efx.c 59.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2005-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23 24 25 26 27
#include "net_driver.h"
#include "efx.h"
#include "mdio_10g.h"
#include "falcon.h"

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
const char *efx_loopback_mode_names[] = {
	[LOOPBACK_NONE]		= "NONE",
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
	[LOOPBACK_XAUI]  	= "XAUI",
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
	[LOOPBACK_PCS]	 	= "PCS",
	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
	[LOOPBACK_NETWORK]	= "NETWORK",
};

/* Interrupt mode names (see INT_MODE())) */
const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
const char *efx_interrupt_mode_names[] = {
	[EFX_INT_MODE_MSIX]   = "MSI-X",
	[EFX_INT_MODE_MSI]    = "MSI",
	[EFX_INT_MODE_LEGACY] = "legacy",
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
const char *efx_reset_type_names[] = {
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
};

72 73 74 75 76 77 78 79 80
#define EFX_MAX_MTU (9 * 1024)

/* RX slow fill workqueue. If memory allocation fails in the fast path,
 * a work item is pushed onto this work queue to retry the allocation later,
 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
 * workqueue, there is nothing to be gained in making it per NIC
 */
static struct workqueue_struct *refill_workqueue;

81 82 83 84 85 86
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

87 88 89 90 91 92 93 94 95
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
96 97
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
98
 *
99
 * This is only used in MSI-X interrupt mode
100
 */
101 102 103 104
static unsigned int separate_tx_channels;
module_param(separate_tx_channels, uint, 0644);
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
 * monitor, which checks for known hardware bugs and resets the
 * hardware and driver as necessary.
 */
unsigned int efx_monitor_interval = 1 * HZ;

/* This controls whether or not the driver will initialise devices
 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 * such devices will be initialised with a random locally-generated
 * MAC address.  This allows for loading the sfc_mtd driver to
 * reprogram the flash, even if the flash contents (including the MAC
 * address) have previously been erased.
 */
static unsigned int allow_bad_hwaddr;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 * The default (0) means to assign an interrupt to each package (level II cache)
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

163 164 165 166
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

167 168 169 170 171 172 173 174 175 176
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

177 178 179 180 181 182 183 184 185 186 187 188
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
189 190
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
207
static int efx_process_channel(struct efx_channel *channel, int rx_quota)
208
{
B
Ben Hutchings 已提交
209 210
	struct efx_nic *efx = channel->efx;
	int rx_packets;
211

B
Ben Hutchings 已提交
212
	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
213
		     !channel->enabled))
B
Ben Hutchings 已提交
214
		return 0;
215

B
Ben Hutchings 已提交
216 217 218
	rx_packets = falcon_process_eventq(channel, rx_quota);
	if (rx_packets == 0)
		return 0;
219 220 221 222 223 224 225 226 227 228

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
		__efx_rx_packet(channel, channel->rx_pkt,
				channel->rx_pkt_csummed);
		channel->rx_pkt = NULL;
	}

	efx_rx_strategy(channel);

B
Ben Hutchings 已提交
229
	efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
230

B
Ben Hutchings 已提交
231
	return rx_packets;
232 233 234 235 236 237 238 239 240 241
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
242 243 244
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
245
	channel->work_pending = false;
246 247
	smp_wmb();

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	falcon_eventq_read_ack(channel);
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	int rx_packets;

	EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
		  channel->channel, raw_smp_processor_id());

B
Ben Hutchings 已提交
265
	rx_packets = efx_process_channel(channel, budget);
266 267

	if (rx_packets < budget) {
268 269 270 271 272 273 274
		struct efx_nic *efx = channel->efx;

		if (channel->used_flags & EFX_USED_BY_RX &&
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
275 276 277 278
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
					falcon_set_int_moderation(channel);
				}
279 280
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
281 282 283 284 285
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
					falcon_set_int_moderation(channel);
				}
286 287 288 289 290
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

291
		/* There is no race here; although napi_disable() will
292
		 * only wait for napi_complete(), this isn't a problem
293 294 295
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
296
		napi_complete(napi);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
		efx_channel_processed(channel);
	}

	return rx_packets;
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
 * Since we are touching interrupts the caller should hold the suspend lock
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	BUG_ON(!channel->used_flags);
	BUG_ON(!channel->enabled);

	/* Disable interrupts and wait for ISRs to complete */
	falcon_disable_interrupts(efx);
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
322
	if (channel->irq)
323 324 325 326 327 328
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
329
	efx_process_channel(channel, EFX_EVQ_SIZE);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
	falcon_enable_interrupts(efx);
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);

	return falcon_probe_eventq(channel);
}

/* Prepare channel's event queue */
352
static void efx_init_eventq(struct efx_channel *channel)
353 354 355 356 357
{
	EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);

	channel->eventq_read_ptr = 0;

358
	falcon_init_eventq(channel);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
}

static void efx_fini_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);

	falcon_fini_eventq(channel);
}

static void efx_remove_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);

	falcon_remove_eventq(channel);
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

	EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
		if (efx->n_channels > efx->n_rx_queues) {
			if (channel->channel < efx->n_rx_queues) {
				type = "-rx";
			} else {
				type = "-tx";
				number -= efx->n_rx_queues;
			}
		}
		snprintf(channel->name, sizeof(channel->name),
			 "%s%s-%d", efx->name, type, number);
	}
}

441 442 443 444
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
445
static void efx_init_channels(struct efx_nic *efx)
446 447 448 449 450
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

451 452 453 454 455 456 457 458
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			      efx->type->rx_buffer_padding);
	efx->rx_buffer_order = get_order(efx->rx_buffer_len);
459 460 461 462 463

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "init chan %d\n", channel->channel);

464
		efx_init_eventq(channel);
465

466 467
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
468 469 470 471

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

472 473
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);

491 492 493
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
494 495
	channel->work_pending = false;
	channel->enabled = true;
496
	smp_wmb();
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

	napi_enable(&channel->napi_str);

	/* Load up RX descriptors */
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	if (!channel->enabled)
		return;

	EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);

518
	channel->enabled = false;
519 520 521 522 523 524 525 526 527 528 529 530 531 532
	napi_disable(&channel->napi_str);

	/* Ensure that any worker threads have exited or will be no-ops */
	efx_for_each_channel_rx_queue(rx_queue, channel) {
		spin_lock_bh(&rx_queue->add_lock);
		spin_unlock_bh(&rx_queue->add_lock);
	}
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
533
	int rc;
534 535 536 537

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

538 539 540 541 542 543
	rc = falcon_flush_queues(efx);
	if (rc)
		EFX_ERR(efx, "failed to flush queues\n");
	else
		EFX_LOG(efx, "successfully flushed all queues\n");

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);

	channel->used_flags = 0;
}

void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
{
	queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
static void efx_link_status_changed(struct efx_nic *efx)
{
588 589
	struct efx_link_state *link_state = &efx->link_state;

590 591 592 593 594 595 596
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

B
Ben Hutchings 已提交
597 598 599 600 601
	if (efx->port_inhibited) {
		netif_carrier_off(efx->net_dev);
		return;
	}

602
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
603 604
		efx->n_link_state_changes++;

605
		if (link_state->up)
606 607 608 609 610 611
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
612
	if (link_state->up) {
B
Ben Hutchings 已提交
613
		EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
614
			 link_state->speed, link_state->fd ? "full" : "half",
615 616 617 618 619 620 621 622
			 efx->net_dev->mtu,
			 (efx->promiscuous ? " [PROMISC]" : ""));
	} else {
		EFX_INFO(efx, "link down\n");
	}

}

623 624
static void efx_fini_port(struct efx_nic *efx);

625 626
/* This call reinitialises the MAC to pick up new PHY settings. The
 * caller must hold the mac_lock */
B
Ben Hutchings 已提交
627
void __efx_reconfigure_port(struct efx_nic *efx)
628 629 630 631 632 633
{
	WARN_ON(!mutex_is_locked(&efx->mac_lock));

	EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
		raw_smp_processor_id());

634 635 636 637 638 639
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
	if (efx_dev_registered(efx)) {
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
	}

640
	falcon_stop_nic_stats(efx);
641 642 643 644 645 646 647 648 649 650 651 652 653
	falcon_deconfigure_mac_wrapper(efx);

	/* Reconfigure the PHY, disabling transmit in mac level loopback. */
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
	efx->phy_op->reconfigure(efx);

	if (falcon_switch_mac(efx))
		goto fail;

	efx->mac_op->reconfigure(efx);
654

655 656
	falcon_start_nic_stats(efx);

657 658
	/* Inform kernel of loss/gain of carrier */
	efx_link_status_changed(efx);
659 660 661 662
	return;

fail:
	EFX_ERR(efx, "failed to reconfigure MAC\n");
663 664
	efx->port_enabled = false;
	efx_fini_port(efx);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
void efx_reconfigure_port(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
	__efx_reconfigure_port(efx);
	mutex_unlock(&efx->mac_lock);
}

/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
681
static void efx_phy_work(struct work_struct *data)
682
{
683
	struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
684 685 686 687 688 689 690

	mutex_lock(&efx->mac_lock);
	if (efx->port_enabled)
		__efx_reconfigure_port(efx);
	mutex_unlock(&efx->mac_lock);
}

691 692 693 694 695 696 697 698
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
	mutex_unlock(&efx->mac_lock);
}

699 700 701 702 703 704 705 706 707 708 709
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "create port\n");

	/* Connect up MAC/PHY operations table and read MAC address */
	rc = falcon_probe_port(efx);
	if (rc)
		goto err;

710 711 712
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

713 714 715 716
	/* Sanity check MAC address */
	if (is_valid_ether_addr(efx->mac_address)) {
		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
	} else {
J
Johannes Berg 已提交
717 718
		EFX_ERR(efx, "invalid MAC address %pM\n",
			efx->mac_address);
719 720 721 722 723
		if (!allow_bad_hwaddr) {
			rc = -EINVAL;
			goto err;
		}
		random_ether_addr(efx->net_dev->dev_addr);
J
Johannes Berg 已提交
724 725
		EFX_INFO(efx, "using locally-generated MAC %pM\n",
			 efx->net_dev->dev_addr);
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	}

	return 0;

 err:
	efx_remove_port(efx);
	return rc;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "init port\n");

741 742
	mutex_lock(&efx->mac_lock);

743
	rc = efx->phy_op->init(efx);
744
	if (rc)
745
		goto fail1;
746
	efx->phy_op->reconfigure(efx);
747 748
	rc = falcon_switch_mac(efx);
	if (rc)
749
		goto fail2;
750
	efx->mac_op->reconfigure(efx);
751

752
	efx->port_initialized = true;
753 754

	mutex_unlock(&efx->mac_lock);
755
	return 0;
756

757
fail2:
758
	efx->phy_op->fini(efx);
759 760
fail1:
	mutex_unlock(&efx->mac_lock);
761
	return rc;
762 763 764 765
}

/* Allow efx_reconfigure_port() to be scheduled, and close the window
 * between efx_stop_port and efx_flush_all whereby a previously scheduled
766
 * efx_phy_work()/efx_mac_work() may have been cancelled */
767 768 769 770 771 772
static void efx_start_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "start port\n");
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
773
	efx->port_enabled = true;
774 775 776 777
	__efx_reconfigure_port(efx);
	mutex_unlock(&efx->mac_lock);
}

778 779 780 781
/* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
 * and efx_mac_work may still be scheduled via NAPI processing until
 * efx_flush_all() is called */
782 783 784 785 786
static void efx_stop_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "stop port\n");

	mutex_lock(&efx->mac_lock);
787
	efx->port_enabled = false;
788 789 790
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
791
	if (efx_dev_registered(efx)) {
792 793
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
794 795 796 797 798 799 800 801 802 803
	}
}

static void efx_fini_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "shut down port\n");

	if (!efx->port_initialized)
		return;

804
	efx->phy_op->fini(efx);
805
	efx->port_initialized = false;
806

807
	efx->link_state.up = false;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying port\n");

	falcon_remove_port(efx);
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

	EFX_LOG(efx, "initialising I/O\n");

	rc = pci_enable_device(pci_dev);
	if (rc) {
		EFX_ERR(efx, "failed to enable PCI device\n");
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
		if (pci_dma_supported(pci_dev, dma_mask) &&
		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
			break;
		dma_mask >>= 1;
	}
	if (rc) {
		EFX_ERR(efx, "could not find a suitable DMA mask\n");
		goto fail2;
	}
	EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
		EFX_ERR(efx, "failed to set consistent DMA mask\n");
		goto fail2;
	}

867 868
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
869 870 871 872 873 874 875 876
	if (rc) {
		EFX_ERR(efx, "request for memory BAR failed\n");
		rc = -EIO;
		goto fail3;
	}
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
	if (!efx->membase) {
877
		EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
878
			(unsigned long long)efx->membase_phys,
879 880 881 882
			efx->type->mem_map_size);
		rc = -ENOMEM;
		goto fail4;
	}
883 884
	EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
		(unsigned long long)efx->membase_phys,
885
		efx->type->mem_map_size, efx->membase);
886 887 888 889

	return 0;

 fail4:
890
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
891
 fail3:
892
	efx->membase_phys = 0;
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
	EFX_LOG(efx, "shutting down I/O\n");

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
909
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
910
		efx->membase_phys = 0;
911 912 913 914 915
	}

	pci_disable_device(efx->pci_dev);
}

916 917 918 919 920
/* Get number of RX queues wanted.  Return number of online CPU
 * packages in the expectation that an IRQ balancer will spread
 * interrupts across them. */
static int efx_wanted_rx_queues(void)
{
R
Rusty Russell 已提交
921
	cpumask_var_t core_mask;
922 923 924
	int count;
	int cpu;

925
	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
R
Rusty Russell 已提交
926
		printk(KERN_WARNING
927
		       "sfc: RSS disabled due to allocation failure\n");
R
Rusty Russell 已提交
928 929 930
		return 1;
	}

931 932
	count = 0;
	for_each_online_cpu(cpu) {
R
Rusty Russell 已提交
933
		if (!cpumask_test_cpu(cpu, core_mask)) {
934
			++count;
R
Rusty Russell 已提交
935
			cpumask_or(core_mask, core_mask,
936
				   topology_core_cpumask(cpu));
937 938 939
		}
	}

R
Rusty Russell 已提交
940
	free_cpumask_var(core_mask);
941 942 943 944 945 946
	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
947 948
static void efx_probe_interrupts(struct efx_nic *efx)
{
949 950
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
951 952 953
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
954 955
		struct msix_entry xentries[EFX_MAX_CHANNELS];
		int wanted_ints;
956
		int rx_queues;
957

958 959 960 961
		/* We want one RX queue and interrupt per CPU package
		 * (or as specified by the rss_cpus module parameter).
		 * We will need one channel per interrupt.
		 */
962 963 964
		rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
		wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
		wanted_ints = min(wanted_ints, max_channels);
965

966
		for (i = 0; i < wanted_ints; i++)
967
			xentries[i].entry = i;
968
		rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
969
		if (rc > 0) {
970 971 972 973 974
			EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
				" available (%d < %d).\n", rc, wanted_ints);
			EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
			EFX_BUG_ON_PARANOID(rc >= wanted_ints);
			wanted_ints = rc;
975
			rc = pci_enable_msix(efx->pci_dev, xentries,
976
					     wanted_ints);
977 978 979
		}

		if (rc == 0) {
980 981 982
			efx->n_rx_queues = min(rx_queues, wanted_ints);
			efx->n_channels = wanted_ints;
			for (i = 0; i < wanted_ints; i++)
983 984 985 986 987 988 989 990 991 992
				efx->channel[i].irq = xentries[i].vector;
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			EFX_ERR(efx, "could not enable MSI-X\n");
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
993
		efx->n_rx_queues = 1;
994
		efx->n_channels = 1;
995 996 997 998 999 1000 1001 1002 1003 1004 1005
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
			efx->channel[0].irq = efx->pci_dev->irq;
		} else {
			EFX_ERR(efx, "could not enable MSI\n");
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1006
		efx->n_rx_queues = 1;
1007
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1008 1009 1010 1011 1012 1013 1014 1015 1016
		efx->legacy_irq = efx->pci_dev->irq;
	}
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1017
	efx_for_each_channel(channel, efx)
1018 1019 1020 1021 1022 1023 1024 1025
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1026
static void efx_set_channels(struct efx_nic *efx)
1027 1028 1029 1030
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

1031
	efx_for_each_tx_queue(tx_queue, efx) {
1032 1033
		if (separate_tx_channels)
			tx_queue->channel = &efx->channel[efx->n_channels-1];
1034 1035 1036 1037
		else
			tx_queue->channel = &efx->channel[0];
		tx_queue->channel->used_flags |= EFX_USED_BY_TX;
	}
1038

1039 1040 1041
	efx_for_each_rx_queue(rx_queue, efx) {
		rx_queue->channel = &efx->channel[rx_queue->queue];
		rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	}
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "creating NIC\n");

	/* Carry out hardware-type specific initialisation */
	rc = falcon_probe_nic(efx);
	if (rc)
		return rc;

	/* Determine the number of channels and RX queues by trying to hook
	 * in MSI-X interrupts. */
	efx_probe_interrupts(efx);

1060
	efx_set_channels(efx);
1061 1062

	/* Initialise the interrupt moderation settings */
1063
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

	return 0;
}

static void efx_remove_nic(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying NIC\n");

	efx_remove_interrupts(efx);
	falcon_remove_nic(efx);
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Create NIC */
	rc = efx_probe_nic(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create NIC\n");
		goto fail1;
	}

	/* Create port */
	rc = efx_probe_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create port\n");
		goto fail2;
	}

	/* Create channels */
	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			EFX_ERR(efx, "failed to create channel %d\n",
				channel->channel);
			goto fail3;
		}
	}
1110
	efx_set_channel_names(efx);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

	return 0;

 fail3:
	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1141
	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1142 1143 1144 1145 1146
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);
1147 1148
	if (efx_dev_registered(efx))
		efx_wake_queue(efx);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

	efx_for_each_channel(channel, efx)
		efx_start_channel(channel);

	falcon_enable_interrupts(efx);

	/* Start hardware monitor if we're in RUNNING */
	if (efx->state == STATE_RUNNING)
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1159 1160

	falcon_start_nic_stats(efx);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;

	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);

	/* Ensure that all RX slow refills are complete. */
1174
	efx_for_each_rx_queue(rx_queue, efx)
1175 1176 1177
		cancel_delayed_work_sync(&rx_queue->work);

	/* Stop scheduled port reconfigurations */
1178 1179
	cancel_work_sync(&efx->mac_work);
	cancel_work_sync(&efx->phy_work);
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1198 1199
	falcon_stop_nic_stats(efx);

1200 1201 1202 1203
	/* Disable interrupts and wait for ISR to complete */
	falcon_disable_interrupts(efx);
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
1204
	efx_for_each_channel(channel, efx) {
1205 1206
		if (channel->irq)
			synchronize_irq(channel->irq);
1207
	}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

1218
	/* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1219 1220 1221 1222
	efx_flush_all(efx);

	/* Isolate the MAC from the TX and RX engines, so that queue
	 * flushes will complete in a timely fashion. */
1223 1224
	falcon_deconfigure_mac_wrapper(efx);
	msleep(10); /* Let the Rx FIFO drain */
1225 1226 1227 1228
	falcon_drain_tx_fifo(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1229
	if (efx_dev_registered(efx)) {
1230
		efx_stop_queue(efx);
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		netif_tx_lock_bh(efx->net_dev);
		netif_tx_unlock_bh(efx->net_dev);
	}
}

static void efx_remove_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1252 1253 1254 1255 1256 1257 1258 1259 1260
static unsigned irq_mod_ticks(int usecs, int resolution)
{
	if (usecs <= 0)
		return 0; /* cannot receive interrupts ahead of time :-) */
	if (usecs < resolution)
		return 1; /* never round down to 0 */
	return usecs / resolution;
}

1261
/* Set interrupt moderation parameters */
1262 1263
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
			     bool rx_adaptive)
1264 1265 1266
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1267 1268
	unsigned tx_ticks = irq_mod_ticks(tx_usecs, FALCON_IRQ_MOD_RESOLUTION);
	unsigned rx_ticks = irq_mod_ticks(rx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1269 1270 1271 1272

	EFX_ASSERT_RESET_SERIALISED(efx);

	efx_for_each_tx_queue(tx_queue, efx)
1273
		tx_queue->channel->irq_moderation = tx_ticks;
1274

1275
	efx->irq_rx_adaptive = rx_adaptive;
1276
	efx->irq_rx_moderation = rx_ticks;
1277
	efx_for_each_rx_queue(rx_queue, efx)
1278
		rx_queue->channel->irq_moderation = rx_ticks;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
}

/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

/* Run periodically off the general workqueue. Serialised against
 * efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

	EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
		  raw_smp_processor_id());

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
	 * most of the work of check_hw() anyway. */
1300 1301 1302 1303
	if (!mutex_trylock(&efx->mac_lock))
		goto out_requeue;
	if (!efx->port_enabled)
		goto out_unlock;
1304
	falcon_monitor(efx);
1305

1306
out_unlock:
1307
	mutex_unlock(&efx->mac_lock);
1308
out_requeue:
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1324
	struct efx_nic *efx = netdev_priv(net_dev);
1325
	struct mii_ioctl_data *data = if_mii(ifr);
1326 1327 1328

	EFX_ASSERT_RESET_SERIALISED(efx);

1329 1330 1331 1332 1333 1334
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

static int efx_init_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1349 1350
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1351 1352 1353 1354 1355 1356 1357 1358 1359
	}
	return 0;
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
1360 1361
		if (channel->napi_dev)
			netif_napi_del(&channel->napi_str);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
		channel->napi_dev = NULL;
	}
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1380
	struct efx_nic *efx = netdev_priv(net_dev);
1381 1382
	struct efx_channel *channel;

1383
	efx_for_each_channel(channel, efx)
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1398
	struct efx_nic *efx = netdev_priv(net_dev);
1399 1400 1401 1402 1403
	EFX_ASSERT_RESET_SERIALISED(efx);

	EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

1404 1405
	if (efx->state == STATE_DISABLED)
		return -EIO;
1406 1407 1408
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1419
	struct efx_nic *efx = netdev_priv(net_dev);
1420 1421 1422 1423

	EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

1424 1425 1426 1427 1428 1429
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
		efx_fini_channels(efx);
		efx_init_channels(efx);
	}
1430 1431 1432 1433

	return 0;
}

1434
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1435 1436
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
{
1437
	struct efx_nic *efx = netdev_priv(net_dev);
1438 1439 1440
	struct efx_mac_stats *mac_stats = &efx->mac_stats;
	struct net_device_stats *stats = &net_dev->stats;

1441 1442 1443
	spin_lock_bh(&efx->stats_lock);
	falcon_update_nic_stats(efx);
	spin_unlock_bh(&efx->stats_lock);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_over_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    stats->rx_fifo_errors +
			    stats->rx_missed_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1476
	struct efx_nic *efx = netdev_priv(net_dev);
1477

1478 1479 1480
	EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
		" resetting channels\n",
		atomic_read(&efx->netif_stop_count), efx->port_enabled);
1481

1482
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1483 1484 1485 1486 1487 1488
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1489
	struct efx_nic *efx = netdev_priv(net_dev);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	int rc = 0;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

	EFX_LOG(efx, "changing MTU to %d\n", new_mtu);

	efx_fini_channels(efx);
	net_dev->mtu = new_mtu;
1503
	efx_init_channels(efx);
1504 1505 1506 1507 1508 1509 1510

	efx_start_all(efx);
	return rc;
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1511
	struct efx_nic *efx = netdev_priv(net_dev);
1512 1513 1514 1515 1516 1517
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
J
Johannes Berg 已提交
1518 1519
		EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
			new_addr);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
	efx_reconfigure_port(efx);

	return 0;
}

1531
/* Context: netif_addr_lock held, BHs disabled. */
1532 1533
static void efx_set_multicast_list(struct net_device *net_dev)
{
1534
	struct efx_nic *efx = netdev_priv(net_dev);
1535 1536
	struct dev_mc_list *mc_list = net_dev->mc_list;
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1537 1538
	bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
	bool changed = (efx->promiscuous != promiscuous);
1539 1540 1541 1542
	u32 crc;
	int bit;
	int i;

1543
	efx->promiscuous = promiscuous;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

	/* Build multicast hash table */
	if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
		for (i = 0; i < net_dev->mc_count; i++) {
			crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
			mc_list = mc_list->next;
		}
	}

1558 1559 1560 1561 1562
	if (!efx->port_enabled)
		/* Delay pushing settings until efx_start_port() */
		return;

	if (changed)
1563
		queue_work(efx->workqueue, &efx->phy_work);
1564

1565 1566 1567 1568
	/* Create and activate new global multicast hash table */
	falcon_set_multicast_hash(efx);
}

S
Stephen Hemminger 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats		= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_multicast_list = efx_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
};

1585 1586 1587 1588 1589 1590 1591
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1592 1593 1594
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1595
	struct net_device *net_dev = ptr;
1596

1597 1598 1599
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1600 1601 1602 1603 1604 1605 1606 1607

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
1608 1609 1610 1611 1612 1613 1614 1615
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1616 1617 1618 1619 1620 1621 1622
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
1623
	net_dev->netdev_ops = &efx_netdev_ops;
1624 1625 1626 1627
	SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

	/* Clear MAC statistics */
1628
	efx->mac_op->update_stats(efx);
1629 1630
	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));

1631
	rtnl_lock();
1632 1633 1634 1635

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
1636
	efx_update_name(efx);
1637 1638 1639 1640 1641 1642 1643 1644

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(efx->net_dev);

1645
	rtnl_unlock();
1646

B
Ben Hutchings 已提交
1647 1648 1649 1650 1651 1652
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
		EFX_ERR(efx, "failed to init net dev attributes\n");
		goto fail_registered;
	}

1653
	return 0;
B
Ben Hutchings 已提交
1654

1655 1656 1657 1658 1659
fail_locked:
	rtnl_unlock();
	EFX_ERR(efx, "could not register net dev\n");
	return rc;

B
Ben Hutchings 已提交
1660 1661 1662
fail_registered:
	unregister_netdev(net_dev);
	return rc;
1663 1664 1665 1666 1667 1668 1669 1670 1671
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

1672
	BUG_ON(netdev_priv(efx->net_dev) != efx);
1673 1674 1675 1676 1677 1678 1679

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
	efx_for_each_tx_queue(tx_queue, efx)
		efx_release_tx_buffers(tx_queue);

1680
	if (efx_dev_registered(efx)) {
1681
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
B
Ben Hutchings 已提交
1682
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		unregister_netdev(efx->net_dev);
	}
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
1693 1694
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
1695 1696
void efx_reset_down(struct efx_nic *efx, enum reset_type method,
		    struct ethtool_cmd *ecmd)
1697 1698 1699
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
1700 1701
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);
1702
	mutex_lock(&efx->spi_lock);
B
Ben Hutchings 已提交
1703

1704
	efx->phy_op->get_settings(efx, ecmd);
1705 1706

	efx_fini_channels(efx);
1707 1708
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
1709 1710
}

B
Ben Hutchings 已提交
1711 1712 1713 1714 1715
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
1716 1717
int efx_reset_up(struct efx_nic *efx, enum reset_type method,
		 struct ethtool_cmd *ecmd, bool ok)
1718 1719 1720
{
	int rc;

B
Ben Hutchings 已提交
1721
	EFX_ASSERT_RESET_SERIALISED(efx);
1722

B
Ben Hutchings 已提交
1723
	rc = falcon_init_nic(efx);
1724
	if (rc) {
B
Ben Hutchings 已提交
1725 1726
		EFX_ERR(efx, "failed to initialise NIC\n");
		ok = false;
1727 1728
	}

1729 1730 1731 1732 1733
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
		if (ok) {
			rc = efx->phy_op->init(efx);
			if (rc)
				ok = false;
1734 1735
		}
		if (!ok)
1736 1737 1738
			efx->port_initialized = false;
	}

B
Ben Hutchings 已提交
1739 1740
	if (ok) {
		efx_init_channels(efx);
1741

1742
		if (efx->phy_op->set_settings(efx, ecmd))
B
Ben Hutchings 已提交
1743 1744 1745
			EFX_ERR(efx, "could not restore PHY settings\n");
	}

1746
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
1747 1748
	mutex_unlock(&efx->mac_lock);

1749
	if (ok)
B
Ben Hutchings 已提交
1750
		efx_start_all(efx);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	return rc;
}

/* Reset the NIC as transparently as possible. Do not reset the PHY
 * Note that the reset may fail, in which case the card will be left
 * in a most-probably-unusable state.
 *
 * This function will sleep.  You cannot reset from within an atomic
 * state; use efx_schedule_reset() instead.
 *
 * Grabs the rtnl_lock.
 */
static int efx_reset(struct efx_nic *efx)
{
	struct ethtool_cmd ecmd;
	enum reset_type method = efx->reset_pending;
1767
	int rc = 0;
1768 1769 1770 1771 1772 1773 1774 1775

	/* Serialise with kernel interfaces */
	rtnl_lock();

	/* If we're not RUNNING then don't reset. Leave the reset_pending
	 * flag set so that efx_pci_probe_main will be retried */
	if (efx->state != STATE_RUNNING) {
		EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1776
		goto out_unlock;
1777 1778
	}

1779
	EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
1780

1781
	efx_reset_down(efx, method, &ecmd);
1782 1783 1784 1785

	rc = falcon_reset_hw(efx, method);
	if (rc) {
		EFX_ERR(efx, "failed to reset hardware\n");
1786
		goto out_disable;
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	}

	/* Allow resets to be rescheduled. */
	efx->reset_pending = RESET_TYPE_NONE;

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

	/* Leave device stopped if necessary */
	if (method == RESET_TYPE_DISABLE) {
1800
		efx_reset_up(efx, method, &ecmd, false);
1801
		rc = -EIO;
1802
	} else {
1803
		rc = efx_reset_up(efx, method, &ecmd, true);
1804 1805
	}

1806 1807 1808 1809 1810 1811 1812 1813
out_disable:
	if (rc) {
		EFX_ERR(efx, "has been disabled\n");
		efx->state = STATE_DISABLED;
		dev_close(efx->net_dev);
	} else {
		EFX_LOG(efx, "reset complete\n");
	}
1814

1815
out_unlock:
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	rtnl_unlock();
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
	struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);

	efx_reset(nic);
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	if (efx->reset_pending != RESET_TYPE_NONE) {
		EFX_INFO(efx, "quenching already scheduled reset\n");
		return;
	}

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
		break;
	case RESET_TYPE_RX_RECOVERY:
	case RESET_TYPE_RX_DESC_FETCH:
	case RESET_TYPE_TX_DESC_FETCH:
	case RESET_TYPE_TX_SKIP:
		method = RESET_TYPE_INVISIBLE;
		break;
	default:
		method = RESET_TYPE_ALL;
		break;
	}

	if (method != type)
1858 1859
		EFX_LOG(efx, "scheduling %s reset for %s\n",
			RESET_TYPE(method), RESET_TYPE(type));
1860
	else
1861
		EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
1862 1863 1864

	efx->reset_pending = method;

1865
	queue_work(reset_workqueue, &efx->reset_work);
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
static struct pci_device_id efx_pci_table[] __devinitdata = {
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
	 .driver_data = (unsigned long) &falcon_a_nic_type},
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
	 .driver_data = (unsigned long) &falcon_b_nic_type},
	{0}			/* end of list */
};

/**************************************************************************
 *
1885
 * Dummy PHY/MAC operations
1886
 *
1887
 * Can be used for some unimplemented operations
1888 1889 1890 1891 1892 1893 1894 1895 1896
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
1897 1898 1899
void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
}
1900

1901 1902 1903 1904
static struct efx_mac_operations efx_dummy_mac_operations = {
	.reconfigure	= efx_port_dummy_op_void,
};

1905 1906 1907
static struct efx_phy_operations efx_dummy_phy_operations = {
	.init		 = efx_port_dummy_op_int,
	.reconfigure	 = efx_port_dummy_op_void,
1908
	.poll		 = efx_port_dummy_op_void,
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	.fini		 = efx_port_dummy_op_void,
	.clear_interrupt = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1928
	int i;
1929 1930 1931 1932 1933

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
	spin_lock_init(&efx->phy_lock);
1934
	mutex_init(&efx->spi_lock);
1935 1936 1937 1938 1939 1940 1941 1942
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
	efx->state = STATE_INIT;
	efx->reset_pending = RESET_TYPE_NONE;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
1943
	efx->rx_checksum_enabled = true;
1944 1945 1946
	spin_lock_init(&efx->netif_stop_lock);
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
1947
	efx->mac_op = &efx_dummy_mac_operations;
1948
	efx->phy_op = &efx_dummy_phy_operations;
1949
	efx->mdio.dev = net_dev;
1950 1951
	INIT_WORK(&efx->phy_work, efx_phy_work);
	INIT_WORK(&efx->mac_work, efx_mac_work);
1952 1953 1954 1955 1956 1957
	atomic_set(&efx->netif_stop_count, 1);

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
		channel = &efx->channel[i];
		channel->efx = efx;
		channel->channel = i;
1958
		channel->work_pending = false;
1959
	}
1960
	for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1961 1962 1963 1964 1965
		tx_queue = &efx->tx_queue[i];
		tx_queue->efx = efx;
		tx_queue->queue = i;
		tx_queue->buffer = NULL;
		tx_queue->channel = &efx->channel[0]; /* for safety */
B
Ben Hutchings 已提交
1966
		tx_queue->tso_headers_free = NULL;
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	}
	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
		rx_queue = &efx->rx_queue[i];
		rx_queue->efx = efx;
		rx_queue->queue = i;
		rx_queue->channel = &efx->channel[0]; /* for safety */
		rx_queue->buffer = NULL;
		spin_lock_init(&rx_queue->add_lock);
		INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
	}

	efx->type = type;

	/* As close as we can get to guaranteeing that we don't overflow */
1981 1982
	BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);

1983 1984 1985 1986 1987 1988
	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

1989 1990 1991 1992
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1993 1994
	if (!efx->workqueue)
		return -ENOMEM;
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	return 0;
}

static void efx_fini_struct(struct efx_nic *efx)
{
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2018
	falcon_fini_interrupt(efx);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	efx_fini_channels(efx);
	efx_fini_port(efx);
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	efx_unregister_netdev(efx);

2046 2047
	efx_mtd_remove(efx);

2048 2049 2050 2051
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2052
	cancel_work_sync(&efx->reset_work);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
	EFX_LOG(efx, "shutdown successful\n");

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

	rc = efx_init_napi(efx);
	if (rc)
		goto fail2;

	rc = falcon_init_nic(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise NIC\n");
2083
		goto fail3;
2084 2085 2086 2087 2088
	}

	rc = efx_init_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise port\n");
2089
		goto fail4;
2090 2091
	}

2092
	efx_init_channels(efx);
2093 2094 2095

	rc = falcon_init_interrupt(efx);
	if (rc)
2096
		goto fail5;
2097 2098 2099

	return 0;

2100
 fail5:
2101
	efx_fini_channels(efx);
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	efx_fini_port(efx);
 fail4:
 fail3:
	efx_fini_napi(efx);
 fail2:
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
	net_dev = alloc_etherdev(sizeof(*efx));
	if (!net_dev)
		return -ENOMEM;
B
Ben Hutchings 已提交
2133
	net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
B
Ben Hutchings 已提交
2134 2135
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
			      NETIF_F_GRO);
2136 2137
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2138
				   NETIF_F_HIGHDMA | NETIF_F_TSO);
2139
	efx = netdev_priv(net_dev);
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	pci_set_drvdata(pci_dev, efx);
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

	EFX_INFO(efx, "Solarflare Communications NIC detected\n");

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2161
		cancel_work_sync(&efx->reset_work);
2162

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
		if (rc == 0) {
			if (efx->reset_pending != RESET_TYPE_NONE) {
				/* If there was a scheduled reset during
				 * probe, the NIC is probably hosed anyway */
				efx_pci_remove_main(efx);
				rc = -EIO;
			} else {
				break;
			}
		}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
		/* Retry if a recoverably reset event has been scheduled */
		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
		    (efx->reset_pending != RESET_TYPE_ALL))
			goto fail3;

		efx->reset_pending = RESET_TYPE_NONE;
	}

	if (rc) {
		EFX_ERR(efx, "Could not reset NIC\n");
		goto fail4;
	}

2187 2188
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2189
	efx->state = STATE_RUNNING;
2190

2191 2192 2193 2194 2195
	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

	EFX_LOG(efx, "initialisation successful\n");
2196 2197 2198 2199

	rtnl_lock();
	efx_mtd_probe(efx); /* allowed to fail */
	rtnl_unlock();
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
	EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
	free_netdev(net_dev);
	return rc;
}

static struct pci_driver efx_pci_driver = {
	.name		= EFX_DRIVER_NAME,
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

	refill_workqueue = create_workqueue("sfc_refill");
	if (!refill_workqueue) {
		rc = -ENOMEM;
		goto err_refill;
	}
2247 2248 2249 2250 2251
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2252 2253 2254 2255 2256 2257 2258 2259

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2260 2261
	destroy_workqueue(reset_workqueue);
 err_reset:
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	destroy_workqueue(refill_workqueue);
 err_refill:
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2274
	destroy_workqueue(reset_workqueue);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	destroy_workqueue(refill_workqueue);
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
	      "Solarflare Communications");
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);