable_interrupts(efx);
1247 1248
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
1249
	efx_for_each_channel(channel, efx) {
1250 1251
		if (channel->irq)
			synchronize_irq(channel->irq);
1252
	}
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1263
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1264 1265 1266 1267
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1268
	if (efx_dev_registered(efx)) {
1269
		efx_stop_queue(efx);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		netif_tx_lock_bh(efx->net_dev);
		netif_tx_unlock_bh(efx->net_dev);
	}
}

static void efx_remove_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1291 1292 1293 1294 1295 1296 1297 1298 1299
static unsigned irq_mod_ticks(int usecs, int resolution)
{
	if (usecs <= 0)
		return 0; /* cannot receive interrupts ahead of time :-) */
	if (usecs < resolution)
		return 1; /* never round down to 0 */
	return usecs / resolution;
}

1300
/* Set interrupt moderation parameters */
1301 1302
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
			     bool rx_adaptive)
1303 1304 1305
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1306 1307
	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1308 1309 1310 1311

	EFX_ASSERT_RESET_SERIALISED(efx);

	efx_for_each_tx_queue(tx_queue, efx)
1312
		tx_queue->channel->irq_moderation = tx_ticks;
1313

1314
	efx->irq_rx_adaptive = rx_adaptive;
1315
	efx->irq_rx_moderation = rx_ticks;
1316
	efx_for_each_rx_queue(rx_queue, efx)
1317
		rx_queue->channel->irq_moderation = rx_ticks;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
}

/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

/* Run periodically off the general workqueue. Serialised against
 * efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

	EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
		  raw_smp_processor_id());
1335
	BUG_ON(efx->type->monitor == NULL);
1336 1337 1338 1339

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
	 * most of the work of check_hw() anyway. */
1340 1341 1342 1343
	if (!mutex_trylock(&efx->mac_lock))
		goto out_requeue;
	if (!efx->port_enabled)
		goto out_unlock;
1344
	efx->type->monitor(efx);
1345

1346
out_unlock:
1347
	mutex_unlock(&efx->mac_lock);
1348
out_requeue:
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1364
	struct efx_nic *efx = netdev_priv(net_dev);
1365
	struct mii_ioctl_data *data = if_mii(ifr);
1366 1367 1368

	EFX_ASSERT_RESET_SERIALISED(efx);

1369 1370 1371 1372 1373 1374
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

static int efx_init_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1389 1390
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1391 1392 1393 1394 1395 1396 1397 1398 1399
	}
	return 0;
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
1400 1401
		if (channel->napi_dev)
			netif_napi_del(&channel->napi_str);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
		channel->napi_dev = NULL;
	}
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1420
	struct efx_nic *efx = netdev_priv(net_dev);
1421 1422
	struct efx_channel *channel;

1423
	efx_for_each_channel(channel, efx)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1438
	struct efx_nic *efx = netdev_priv(net_dev);
1439 1440 1441 1442 1443
	EFX_ASSERT_RESET_SERIALISED(efx);

	EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

1444 1445
	if (efx->state == STATE_DISABLED)
		return -EIO;
1446 1447 1448
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;

1449 1450 1451 1452
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1463
	struct efx_nic *efx = netdev_priv(net_dev);
1464 1465 1466 1467

	EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

1468 1469 1470 1471 1472 1473
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
		efx_fini_channels(efx);
		efx_init_channels(efx);
	}
1474 1475 1476 1477

	return 0;
}

1478
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1479 1480
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
{
1481
	struct efx_nic *efx = netdev_priv(net_dev);
1482 1483 1484
	struct efx_mac_stats *mac_stats = &efx->mac_stats;
	struct net_device_stats *stats = &net_dev->stats;

1485
	spin_lock_bh(&efx->stats_lock);
1486
	efx->type->update_stats(efx);
1487
	spin_unlock_bh(&efx->stats_lock);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_over_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    stats->rx_fifo_errors +
			    stats->rx_missed_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1520
	struct efx_nic *efx = netdev_priv(net_dev);
1521

1522 1523 1524
	EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
		" resetting channels\n",
		atomic_read(&efx->netif_stop_count), efx->port_enabled);
1525

1526
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1527 1528 1529 1530 1531 1532
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1533
	struct efx_nic *efx = netdev_priv(net_dev);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	int rc = 0;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

	EFX_LOG(efx, "changing MTU to %d\n", new_mtu);

	efx_fini_channels(efx);
B
Ben Hutchings 已提交
1546 1547 1548 1549

	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1550
	net_dev->mtu = new_mtu;
B
Ben Hutchings 已提交
1551 1552 1553
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

1554
	efx_init_channels(efx);
1555 1556 1557 1558 1559 1560 1561

	efx_start_all(efx);
	return rc;
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1562
	struct efx_nic *efx = netdev_priv(net_dev);
1563 1564 1565 1566 1567 1568
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
J
Johannes Berg 已提交
1569 1570
		EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
			new_addr);
1571 1572 1573 1574 1575 1576
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1577 1578 1579
	mutex_lock(&efx->mac_lock);
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);
1580 1581 1582 1583

	return 0;
}

1584
/* Context: netif_addr_lock held, BHs disabled. */
1585 1586
static void efx_set_multicast_list(struct net_device *net_dev)
{
1587
	struct efx_nic *efx = netdev_priv(net_dev);
1588 1589 1590 1591 1592 1593
	struct dev_mc_list *mc_list = net_dev->mc_list;
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;
	int i;

1594
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1595 1596

	/* Build multicast hash table */
1597
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
		for (i = 0; i < net_dev->mc_count; i++) {
			crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
			mc_list = mc_list->next;
		}

1608 1609 1610 1611 1612 1613
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1614

1615 1616 1617
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1618 1619
}

S
Stephen Hemminger 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats		= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_multicast_list = efx_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
};

1636 1637 1638 1639 1640 1641 1642
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1643 1644 1645
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1646
	struct net_device *net_dev = ptr;
1647

1648 1649 1650
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1651 1652 1653 1654 1655 1656 1657 1658

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
1659 1660 1661 1662 1663 1664 1665 1666
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1667 1668 1669 1670 1671 1672 1673
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
1674
	net_dev->netdev_ops = &efx_netdev_ops;
1675 1676 1677 1678
	SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

	/* Clear MAC statistics */
1679
	efx->mac_op->update_stats(efx);
1680 1681
	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));

1682
	rtnl_lock();
1683 1684 1685 1686

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
1687
	efx_update_name(efx);
1688 1689 1690 1691 1692 1693 1694 1695

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(efx->net_dev);

1696
	rtnl_unlock();
1697

B
Ben Hutchings 已提交
1698 1699 1700 1701 1702 1703
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
		EFX_ERR(efx, "failed to init net dev attributes\n");
		goto fail_registered;
	}

1704
	return 0;
B
Ben Hutchings 已提交
1705

1706 1707 1708 1709 1710
fail_locked:
	rtnl_unlock();
	EFX_ERR(efx, "could not register net dev\n");
	return rc;

B
Ben Hutchings 已提交
1711 1712 1713
fail_registered:
	unregister_netdev(net_dev);
	return rc;
1714 1715 1716 1717 1718 1719 1720 1721 1722
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

1723
	BUG_ON(netdev_priv(efx->net_dev) != efx);
1724 1725 1726 1727 1728 1729 1730

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
	efx_for_each_tx_queue(tx_queue, efx)
		efx_release_tx_buffers(tx_queue);

1731
	if (efx_dev_registered(efx)) {
1732
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
B
Ben Hutchings 已提交
1733
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		unregister_netdev(efx->net_dev);
	}
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
1744 1745
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
1746
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
1747 1748 1749
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
1750 1751
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);
1752
	mutex_lock(&efx->spi_lock);
B
Ben Hutchings 已提交
1753

1754
	efx_fini_channels(efx);
1755 1756
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
1757
	efx->type->fini(efx);
1758 1759
}

B
Ben Hutchings 已提交
1760 1761 1762 1763 1764
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
1765
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
1766 1767 1768
{
	int rc;

B
Ben Hutchings 已提交
1769
	EFX_ASSERT_RESET_SERIALISED(efx);
1770

1771
	rc = efx->type->init(efx);
1772
	if (rc) {
B
Ben Hutchings 已提交
1773
		EFX_ERR(efx, "failed to initialise NIC\n");
1774
		goto fail;
1775 1776
	}

1777 1778 1779
	if (!ok)
		goto fail;

1780
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1781 1782 1783 1784 1785
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
			EFX_ERR(efx, "could not restore PHY settings\n");
1786 1787
	}

1788
	efx->mac_op->reconfigure(efx);
1789

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	efx_init_channels(efx);

	mutex_unlock(&efx->spi_lock);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
1801

1802
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
1803 1804
	mutex_unlock(&efx->mac_lock);

1805 1806 1807
	return rc;
}

1808 1809
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
1810
 *
1811
 * Caller must hold the rtnl_lock.
1812
 */
1813
int efx_reset(struct efx_nic *efx, enum reset_type method)
1814
{
1815 1816
	int rc, rc2;
	bool disabled;
1817

1818
	EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
1819

B
Ben Hutchings 已提交
1820
	efx_reset_down(efx, method);
1821

1822
	rc = efx->type->reset(efx, method);
1823 1824
	if (rc) {
		EFX_ERR(efx, "failed to reset hardware\n");
1825
		goto out;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	}

	/* Allow resets to be rescheduled. */
	efx->reset_pending = RESET_TYPE_NONE;

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

1837
out:
1838
	/* Leave device stopped if necessary */
1839 1840 1841 1842 1843 1844
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
1845 1846
	}

1847
	if (disabled) {
1848 1849 1850 1851 1852
		EFX_ERR(efx, "has been disabled\n");
		efx->state = STATE_DISABLED;
	} else {
		EFX_LOG(efx, "reset complete\n");
	}
1853 1854 1855 1856 1857 1858 1859 1860
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
1861
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
1862

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	/* If we're not RUNNING then don't reset. Leave the reset_pending
	 * flag set so that efx_pci_probe_main will be retried */
	if (efx->state != STATE_RUNNING) {
		EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
		return;
	}

	rtnl_lock();
	if (efx_reset(efx, efx->reset_pending))
		dev_close(efx->net_dev);
	rtnl_unlock();
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	if (efx->reset_pending != RESET_TYPE_NONE) {
		EFX_INFO(efx, "quenching already scheduled reset\n");
		return;
	}

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
		break;
	case RESET_TYPE_RX_RECOVERY:
	case RESET_TYPE_RX_DESC_FETCH:
	case RESET_TYPE_TX_DESC_FETCH:
	case RESET_TYPE_TX_SKIP:
		method = RESET_TYPE_INVISIBLE;
		break;
	default:
		method = RESET_TYPE_ALL;
		break;
	}

	if (method != type)
1904 1905
		EFX_LOG(efx, "scheduling %s reset for %s\n",
			RESET_TYPE(method), RESET_TYPE(type));
1906
	else
1907
		EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
1908 1909 1910

	efx->reset_pending = method;

1911
	queue_work(reset_workqueue, &efx->reset_work);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
static struct pci_device_id efx_pci_table[] __devinitdata = {
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1923
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
1924
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1925
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
1926 1927 1928 1929 1930
	{0}			/* end of list */
};

/**************************************************************************
 *
1931
 * Dummy PHY/MAC operations
1932
 *
1933
 * Can be used for some unimplemented operations
1934 1935 1936 1937 1938 1939 1940 1941 1942
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
1943 1944 1945
void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
}
S
Steve Hodgson 已提交
1946 1947 1948 1949
bool efx_port_dummy_op_poll(struct efx_nic *efx)
{
	return false;
}
1950 1951 1952

static struct efx_phy_operations efx_dummy_phy_operations = {
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
1953
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
1954
	.poll		 = efx_port_dummy_op_poll,
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1973
	int i;
1974 1975 1976 1977

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
1978
	mutex_init(&efx->mdio_lock);
1979
	mutex_init(&efx->spi_lock);
1980 1981 1982
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
1983 1984 1985 1986 1987 1988 1989 1990
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
	efx->state = STATE_INIT;
	efx->reset_pending = RESET_TYPE_NONE;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
1991
	efx->rx_checksum_enabled = true;
1992 1993 1994
	spin_lock_init(&efx->netif_stop_lock);
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
1995
	efx->mac_op = type->default_mac_ops;
1996
	efx->phy_op = &efx_dummy_phy_operations;
1997
	efx->mdio.dev = net_dev;
1998
	INIT_WORK(&efx->mac_work, efx_mac_work);
1999 2000 2001 2002 2003 2004
	atomic_set(&efx->netif_stop_count, 1);

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
		channel = &efx->channel[i];
		channel->efx = efx;
		channel->channel = i;
2005
		channel->work_pending = false;
2006
	}
2007
	for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
2008 2009 2010 2011 2012
		tx_queue = &efx->tx_queue[i];
		tx_queue->efx = efx;
		tx_queue->queue = i;
		tx_queue->buffer = NULL;
		tx_queue->channel = &efx->channel[0]; /* for safety */
B
Ben Hutchings 已提交
2013
		tx_queue->tso_headers_free = NULL;
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	}
	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
		rx_queue = &efx->rx_queue[i];
		rx_queue->efx = efx;
		rx_queue->queue = i;
		rx_queue->channel = &efx->channel[0]; /* for safety */
		rx_queue->buffer = NULL;
		spin_lock_init(&rx_queue->add_lock);
		INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
	}

	efx->type = type;

	/* As close as we can get to guaranteeing that we don't overflow */
2028 2029
	BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);

2030 2031 2032 2033 2034 2035
	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2036 2037 2038 2039
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2040 2041
	if (!efx->workqueue)
		return -ENOMEM;
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	return 0;
}

static void efx_fini_struct(struct efx_nic *efx)
{
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2065
	efx_nic_fini_interrupt(efx);
2066 2067
	efx_fini_channels(efx);
	efx_fini_port(efx);
2068
	efx->type->fini(efx);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	efx_unregister_netdev(efx);

2094 2095
	efx_mtd_remove(efx);

2096 2097 2098 2099
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2100
	cancel_work_sync(&efx->reset_work);
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
	EFX_LOG(efx, "shutdown successful\n");

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

	rc = efx_init_napi(efx);
	if (rc)
		goto fail2;

2128
	rc = efx->type->init(efx);
2129 2130
	if (rc) {
		EFX_ERR(efx, "failed to initialise NIC\n");
2131
		goto fail3;
2132 2133 2134 2135 2136
	}

	rc = efx_init_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise port\n");
2137
		goto fail4;
2138 2139
	}

2140
	efx_init_channels(efx);
2141

2142
	rc = efx_nic_init_interrupt(efx);
2143
	if (rc)
2144
		goto fail5;
2145 2146 2147

	return 0;

2148
 fail5:
2149
	efx_fini_channels(efx);
2150 2151
	efx_fini_port(efx);
 fail4:
2152
	efx->type->fini(efx);
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
 fail3:
	efx_fini_napi(efx);
 fail2:
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
	net_dev = alloc_etherdev(sizeof(*efx));
	if (!net_dev)
		return -ENOMEM;
2182
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2183 2184
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
			      NETIF_F_GRO);
2185 2186
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2187
				   NETIF_F_HIGHDMA | NETIF_F_TSO);
2188
	efx = netdev_priv(net_dev);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	pci_set_drvdata(pci_dev, efx);
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

	EFX_INFO(efx, "Solarflare Communications NIC detected\n");

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2210
		cancel_work_sync(&efx->reset_work);
2211

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		if (rc == 0) {
			if (efx->reset_pending != RESET_TYPE_NONE) {
				/* If there was a scheduled reset during
				 * probe, the NIC is probably hosed anyway */
				efx_pci_remove_main(efx);
				rc = -EIO;
			} else {
				break;
			}
		}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
		/* Retry if a recoverably reset event has been scheduled */
		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
		    (efx->reset_pending != RESET_TYPE_ALL))
			goto fail3;

		efx->reset_pending = RESET_TYPE_NONE;
	}

	if (rc) {
		EFX_ERR(efx, "Could not reset NIC\n");
		goto fail4;
	}

2236 2237
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2238
	efx->state = STATE_RUNNING;
2239

2240 2241 2242 2243 2244
	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

	EFX_LOG(efx, "initialisation successful\n");
2245 2246 2247 2248

	rtnl_lock();
	efx_mtd_probe(efx); /* allowed to fail */
	rtnl_unlock();
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
	EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
	free_netdev(net_dev);
	return rc;
}

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
	efx_fini_channels(efx);

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

	efx_init_channels(efx);

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

	efx->reset_pending = RESET_TYPE_NONE;

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

static struct dev_pm_ops efx_pm_ops = {
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2359 2360 2361 2362 2363
static struct pci_driver efx_pci_driver = {
	.name		= EFX_DRIVER_NAME,
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2364
	.driver.pm	= &efx_pm_ops,
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

	refill_workqueue = create_workqueue("sfc_refill");
	if (!refill_workqueue) {
		rc = -ENOMEM;
		goto err_refill;
	}
2392 2393 2394 2395 2396
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2397 2398 2399 2400 2401 2402 2403 2404

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2405 2406
	destroy_workqueue(reset_workqueue);
 err_reset:
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	destroy_workqueue(refill_workqueue);
 err_refill:
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2419
	destroy_workqueue(reset_workqueue);
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	destroy_workqueue(refill_workqueue);
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
	      "Solarflare Communications");
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);