slub.c 101.1 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>
23
#include <linux/memory.h>
C
Christoph Lameter 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
70 71
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
72
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
73 74
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
75 76 77 78 79 80 81
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
82 83 84 85 86 87 88 89 90 91 92 93
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
94
 * 			freelist that allows lockless access to
95 96
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
97 98 99
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
100
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
101 102
 */

103 104 105 106 107 108 109 110
#define FROZEN (1 << PG_active)

#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif

111 112
static inline int SlabFrozen(struct page *page)
{
113
	return page->flags & FROZEN;
114 115 116 117
}

static inline void SetSlabFrozen(struct page *page)
{
118
	page->flags |= FROZEN;
119 120 121 122
}

static inline void ClearSlabFrozen(struct page *page)
{
123
	page->flags &= ~FROZEN;
124 125
}

126 127
static inline int SlabDebug(struct page *page)
{
128
	return page->flags & SLABDEBUG;
129 130 131 132
}

static inline void SetSlabDebug(struct page *page)
{
133
	page->flags |= SLABDEBUG;
134 135 136 137
}

static inline void ClearSlabDebug(struct page *page)
{
138
	page->flags &= ~SLABDEBUG;
139 140
}

C
Christoph Lameter 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

171 172 173 174
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
175
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
176

177 178 179 180 181 182 183
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
184 185
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
186

C
Christoph Lameter 已提交
187 188 189 190 191 192 193 194 195 196
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
197
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
198 199 200
#endif

#ifndef ARCH_SLAB_MINALIGN
201
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
202 203 204
#endif

/* Internal SLUB flags */
205 206
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
207 208
#define __KMALLOC_CACHE		0x20000000 /* objects freed using kfree */
#define __PAGE_ALLOC_FALLBACK	0x10000000 /* Allow fallback to page alloc */
C
Christoph Lameter 已提交
209

210 211 212 213 214
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
215 216 217 218 219 220 221 222 223
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
224
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
225 226 227 228 229
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
230
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
231

232 233 234 235 236 237 238 239 240 241 242 243
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
244
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
C
Christoph Lameter 已提交
245 246 247
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
248

C
Christoph Lameter 已提交
249
#else
250 251 252
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
253 254 255 256
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
	kfree(s);
}
257

C
Christoph Lameter 已提交
258 259
#endif

260 261 262 263 264 265 266
static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
	c->stat[si]++;
#endif
}

C
Christoph Lameter 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

285 286
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
287 288 289 290 291
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
292 293
}

C
Christoph Lameter 已提交
294
/* Verify that a pointer has an address that is valid within a slab page */
295 296 297 298 299
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

300
	if (!object)
301 302
		return 1;

303
	base = page_address(page);
304 305 306 307 308 309 310 311
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
336
	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
337 338 339 340 341 342 343

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

C
Christoph Lameter 已提交
344 345 346 347
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
348 349 350
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
351
static int slub_debug;
352
#endif
C
Christoph Lameter 已提交
353 354 355

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
369
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
370 371
			newline = 0;
		}
P
Pekka Enberg 已提交
372
		printk(KERN_CONT " %02x", addr[i]);
C
Christoph Lameter 已提交
373 374 375
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
P
Pekka Enberg 已提交
376
			printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
377 378 379 380 381 382
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
P
Pekka Enberg 已提交
383
			printk(KERN_CONT "   ");
C
Christoph Lameter 已提交
384 385 386
			ascii[i] = ' ';
			i++;
		}
P
Pekka Enberg 已提交
387
		printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
426 427 428 429 430
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
431 432 433 434 435 436 437
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

438
	printk(KERN_ERR "INFO: %s in ", s);
C
Christoph Lameter 已提交
439
	__print_symbol("%s", (unsigned long)t->addr);
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
		page, page->inuse, page->freelist, page->flags);

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
472 473
}

474 475 476 477 478 479 480 481 482 483 484 485
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
486 487
{
	unsigned int off;	/* Offset of last byte */
488
	u8 *addr = page_address(page);
489 490 491 492 493 494 495 496 497 498 499 500

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

	print_section("Object", p, min(s->objsize, 128));
C
Christoph Lameter 已提交
501 502 503 504 505 506 507 508 509 510

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

511
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
512 513 514 515
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
516 517 518
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
519 520 521 522 523
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
524 525
	slab_bug(s, reason);
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
526 527
}

528
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
529 530 531 532
{
	va_list args;
	char buf[100];

533 534
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
535
	va_end(args);
536 537
	slab_bug(s, fmt);
	print_page_info(page);
C
Christoph Lameter 已提交
538 539 540 541 542 543 544 545 546
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
P
Pekka Enberg 已提交
547
		p[s->objsize - 1] = POISON_END;
C
Christoph Lameter 已提交
548 549 550 551 552 553 554 555
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

556
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
557 558 559
{
	while (bytes) {
		if (*start != (u8)value)
560
			return start;
C
Christoph Lameter 已提交
561 562 563
		start++;
		bytes--;
	}
564 565 566 567 568 569 570 571 572 573 574 575
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
576
			u8 *start, unsigned int value, unsigned int bytes)
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
596 597 598 599 600 601 602 603 604
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
605
 *
C
Christoph Lameter 已提交
606 607 608 609 610
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
611 612 613
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
614 615 616 617
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
618 619
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
620 621
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
622
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
623
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
624 625 626
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
627 628
 *
 * object + s->size
C
Christoph Lameter 已提交
629
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
630
 *
C
Christoph Lameter 已提交
631 632
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

651 652
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
653 654 655 656
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
657 658 659 660 661
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
662 663 664 665

	if (!(s->flags & SLAB_POISON))
		return 1;

666
	start = page_address(page);
667
	end = start + (PAGE_SIZE << s->order);
C
Christoph Lameter 已提交
668
	length = s->objects * s->size;
669
	remainder = end - (start + length);
C
Christoph Lameter 已提交
670 671 672
	if (!remainder)
		return 1;

673 674 675 676 677 678 679 680 681 682 683
	fault = check_bytes(start + length, POISON_INUSE, remainder);
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
	print_section("Padding", start, length);

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
684 685 686 687 688 689 690 691 692 693 694 695
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

696 697
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
698 699
			return 0;
	} else {
I
Ingo Molnar 已提交
700 701 702 703
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
			check_bytes_and_report(s, page, p, "Alignment padding",
				endobject, POISON_INUSE, s->inuse - s->objsize);
		}
C
Christoph Lameter 已提交
704 705 706 707
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
708 709 710
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
P
Pekka Enberg 已提交
711
				p + s->objsize - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
732
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
733
		 */
734
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
735 736 737 738 739 740 741 742 743 744
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
745
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
746 747 748
		return 0;
	}
	if (page->inuse > s->objects) {
749 750
		slab_err(s, page, "inuse %u > max %u",
			s->name, page->inuse, s->objects);
C
Christoph Lameter 已提交
751 752 753 754 755 756 757 758
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
759 760
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
761 762 763 764 765 766 767
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

768
	while (fp && nr <= s->objects) {
C
Christoph Lameter 已提交
769 770 771 772 773 774
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
775
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
776 777
				break;
			} else {
778
				slab_err(s, page, "Freepointer corrupt");
779
				page->freelist = NULL;
C
Christoph Lameter 已提交
780
				page->inuse = s->objects;
781
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
782 783 784 785 786 787 788 789 790 791
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
792
		slab_err(s, page, "Wrong object count. Counter is %d but "
793
			"counted were %d", page->inuse, s->objects - nr);
C
Christoph Lameter 已提交
794
		page->inuse = s->objects - nr;
795
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
796 797 798 799
	}
	return search == NULL;
}

C
Christoph Lameter 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

816
/*
C
Christoph Lameter 已提交
817
 * Tracking of fully allocated slabs for debugging purposes.
818
 */
C
Christoph Lameter 已提交
819
static void add_full(struct kmem_cache_node *n, struct page *page)
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

C
Christoph Lameter 已提交
840 841 842 843 844 845 846 847 848 849 850 851
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
852 853 854 855
{
	if (!check_slab(s, page))
		goto bad;

856
	if (!on_freelist(s, page, object)) {
857
		object_err(s, page, object, "Object already allocated");
858
		goto bad;
C
Christoph Lameter 已提交
859 860 861 862
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
863
		goto bad;
C
Christoph Lameter 已提交
864 865
	}

866
	if (!check_object(s, page, object, 0))
C
Christoph Lameter 已提交
867 868
		goto bad;

C
Christoph Lameter 已提交
869 870 871 872 873
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
874
	return 1;
C
Christoph Lameter 已提交
875

C
Christoph Lameter 已提交
876 877 878 879 880
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
881
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
882
		 */
883
		slab_fix(s, "Marking all objects used");
C
Christoph Lameter 已提交
884
		page->inuse = s->objects;
885
		page->freelist = NULL;
C
Christoph Lameter 已提交
886 887 888 889
	}
	return 0;
}

C
Christoph Lameter 已提交
890 891
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
892 893 894 895 896
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
897
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
898 899 900 901
		goto fail;
	}

	if (on_freelist(s, page, object)) {
902
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
903 904 905 906 907 908 909
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
I
Ingo Molnar 已提交
910
		if (!PageSlab(page)) {
911 912
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
I
Ingo Molnar 已提交
913
		} else if (!page->slab) {
C
Christoph Lameter 已提交
914
			printk(KERN_ERR
915
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
916
						object);
917
			dump_stack();
P
Pekka Enberg 已提交
918
		} else
919 920
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
921 922
		goto fail;
	}
C
Christoph Lameter 已提交
923 924

	/* Special debug activities for freeing objects */
925
	if (!SlabFrozen(page) && !page->freelist)
C
Christoph Lameter 已提交
926 927 928 929 930
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
931
	return 1;
C
Christoph Lameter 已提交
932

C
Christoph Lameter 已提交
933
fail:
934
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
935 936 937
	return 0;
}

C
Christoph Lameter 已提交
938 939
static int __init setup_slub_debug(char *str)
{
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
964
	for (; *str && *str != ','; str++) {
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
983
				"unknown. skipped\n", *str);
984
		}
C
Christoph Lameter 已提交
985 986
	}

987
check_slabs:
C
Christoph Lameter 已提交
988 989
	if (*str == ',')
		slub_debug_slabs = str + 1;
990
out:
C
Christoph Lameter 已提交
991 992 993 994 995
	return 1;
}

__setup("slub_debug", setup_slub_debug);

996 997
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
998
	void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
999 1000
{
	/*
1001
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1002
	 */
1003 1004 1005
	if (slub_debug && (!slub_debug_slabs ||
	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
			flags |= slub_debug;
1006 1007

	return flags;
C
Christoph Lameter 已提交
1008 1009
}
#else
C
Christoph Lameter 已提交
1010 1011
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1012

C
Christoph Lameter 已提交
1013 1014
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1015

C
Christoph Lameter 已提交
1016 1017
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1018 1019 1020 1021 1022

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1023
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1024 1025
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1026
	void (*ctor)(struct kmem_cache *, void *))
1027 1028 1029
{
	return flags;
}
C
Christoph Lameter 已提交
1030 1031
#define slub_debug 0
#endif
C
Christoph Lameter 已提交
1032 1033 1034 1035 1036
/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1037
	struct page *page;
C
Christoph Lameter 已提交
1038 1039
	int pages = 1 << s->order;

1040
	flags |= s->allocflags;
1041

C
Christoph Lameter 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1061
	setup_object_debug(s, page, object);
1062
	if (unlikely(s->ctor))
1063
		s->ctor(s, object);
C
Christoph Lameter 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1074
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1075

C
Christoph Lameter 已提交
1076 1077
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1088
		SetSlabDebug(page);
C
Christoph Lameter 已提交
1089 1090 1091 1092 1093 1094 1095

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
1096
	for_each_object(p, s, start) {
C
Christoph Lameter 已提交
1097 1098 1099 1100 1101
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1102
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	page->freelist = start;
	page->inuse = 0;
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

1114
	if (unlikely(SlabDebug(page))) {
C
Christoph Lameter 已提交
1115 1116 1117
		void *p;

		slab_pad_check(s, page);
1118
		for_each_object(p, s, page_address(page))
C
Christoph Lameter 已提交
1119
			check_object(s, page, p, 0);
1120
		ClearSlabDebug(page);
C
Christoph Lameter 已提交
1121 1122 1123 1124 1125
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1126
		-pages);
C
Christoph Lameter 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
1158
	__ClearPageSlab(page);
C
Christoph Lameter 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
N
Nick Piggin 已提交
1172
	__bit_spin_unlock(PG_locked, &page->flags);
C
Christoph Lameter 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
1186 1187
static void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
C
Christoph Lameter 已提交
1188
{
C
Christoph Lameter 已提交
1189 1190
	spin_lock(&n->list_lock);
	n->nr_partial++;
1191 1192 1193 1194
	if (tail)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1210
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1211
 *
C
Christoph Lameter 已提交
1212
 * Must hold list_lock.
C
Christoph Lameter 已提交
1213
 */
1214
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1215 1216 1217 1218
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1219
		SetSlabFrozen(page);
C
Christoph Lameter 已提交
1220 1221 1222 1223 1224 1225
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1226
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1227 1228 1229 1230 1231 1232 1233 1234
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1235 1236
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1237 1238 1239 1240 1241 1242
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1243
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1244 1245 1246 1247 1248 1249 1250 1251
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1252
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
C
Christoph Lameter 已提交
1262 1263 1264 1265
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1266
	 *
C
Christoph Lameter 已提交
1267 1268 1269 1270
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1271
	 *
C
Christoph Lameter 已提交
1272
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1273 1274 1275 1276 1277
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1278
	 */
1279 1280
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1281 1282
		return NULL;

I
Ingo Molnar 已提交
1283 1284
	zonelist = &NODE_DATA(
		slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
C
Christoph Lameter 已提交
1285 1286 1287 1288 1289 1290
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
C
Christoph Lameter 已提交
1291
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1323
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
C
Christoph Lameter 已提交
1324
{
C
Christoph Lameter 已提交
1325
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1326
	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1327

1328
	ClearSlabFrozen(page);
C
Christoph Lameter 已提交
1329
	if (page->inuse) {
C
Christoph Lameter 已提交
1330

1331
		if (page->freelist) {
1332
			add_partial(n, page, tail);
1333 1334 1335 1336 1337 1338
			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
		} else {
			stat(c, DEACTIVATE_FULL);
			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
				add_full(n, page);
		}
C
Christoph Lameter 已提交
1339 1340
		slab_unlock(page);
	} else {
1341
		stat(c, DEACTIVATE_EMPTY);
C
Christoph Lameter 已提交
1342 1343
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1344 1345 1346
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
C
Christoph Lameter 已提交
1347 1348 1349 1350 1351
			 * so that the others get filled first. That way the
			 * size of the partial list stays small.
			 *
			 * kmem_cache_shrink can reclaim any empty slabs from the
			 * partial list.
C
Christoph Lameter 已提交
1352
			 */
1353
			add_partial(n, page, 1);
C
Christoph Lameter 已提交
1354 1355 1356
			slab_unlock(page);
		} else {
			slab_unlock(page);
1357
			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
C
Christoph Lameter 已提交
1358 1359
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1360 1361 1362 1363 1364 1365
	}
}

/*
 * Remove the cpu slab
 */
1366
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1367
{
1368
	struct page *page = c->page;
1369
	int tail = 1;
1370 1371 1372

	if (c->freelist)
		stat(c, DEACTIVATE_REMOTE_FREES);
1373
	/*
C
Christoph Lameter 已提交
1374
	 * Merge cpu freelist into slab freelist. Typically we get here
1375 1376 1377
	 * because both freelists are empty. So this is unlikely
	 * to occur.
	 */
1378
	while (unlikely(c->freelist)) {
1379 1380
		void **object;

1381 1382
		tail = 0;	/* Hot objects. Put the slab first */

1383
		/* Retrieve object from cpu_freelist */
1384
		object = c->freelist;
1385
		c->freelist = c->freelist[c->offset];
1386 1387

		/* And put onto the regular freelist */
1388
		object[c->offset] = page->freelist;
1389 1390 1391
		page->freelist = object;
		page->inuse--;
	}
1392
	c->page = NULL;
1393
	unfreeze_slab(s, page, tail);
C
Christoph Lameter 已提交
1394 1395
}

1396
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1397
{
1398
	stat(c, CPUSLAB_FLUSH);
1399 1400
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1401 1402 1403 1404
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
1405
 *
C
Christoph Lameter 已提交
1406 1407
 * Called from IPI handler with interrupts disabled.
 */
1408
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1409
{
1410
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1411

1412 1413
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1414 1415 1416 1417 1418 1419
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1420
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1449
/*
1450 1451 1452 1453
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1454
 *
1455 1456 1457
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1458
 *
1459 1460 1461
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1462
 *
1463
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
1464 1465
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
1466
 */
1467
static void *__slab_alloc(struct kmem_cache *s,
1468
		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1469 1470
{
	void **object;
1471
	struct page *new;
C
Christoph Lameter 已提交
1472

1473
	if (!c->page)
C
Christoph Lameter 已提交
1474 1475
		goto new_slab;

1476 1477
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1478
		goto another_slab;
C
Christoph Lameter 已提交
1479

1480
	stat(c, ALLOC_REFILL);
C
Christoph Lameter 已提交
1481

1482
load_freelist:
1483
	object = c->page->freelist;
1484
	if (unlikely(!object))
C
Christoph Lameter 已提交
1485
		goto another_slab;
1486
	if (unlikely(SlabDebug(c->page)))
C
Christoph Lameter 已提交
1487 1488
		goto debug;

1489
	c->freelist = object[c->offset];
1490
	c->page->inuse = s->objects;
1491
	c->page->freelist = NULL;
1492
	c->node = page_to_nid(c->page);
1493
unlock_out:
1494
	slab_unlock(c->page);
1495
	stat(c, ALLOC_SLOWPATH);
C
Christoph Lameter 已提交
1496 1497 1498
	return object;

another_slab:
1499
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1500 1501

new_slab:
1502 1503 1504
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1505
		stat(c, ALLOC_FROM_PARTIAL);
1506
		goto load_freelist;
C
Christoph Lameter 已提交
1507 1508
	}

1509 1510 1511
	if (gfpflags & __GFP_WAIT)
		local_irq_enable();

1512
	new = new_slab(s, gfpflags, node);
1513 1514 1515 1516

	if (gfpflags & __GFP_WAIT)
		local_irq_disable();

1517 1518
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
1519
		stat(c, ALLOC_SLAB);
1520
		if (c->page)
1521 1522 1523 1524
			flush_slab(s, c);
		slab_lock(new);
		SetSlabFrozen(new);
		c->page = new;
1525
		goto load_freelist;
C
Christoph Lameter 已提交
1526
	}
1527

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	/*
	 * No memory available.
	 *
	 * If the slab uses higher order allocs but the object is
	 * smaller than a page size then we can fallback in emergencies
	 * to the page allocator via kmalloc_large. The page allocator may
	 * have failed to obtain a higher order page and we can try to
	 * allocate a single page if the object fits into a single page.
	 * That is only possible if certain conditions are met that are being
	 * checked when a slab is created.
	 */
	if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
		return kmalloc_large(s->objsize, gfpflags);

	return NULL;
C
Christoph Lameter 已提交
1543
debug:
1544
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1545
		goto another_slab;
1546

1547
	c->page->inuse++;
1548
	c->page->freelist = object[c->offset];
1549
	c->node = -1;
1550
	goto unlock_out;
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
P
Pekka Enberg 已提交
1563
static __always_inline void *slab_alloc(struct kmem_cache *s,
1564
		gfp_t gfpflags, int node, void *addr)
1565 1566
{
	void **object;
1567
	struct kmem_cache_cpu *c;
1568 1569
	unsigned long flags;

1570
	local_irq_save(flags);
1571
	c = get_cpu_slab(s, smp_processor_id());
1572
	if (unlikely(!c->freelist || !node_match(c, node)))
1573

1574
		object = __slab_alloc(s, gfpflags, node, addr, c);
1575 1576

	else {
1577
		object = c->freelist;
1578
		c->freelist = object[c->offset];
1579
		stat(c, ALLOC_FASTPATH);
1580 1581
	}
	local_irq_restore(flags);
1582 1583

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1584
		memset(object, 0, c->objsize);
1585

1586
	return object;
C
Christoph Lameter 已提交
1587 1588 1589 1590
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1591
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1592 1593 1594 1595 1596 1597
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1598
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1599 1600 1601 1602 1603
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1604 1605
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1606
 *
1607 1608 1609
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1610
 */
1611
static void __slab_free(struct kmem_cache *s, struct page *page,
1612
				void *x, void *addr, unsigned int offset)
C
Christoph Lameter 已提交
1613 1614 1615
{
	void *prior;
	void **object = (void *)x;
1616
	struct kmem_cache_cpu *c;
C
Christoph Lameter 已提交
1617

1618 1619
	c = get_cpu_slab(s, raw_smp_processor_id());
	stat(c, FREE_SLOWPATH);
C
Christoph Lameter 已提交
1620 1621
	slab_lock(page);

1622
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1623
		goto debug;
C
Christoph Lameter 已提交
1624

C
Christoph Lameter 已提交
1625
checks_ok:
1626
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1627 1628 1629
	page->freelist = object;
	page->inuse--;

1630 1631
	if (unlikely(SlabFrozen(page))) {
		stat(c, FREE_FROZEN);
C
Christoph Lameter 已提交
1632
		goto out_unlock;
1633
	}
C
Christoph Lameter 已提交
1634 1635 1636 1637 1638

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
C
Christoph Lameter 已提交
1639
	 * Objects left in the slab. If it was not on the partial list before
C
Christoph Lameter 已提交
1640 1641
	 * then add it.
	 */
1642
	if (unlikely(!prior)) {
1643
		add_partial(get_node(s, page_to_nid(page)), page, 1);
1644 1645
		stat(c, FREE_ADD_PARTIAL);
	}
C
Christoph Lameter 已提交
1646 1647 1648 1649 1650 1651

out_unlock:
	slab_unlock(page);
	return;

slab_empty:
1652
	if (prior) {
C
Christoph Lameter 已提交
1653
		/*
C
Christoph Lameter 已提交
1654
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1655 1656
		 */
		remove_partial(s, page);
1657 1658
		stat(c, FREE_REMOVE_PARTIAL);
	}
C
Christoph Lameter 已提交
1659
	slab_unlock(page);
1660
	stat(c, FREE_SLAB);
C
Christoph Lameter 已提交
1661 1662 1663 1664
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1665
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1666 1667
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1668 1669
}

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
1681
static __always_inline void slab_free(struct kmem_cache *s,
1682 1683 1684
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
1685
	struct kmem_cache_cpu *c;
1686 1687
	unsigned long flags;

1688
	local_irq_save(flags);
1689
	c = get_cpu_slab(s, smp_processor_id());
1690
	debug_check_no_locks_freed(object, c->objsize);
1691
	if (likely(page == c->page && c->node >= 0)) {
1692
		object[c->offset] = c->freelist;
1693
		c->freelist = object;
1694
		stat(c, FREE_FASTPATH);
1695
	} else
1696
		__slab_free(s, page, x, addr, c->offset);
1697 1698 1699 1700

	local_irq_restore(flags);
}

C
Christoph Lameter 已提交
1701 1702
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1703
	struct page *page;
C
Christoph Lameter 已提交
1704

1705
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1706

C
Christoph Lameter 已提交
1707
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1708 1709 1710 1711 1712 1713
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1714
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1715 1716 1717 1718 1719 1720 1721 1722

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1723 1724 1725 1726
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1727 1728 1729 1730
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1731
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1747
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1748 1749 1750 1751 1752 1753
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1765
 *
C
Christoph Lameter 已提交
1766 1767 1768 1769
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1770
 *
C
Christoph Lameter 已提交
1771 1772 1773 1774
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1775
 */
1776 1777
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1778 1779 1780
{
	int order;
	int rem;
1781
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1782

1783
	for (order = max(min_order,
1784 1785
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1786

1787
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1788

1789
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1790 1791 1792 1793
			continue;

		rem = slab_size % size;

1794
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1795 1796 1797
			break;

	}
C
Christoph Lameter 已提交
1798

C
Christoph Lameter 已提交
1799 1800 1801
	return order;
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1846
/*
C
Christoph Lameter 已提交
1847
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1848 1849 1850 1851 1852
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
C
Christoph Lameter 已提交
1853 1854
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
C
Christoph Lameter 已提交
1855
	 *
C
Christoph Lameter 已提交
1856 1857
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
C
Christoph Lameter 已提交
1858
	 */
1859
	if ((flags & SLAB_HWCACHE_ALIGN) &&
1860 1861
			size > cache_line_size() / 2)
		return max_t(unsigned long, align, cache_line_size());
C
Christoph Lameter 已提交
1862 1863 1864 1865 1866 1867 1868

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

1869 1870 1871 1872
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
1873
	c->freelist = NULL;
1874
	c->node = 0;
1875 1876
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
1877 1878
}

C
Christoph Lameter 已提交
1879 1880 1881 1882 1883 1884
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1885
#ifdef CONFIG_SLUB_DEBUG
1886
	INIT_LIST_HEAD(&n->full);
1887
#endif
C
Christoph Lameter 已提交
1888 1889
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
2015 2016 2017 2018 2019 2020 2021
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2022 2023
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2024
 */
2025 2026
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2027 2028 2029
{
	struct page *page;
	struct kmem_cache_node *n;
R
root 已提交
2030
	unsigned long flags;
C
Christoph Lameter 已提交
2031 2032 2033

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2034
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2035 2036

	BUG_ON(!page);
2037 2038 2039 2040 2041 2042 2043
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2044 2045 2046 2047 2048
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2049
#ifdef CONFIG_SLUB_DEBUG
2050 2051
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2052
#endif
C
Christoph Lameter 已提交
2053 2054
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
C
Christoph Lameter 已提交
2055

R
root 已提交
2056 2057 2058 2059 2060 2061
	/*
	 * lockdep requires consistent irq usage for each lock
	 * so even though there cannot be a race this early in
	 * the boot sequence, we still disable irqs.
	 */
	local_irq_save(flags);
2062
	add_partial(n, page, 0);
R
root 已提交
2063
	local_irq_restore(flags);
C
Christoph Lameter 已提交
2064 2065 2066 2067 2068 2069 2070
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2071
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2089
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

2136 2137 2138 2139 2140 2141 2142 2143
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2144 2145 2146 2147 2148 2149
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2150
			!s->ctor)
C
Christoph Lameter 已提交
2151 2152 2153 2154 2155 2156
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2157
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2158
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2159
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2160 2161 2162
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2163
#endif
C
Christoph Lameter 已提交
2164 2165

	/*
C
Christoph Lameter 已提交
2166 2167
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2168 2169 2170 2171
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2172
		s->ctor)) {
C
Christoph Lameter 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2185
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2186 2187 2188 2189 2190 2191 2192
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2193
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2194 2195 2196 2197 2198 2199 2200 2201
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2202
#endif
C
Christoph Lameter 已提交
2203

C
Christoph Lameter 已提交
2204 2205
	/*
	 * Determine the alignment based on various parameters that the
2206 2207
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	if ((flags & __KMALLOC_CACHE) &&
			PAGE_SIZE / size < slub_min_objects) {
		/*
		 * Kmalloc cache that would not have enough objects in
		 * an order 0 page. Kmalloc slabs can fallback to
		 * page allocator order 0 allocs so take a reasonably large
		 * order that will allows us a good number of objects.
		 */
		s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
		s->flags |= __PAGE_ALLOC_FALLBACK;
		s->allocflags |= __GFP_NOWARN;
	} else
		s->order = calculate_order(size);

C
Christoph Lameter 已提交
2233 2234 2235
	if (s->order < 0)
		return 0;

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	s->allocflags = 0;
	if (s->order)
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= SLUB_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
2246 2247 2248 2249 2250
	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

2251
	return !!s->objects;
C
Christoph Lameter 已提交
2252 2253 2254 2255 2256 2257

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2258
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2259 2260 2261 2262 2263 2264
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2265
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2266 2267 2268 2269 2270 2271

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
2272
	s->remote_node_defrag_ratio = 100;
C
Christoph Lameter 已提交
2273
#endif
2274 2275
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2276

2277
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2278
		return 1;
2279
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
P
Pekka Enberg 已提交
2294
	struct page *page;
C
Christoph Lameter 已提交
2295 2296 2297 2298 2299 2300 2301

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2302
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2303 2304 2305 2306 2307
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
C
Christoph Lameter 已提交
2308
	 * purpose of kmem_ptr_valid() is to check if the object belongs
C
Christoph Lameter 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
C
Christoph Lameter 已提交
2331 2332
 * Attempt to free all slabs on a node. Return the number of slabs we
 * were unable to free.
C
Christoph Lameter 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
C
Christoph Lameter 已提交
2353
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2354
 */
2355
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2356 2357 2358 2359 2360 2361
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2362
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2363
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2364 2365
		struct kmem_cache_node *n = get_node(s, node);

2366
		n->nr_partial -= free_list(s, n, &n->partial);
C
Christoph Lameter 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		if (atomic_long_read(&n->nr_slabs))
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2384
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2385 2386 2387
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
2388 2389
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2390 2391 2392 2393 2394 2395 2396
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2397
struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
C
Christoph Lameter 已提交
2398 2399 2400
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
2401
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
C
Christoph Lameter 已提交
2402 2403 2404 2405
#endif

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
2406
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
2407 2408 2409 2410 2411 2412 2413 2414

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
2415
	get_option(&str, &slub_max_order);
C
Christoph Lameter 已提交
2416 2417 2418 2419 2420 2421 2422 2423

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
2424
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2449
			flags | __KMALLOC_CACHE, NULL))
C
Christoph Lameter 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2462
#ifdef CONFIG_ZONE_DMA
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2491 2492 2493 2494 2495 2496 2497 2498 2499
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2500

2501
	realsize = kmalloc_caches[index].objsize;
I
Ingo Molnar 已提交
2502 2503
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
			 (unsigned int)realsize);
2504 2505 2506 2507 2508 2509 2510 2511
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2512
	}
2513 2514 2515 2516 2517 2518 2519

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2520
	up_write(&slub_lock);
2521
out:
2522
	return kmalloc_caches_dma[index];
2523 2524 2525
}
#endif

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2559 2560
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2561
	int index;
C
Christoph Lameter 已提交
2562

2563 2564 2565
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2566

2567
		index = size_index[(size - 1) / 8];
2568
	} else
2569
		index = fls(size - 1);
C
Christoph Lameter 已提交
2570 2571

#ifdef CONFIG_ZONE_DMA
2572
	if (unlikely((flags & SLUB_DMA)))
2573
		return dma_kmalloc_cache(index, flags);
2574

C
Christoph Lameter 已提交
2575 2576 2577 2578 2579 2580
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2581
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2582

2583
	if (unlikely(size > PAGE_SIZE))
2584
		return kmalloc_large(size, flags);
2585 2586 2587 2588

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2589 2590
		return s;

2591
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2592 2593 2594
}
EXPORT_SYMBOL(__kmalloc);

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
						get_order(size));

	if (page)
		return page_address(page);
	else
		return NULL;
}

C
Christoph Lameter 已提交
2606 2607 2608
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2609
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2610

2611
	if (unlikely(size > PAGE_SIZE))
2612
		return kmalloc_large_node(size, flags, node);
2613 2614 2615 2616

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2617 2618
		return s;

2619
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2620 2621 2622 2623 2624 2625
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2626
	struct page *page;
C
Christoph Lameter 已提交
2627 2628
	struct kmem_cache *s;

2629
	if (unlikely(object == ZERO_SIZE_PTR))
2630 2631
		return 0;

2632 2633 2634 2635 2636
	page = virt_to_head_page(object);

	if (unlikely(!PageSlab(page)))
		return PAGE_SIZE << compound_order(page);

C
Christoph Lameter 已提交
2637 2638
	s = page->slab;

2639
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2640 2641 2642 2643 2644 2645 2646
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

2647
#endif
C
Christoph Lameter 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;
2665
	void *object = (void *)x;
C
Christoph Lameter 已提交
2666

2667
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2668 2669
		return;

2670
	page = virt_to_head_page(x);
2671 2672 2673 2674
	if (unlikely(!PageSlab(page))) {
		put_page(page);
		return;
	}
2675
	slab_free(page->slab, page, object, __builtin_return_address(0));
C
Christoph Lameter 已提交
2676 2677 2678
}
EXPORT_SYMBOL(kfree);

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2692
/*
C
Christoph Lameter 已提交
2693 2694 2695 2696 2697 2698 2699 2700
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2717
	for_each_node_state(node, N_NORMAL_MEMORY) {
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2729
		 * Build lists indexed by the items in use in each slab.
2730
		 *
C
Christoph Lameter 已提交
2731 2732
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2746 2747
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2748 2749 2750 2751
			}
		}

		/*
C
Christoph Lameter 已提交
2752 2753
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shoudn't call this
			 * callback. So, we must fail.
			 */
A
Al Viro 已提交
2805
			BUG_ON(atomic_long_read(&n->nr_slabs));
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880

			s->node[offline_node] = NULL;
			kmem_cache_free(kmalloc_caches, n);
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
	 * We are bringing a node online. No memory is availabe yet. We must
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
		init_kmem_cache_node(n);
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	ret = notifier_from_errno(ret);
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
2881 2882 2883 2884 2885 2886 2887
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2888
	int caches = 0;
C
Christoph Lameter 已提交
2889

2890 2891
	init_alloc_cpu();

C
Christoph Lameter 已提交
2892 2893 2894
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2895
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2896 2897 2898 2899
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2900
	kmalloc_caches[0].refcount = -1;
2901
	caches++;
2902 2903

	hotplug_memory_notifier(slab_memory_callback, 1);
C
Christoph Lameter 已提交
2904 2905 2906 2907 2908 2909
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2910 2911
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2912
				"kmalloc-96", 96, GFP_KERNEL);
2913 2914 2915 2916
		caches++;
	}
	if (KMALLOC_MIN_SIZE <= 128) {
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
2917
				"kmalloc-192", 192, GFP_KERNEL);
2918 2919
		caches++;
	}
C
Christoph Lameter 已提交
2920

2921
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
2922 2923
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
2924 2925
		caches++;
	}
C
Christoph Lameter 已提交
2926

2927 2928 2929 2930

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
C
Christoph Lameter 已提交
2931
	 * MIPS it seems. The standard arches will not generate any code here.
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

2942
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2943 2944
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

C
Christoph Lameter 已提交
2945 2946 2947
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
2948
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
2949 2950 2951 2952 2953
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
2954 2955 2956 2957
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
2958 2959
#endif

I
Ingo Molnar 已提交
2960 2961
	printk(KERN_INFO
		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2962 2963
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

2976
	if ((s->flags & __PAGE_ALLOC_FALLBACK))
2977 2978
		return 1;

2979
	if (s->ctor)
C
Christoph Lameter 已提交
2980 2981
		return 1;

2982 2983 2984 2985 2986 2987
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
2988 2989 2990 2991
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
2992
		size_t align, unsigned long flags, const char *name,
2993
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2994
{
2995
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2996 2997 2998 2999

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3000
	if (ctor)
C
Christoph Lameter 已提交
3001 3002 3003 3004 3005
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3006
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3007

3008
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3009 3010 3011 3012 3013 3014
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3015
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3016 3017 3018 3019 3020
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3021
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
3034
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3035 3036 3037 3038
{
	struct kmem_cache *s;

	down_write(&slub_lock);
3039
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3040
	if (s) {
3041 3042
		int cpu;

C
Christoph Lameter 已提交
3043 3044 3045 3046 3047 3048
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
3049 3050 3051 3052 3053 3054 3055

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
3056

C
Christoph Lameter 已提交
3057
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3058
		up_write(&slub_lock);
C
Christoph Lameter 已提交
3059

C
Christoph Lameter 已提交
3060 3061
		if (sysfs_slab_alias(s, name))
			goto err;
3062 3063
		return s;
	}
C
Christoph Lameter 已提交
3064

3065 3066 3067
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
3068
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
3069
			list_add(&s->list, &slab_caches);
3070 3071 3072 3073 3074 3075
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3090 3091
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3092 3093 3094 3095 3096
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3097 3098
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3099 3100

	switch (action) {
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
3111
	case CPU_UP_CANCELED:
3112
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3113
	case CPU_DEAD:
3114
	case CPU_DEAD_FROZEN:
3115 3116
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
3117 3118
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

3119 3120 3121
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
3122 3123
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
3124 3125
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
3126 3127 3128 3129 3130 3131 3132
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3133
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3134
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3135
};
C
Christoph Lameter 已提交
3136 3137 3138 3139 3140

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
3141 3142
	struct kmem_cache *s;

3143
	if (unlikely(size > PAGE_SIZE))
3144 3145
		return kmalloc_large(size, gfpflags);

3146
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3147

3148
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3149
		return s;
C
Christoph Lameter 已提交
3150

3151
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
3152 3153 3154 3155 3156
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
3157 3158
	struct kmem_cache *s;

3159
	if (unlikely(size > PAGE_SIZE))
3160
		return kmalloc_large_node(size, gfpflags, node);
3161

3162
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3163

3164
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3165
		return s;
C
Christoph Lameter 已提交
3166

3167
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
3168 3169
}

C
Christoph Lameter 已提交
3170
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3171 3172
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3173 3174
{
	void *p;
3175
	void *addr = page_address(page);
3176 3177 3178 3179 3180 3181 3182 3183

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

3184 3185
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
3186 3187 3188 3189
		if (!check_object(s, page, p, 0))
			return 0;
	}

3190 3191
	for_each_object(p, s, addr)
		if (!test_bit(slab_index(p, s, addr), map))
3192 3193 3194 3195 3196
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3197 3198
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3199 3200
{
	if (slab_trylock(page)) {
3201
		validate_slab(s, page, map);
3202 3203 3204 3205 3206 3207
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3208 3209
		if (!SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3210 3211
				"on slab 0x%p\n", s->name, page);
	} else {
3212 3213
		if (SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3214 3215 3216 3217
				"slab 0x%p\n", s->name, page);
	}
}

3218 3219
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3220 3221 3222 3223 3224 3225 3226 3227
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3228
		validate_slab_slab(s, page, map);
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3239
		validate_slab_slab(s, page, map);
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3252
static long validate_slab_cache(struct kmem_cache *s)
3253 3254 3255
{
	int node;
	unsigned long count = 0;
3256 3257 3258 3259 3260
	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3261 3262

	flush_all(s);
C
Christoph Lameter 已提交
3263
	for_each_node_state(node, N_NORMAL_MEMORY) {
3264 3265
		struct kmem_cache_node *n = get_node(s, node);

3266
		count += validate_slab_node(s, n, map);
3267
	}
3268
	kfree(map);
3269 3270 3271
	return count;
}

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
I
Ingo Molnar 已提交
3292 3293 3294
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3295 3296 3297 3298 3299 3300 3301

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
I
Ingo Molnar 已提交
3302 3303
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
I
Ingo Molnar 已提交
3316 3317
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3330
/*
C
Christoph Lameter 已提交
3331
 * Generate lists of code addresses where slabcache objects are allocated
3332 3333 3334 3335 3336 3337
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
3338 3339 3340 3341 3342 3343 3344
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3360
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3361 3362 3363 3364 3365 3366
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3367
	l = (void *)__get_free_pages(flags, order);
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3381
				const struct track *track)
3382 3383 3384 3385
{
	long start, end, pos;
	struct location *l;
	void *caddr;
3386
	unsigned long age = jiffies - track->when;
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3421 3422 3423
			return 1;
		}

3424
		if (track->addr < caddr)
3425 3426 3427 3428 3429 3430
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3431
	 * Not found. Insert new tracking element.
3432
	 */
3433
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3434 3435 3436 3437 3438 3439 3440 3441
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3452 3453 3454 3455 3456 3457
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
3458
	void *addr = page_address(page);
3459
	DECLARE_BITMAP(map, s->objects);
3460 3461 3462
	void *p;

	bitmap_zero(map, s->objects);
3463 3464
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3465

3466
	for_each_object(p, s, addr)
3467 3468
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3469 3470 3471 3472 3473
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
3474
	int len = 0;
3475
	unsigned long i;
3476
	struct loc_track t = { 0, 0, NULL };
3477 3478
	int node;

3479
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3480
			GFP_TEMPORARY))
3481
		return sprintf(buf, "Out of memory\n");
3482 3483 3484 3485

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3486
	for_each_node_state(node, N_NORMAL_MEMORY) {
3487 3488 3489 3490
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3491
		if (!atomic_long_read(&n->nr_slabs))
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3503
		struct location *l = &t.loc[i];
3504

3505
		if (len > PAGE_SIZE - 100)
3506
			break;
3507
		len += sprintf(buf + len, "%7ld ", l->count);
3508 3509

		if (l->addr)
3510
			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3511
		else
3512
			len += sprintf(buf + len, "<not-available>");
3513 3514 3515 3516

		if (l->sum_time != l->min_time) {
			unsigned long remainder;

3517
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3518 3519 3520 3521
			l->min_time,
			div_long_long_rem(l->sum_time, l->count, &remainder),
			l->max_time);
		} else
3522
			len += sprintf(buf + len, " age=%ld",
3523 3524 3525
				l->min_time);

		if (l->min_pid != l->max_pid)
3526
			len += sprintf(buf + len, " pid=%ld-%ld",
3527 3528
				l->min_pid, l->max_pid);
		else
3529
			len += sprintf(buf + len, " pid=%ld",
3530 3531
				l->min_pid);

3532
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3533 3534 3535
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3536 3537 3538
					l->cpus);
		}

3539
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3540 3541 3542
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3543 3544 3545
					l->nodes);
		}

3546
		len += sprintf(buf + len, "\n");
3547 3548 3549 3550
	}

	free_loc_track(&t);
	if (!t.count)
3551 3552
		len += sprintf(buf, "No data\n");
	return len;
3553 3554
}

C
Christoph Lameter 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

3567
static unsigned long show_slab_objects(struct kmem_cache *s,
C
Christoph Lameter 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
			char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
3581 3582
		struct page *page;
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
3583

3584 3585 3586 3587
		if (!c)
			continue;

		page = c->page;
3588 3589 3590
		node = c->node;
		if (node < 0)
			continue;
C
Christoph Lameter 已提交
3591 3592 3593 3594 3595 3596 3597
		if (page) {
			if (flags & SO_CPU) {
				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
3598
				nodes[node] += x;
C
Christoph Lameter 已提交
3599
			}
3600
			per_cpu[node]++;
C
Christoph Lameter 已提交
3601 3602 3603
		}
	}

C
Christoph Lameter 已提交
3604
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
3617
			int full_slabs = atomic_long_read(&n->nr_slabs)
C
Christoph Lameter 已提交
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3632
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

3646 3647 3648 3649
	for_each_possible_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c && c->page)
C
Christoph Lameter 已提交
3650
			return 1;
3651
	}
C
Christoph Lameter 已提交
3652

3653
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3654 3655
		struct kmem_cache_node *n = get_node(s, node);

3656 3657 3658
		if (!n)
			continue;

3659
		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
C
Christoph Lameter 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
3730
	return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
C
Christoph Lameter 已提交
3731 3732 3733 3734 3735
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
3736
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
3737 3738 3739 3740 3741
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
3742
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
3743 3744 3745 3746 3747
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
3748
	return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
C
Christoph Lameter 已提交
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3799
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

3874 3875 3876 3877 3878 3879 3880 3881
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
3882 3883 3884 3885 3886 3887 3888 3889
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
3890 3891 3892
}
SLAB_ATTR(validate);

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
3928
#ifdef CONFIG_NUMA
3929
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
3930
{
3931
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
3932 3933
}

3934
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
3935 3936 3937 3938 3939
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
3940
		s->remote_node_defrag_ratio = n * 10;
C
Christoph Lameter 已提交
3941 3942
	return length;
}
3943
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
3944 3945
#endif

3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
		unsigned x = get_cpu_slab(s, cpu)->stat[si];

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
	}
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
SLAB_ATTR_RO(text);						\

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);

#endif

P
Pekka Enberg 已提交
4001
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4021
	&validate_attr.attr,
4022
	&shrink_attr.attr,
4023 4024
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
4025 4026 4027 4028
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4029
	&remote_node_defrag_ratio_attr.attr,
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
C
Christoph Lameter 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

C
Christoph Lameter 已提交
4095 4096 4097 4098 4099 4100 4101
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

	kfree(s);
}

C
Christoph Lameter 已提交
4102 4103 4104 4105 4106 4107 4108
static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
C
Christoph Lameter 已提交
4109
	.release = kmem_cache_release
C
Christoph Lameter 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

4125
static struct kset *slab_kset;
C
Christoph Lameter 已提交
4126 4127 4128 4129

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
4130 4131
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
4178
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
4179 4180 4181 4182 4183 4184 4185 4186 4187
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

4188
	s->kobj.kset = slab_kset;
4189 4190 4191
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4192
		return err;
4193
	}
C
Christoph Lameter 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
4211
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
4224
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
4225 4226 4227 4228 4229 4230 4231 4232 4233

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
4234 4235
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
4251
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4252 4253
	int err;

4254
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4255
	if (!slab_kset) {
C
Christoph Lameter 已提交
4256 4257 4258 4259
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4260 4261
	slab_state = SYSFS;

4262
	list_for_each_entry(s, &slab_caches, list) {
4263
		err = sysfs_slab_add(s);
4264 4265 4266
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4267
	}
C
Christoph Lameter 已提交
4268 4269 4270 4271 4272 4273

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4274 4275 4276
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4277 4278 4279 4280 4281 4282 4283 4284 4285
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif
P
Pekka J Enberg 已提交
4286 4287 4288 4289

/*
 * The /proc/slabinfo ABI
 */
4290 4291 4292 4293 4294 4295 4296 4297
#ifdef CONFIG_SLABINFO

ssize_t slabinfo_write(struct file *file, const char __user * buffer,
                       size_t count, loff_t *ppos)
{
	return -EINVAL;
}

P
Pekka J Enberg 已提交
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
	unsigned long nr_objs;
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
		nr_inuse += count_partial(n);
	}

	nr_objs = nr_slabs * s->objects;
	nr_inuse += (nr_slabs - nr_partials) * s->objects;

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
		   nr_objs, s->size, s->objects, (1 << s->order));
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

4371
#endif /* CONFIG_SLABINFO */