slub.c 102.1 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>
23
#include <linux/memory.h>
C
Christoph Lameter 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
70 71
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
72
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
73 74
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
75 76 77 78 79 80 81
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
82 83 84 85 86 87 88 89 90 91 92 93
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
94
 * 			freelist that allows lockless access to
95 96
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
97 98 99
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
100
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
101 102
 */

103 104 105 106 107 108 109 110
#define FROZEN (1 << PG_active)

#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif

111 112
static inline int SlabFrozen(struct page *page)
{
113
	return page->flags & FROZEN;
114 115 116 117
}

static inline void SetSlabFrozen(struct page *page)
{
118
	page->flags |= FROZEN;
119 120 121 122
}

static inline void ClearSlabFrozen(struct page *page)
{
123
	page->flags &= ~FROZEN;
124 125
}

126 127
static inline int SlabDebug(struct page *page)
{
128
	return page->flags & SLABDEBUG;
129 130 131 132
}

static inline void SetSlabDebug(struct page *page)
{
133
	page->flags |= SLABDEBUG;
134 135 136 137
}

static inline void ClearSlabDebug(struct page *page)
{
138
	page->flags &= ~SLABDEBUG;
139 140
}

C
Christoph Lameter 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

171 172 173 174
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
175
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
176

177 178 179 180 181 182 183
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
184 185
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
186

C
Christoph Lameter 已提交
187 188 189 190 191 192 193 194 195 196
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
197
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
198 199 200
#endif

#ifndef ARCH_SLAB_MINALIGN
201
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
202 203 204
#endif

/* Internal SLUB flags */
205 206
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
207 208
#define __KMALLOC_CACHE		0x20000000 /* objects freed using kfree */
#define __PAGE_ALLOC_FALLBACK	0x10000000 /* Allow fallback to page alloc */
C
Christoph Lameter 已提交
209

210 211 212 213 214
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
215 216 217 218 219 220 221 222 223
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
224
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
225 226 227 228 229
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
230
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
231

232 233 234 235 236 237 238 239 240 241 242 243
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
244
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
C
Christoph Lameter 已提交
245 246 247
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
248

C
Christoph Lameter 已提交
249
#else
250 251 252
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
253 254 255 256
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
	kfree(s);
}
257

C
Christoph Lameter 已提交
258 259
#endif

260 261 262 263 264 265 266
static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
	c->stat[si]++;
#endif
}

C
Christoph Lameter 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

285 286
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
287 288 289 290 291
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
292 293
}

294 295 296 297 298 299 300 301 302 303 304 305
/*
 * The end pointer in a slab is special. It points to the first object in the
 * slab but has bit 0 set to mark it.
 *
 * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
 * in the mapping set.
 */
static inline int is_end(void *addr)
{
	return (unsigned long)addr & PAGE_MAPPING_ANON;
}

A
Adrian Bunk 已提交
306
static void *slab_address(struct page *page)
307 308 309 310
{
	return page->end - PAGE_MAPPING_ANON;
}

311 312 313 314 315
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

316
	if (object == page->end)
317 318
		return 1;

319
	base = slab_address(page);
320 321 322 323 324 325 326 327
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
352 353
	for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
		__p))
354 355 356 357 358 359 360

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

C
Christoph Lameter 已提交
361 362 363 364
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
365 366 367
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
368
static int slub_debug;
369
#endif
C
Christoph Lameter 已提交
370 371 372

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
386
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
387 388
			newline = 0;
		}
P
Pekka Enberg 已提交
389
		printk(KERN_CONT " %02x", addr[i]);
C
Christoph Lameter 已提交
390 391 392
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
P
Pekka Enberg 已提交
393
			printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
394 395 396 397 398 399
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
P
Pekka Enberg 已提交
400
			printk(KERN_CONT "   ");
C
Christoph Lameter 已提交
401 402 403
			ascii[i] = ' ';
			i++;
		}
P
Pekka Enberg 已提交
404
		printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
443 444 445 446 447
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
448 449 450 451 452 453 454
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

455
	printk(KERN_ERR "INFO: %s in ", s);
C
Christoph Lameter 已提交
456
	__print_symbol("%s", (unsigned long)t->addr);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
		page, page->inuse, page->freelist, page->flags);

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
489 490
}

491 492 493 494 495 496 497 498 499 500 501 502
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
503 504
{
	unsigned int off;	/* Offset of last byte */
505
	u8 *addr = slab_address(page);
506 507 508 509 510 511 512 513 514 515 516 517

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

	print_section("Object", p, min(s->objsize, 128));
C
Christoph Lameter 已提交
518 519 520 521 522 523 524 525 526 527

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

528
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
529 530 531 532
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
533 534 535
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
536 537 538 539 540
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
541 542
	slab_bug(s, reason);
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
543 544
}

545
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
546 547 548 549
{
	va_list args;
	char buf[100];

550 551
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
552
	va_end(args);
553 554
	slab_bug(s, fmt);
	print_page_info(page);
C
Christoph Lameter 已提交
555 556 557 558 559 560 561 562 563
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
P
Pekka Enberg 已提交
564
		p[s->objsize - 1] = POISON_END;
C
Christoph Lameter 已提交
565 566 567 568 569 570 571 572
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

573
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
574 575 576
{
	while (bytes) {
		if (*start != (u8)value)
577
			return start;
C
Christoph Lameter 已提交
578 579 580
		start++;
		bytes--;
	}
581 582 583 584 585 586 587 588 589 590 591 592
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
593
			u8 *start, unsigned int value, unsigned int bytes)
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
613 614 615 616 617 618 619 620 621
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
622
 *
C
Christoph Lameter 已提交
623 624 625 626 627
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
628 629 630
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
631 632 633 634
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
635 636
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
637 638
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
639 640 641 642 643
 * 	C. Padding to reach required alignment boundary or at mininum
 * 		one word if debuggin is on to be able to detect writes
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
644 645
 *
 * object + s->size
C
Christoph Lameter 已提交
646
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
647
 *
C
Christoph Lameter 已提交
648 649
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

668 669
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
670 671 672 673
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
674 675 676 677 678
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
679 680 681 682

	if (!(s->flags & SLAB_POISON))
		return 1;

683
	start = slab_address(page);
684
	end = start + (PAGE_SIZE << s->order);
C
Christoph Lameter 已提交
685
	length = s->objects * s->size;
686
	remainder = end - (start + length);
C
Christoph Lameter 已提交
687 688 689
	if (!remainder)
		return 1;

690 691 692 693 694 695 696 697 698 699 700
	fault = check_bytes(start + length, POISON_INUSE, remainder);
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
	print_section("Padding", start, length);

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
701 702 703 704 705 706 707 708 709 710 711 712
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

713 714
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
715 716
			return 0;
	} else {
I
Ingo Molnar 已提交
717 718 719 720
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
			check_bytes_and_report(s, page, p, "Alignment padding",
				endobject, POISON_INUSE, s->inuse - s->objsize);
		}
C
Christoph Lameter 已提交
721 722 723 724
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
725 726 727
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
P
Pekka Enberg 已提交
728
				p + s->objsize - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
749
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
750
		 */
751
		set_freepointer(s, p, page->end);
C
Christoph Lameter 已提交
752 753 754 755 756 757 758 759 760 761
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
762
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
763 764 765
		return 0;
	}
	if (page->inuse > s->objects) {
766 767
		slab_err(s, page, "inuse %u > max %u",
			s->name, page->inuse, s->objects);
C
Christoph Lameter 已提交
768 769 770 771 772 773 774 775
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
776 777
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
778 779 780 781 782 783 784
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

785
	while (fp != page->end && nr <= s->objects) {
C
Christoph Lameter 已提交
786 787 788 789 790 791
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
792
				set_freepointer(s, object, page->end);
C
Christoph Lameter 已提交
793 794
				break;
			} else {
795
				slab_err(s, page, "Freepointer corrupt");
796
				page->freelist = page->end;
C
Christoph Lameter 已提交
797
				page->inuse = s->objects;
798
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
799 800 801 802 803 804 805 806 807 808
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
809
		slab_err(s, page, "Wrong object count. Counter is %d but "
810
			"counted were %d", page->inuse, s->objects - nr);
C
Christoph Lameter 已提交
811
		page->inuse = s->objects - nr;
812
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
813 814 815 816
	}
	return search == NULL;
}

C
Christoph Lameter 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

833
/*
C
Christoph Lameter 已提交
834
 * Tracking of fully allocated slabs for debugging purposes.
835
 */
C
Christoph Lameter 已提交
836
static void add_full(struct kmem_cache_node *n, struct page *page)
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

C
Christoph Lameter 已提交
857 858 859 860 861 862 863 864 865 866 867 868
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
869 870 871 872 873
{
	if (!check_slab(s, page))
		goto bad;

	if (object && !on_freelist(s, page, object)) {
874
		object_err(s, page, object, "Object already allocated");
875
		goto bad;
C
Christoph Lameter 已提交
876 877 878 879
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
880
		goto bad;
C
Christoph Lameter 已提交
881 882
	}

C
Christoph Lameter 已提交
883
	if (object && !check_object(s, page, object, 0))
C
Christoph Lameter 已提交
884 885
		goto bad;

C
Christoph Lameter 已提交
886 887 888 889 890
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
891
	return 1;
C
Christoph Lameter 已提交
892

C
Christoph Lameter 已提交
893 894 895 896 897
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
898
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
899
		 */
900
		slab_fix(s, "Marking all objects used");
C
Christoph Lameter 已提交
901
		page->inuse = s->objects;
902
		page->freelist = page->end;
C
Christoph Lameter 已提交
903 904 905 906
	}
	return 0;
}

C
Christoph Lameter 已提交
907 908
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
909 910 911 912 913
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
914
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
915 916 917 918
		goto fail;
	}

	if (on_freelist(s, page, object)) {
919
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
920 921 922 923 924 925 926
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
I
Ingo Molnar 已提交
927
		if (!PageSlab(page)) {
928 929
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
I
Ingo Molnar 已提交
930
		} else if (!page->slab) {
C
Christoph Lameter 已提交
931
			printk(KERN_ERR
932
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
933
						object);
934
			dump_stack();
P
Pekka Enberg 已提交
935
		} else
936 937
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
938 939
		goto fail;
	}
C
Christoph Lameter 已提交
940 941

	/* Special debug activities for freeing objects */
942
	if (!SlabFrozen(page) && page->freelist == page->end)
C
Christoph Lameter 已提交
943 944 945 946 947
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
948
	return 1;
C
Christoph Lameter 已提交
949

C
Christoph Lameter 已提交
950
fail:
951
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
952 953 954
	return 0;
}

C
Christoph Lameter 已提交
955 956
static int __init setup_slub_debug(char *str)
{
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
981
	for (; *str && *str != ','; str++) {
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1000
				"unknown. skipped\n", *str);
1001
		}
C
Christoph Lameter 已提交
1002 1003
	}

1004
check_slabs:
C
Christoph Lameter 已提交
1005 1006
	if (*str == ',')
		slub_debug_slabs = str + 1;
1007
out:
C
Christoph Lameter 已提交
1008 1009 1010 1011 1012
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1013 1014
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1015
	void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
{
	/*
	 * The page->offset field is only 16 bit wide. This is an offset
	 * in units of words from the beginning of an object. If the slab
	 * size is bigger then we cannot move the free pointer behind the
	 * object anymore.
	 *
	 * On 32 bit platforms the limit is 256k. On 64bit platforms
	 * the limit is 512k.
	 *
1026
	 * Debugging or ctor may create a need to move the free
C
Christoph Lameter 已提交
1027 1028
	 * pointer. Fail if this happens.
	 */
1029 1030
	if (objsize >= 65535 * sizeof(void *)) {
		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
C
Christoph Lameter 已提交
1031
				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1032 1033
		BUG_ON(ctor);
	} else {
C
Christoph Lameter 已提交
1034 1035 1036 1037
		/*
		 * Enable debugging if selected on the kernel commandline.
		 */
		if (slub_debug && (!slub_debug_slabs ||
1038
		    strncmp(slub_debug_slabs, name,
I
Ingo Molnar 已提交
1039
			strlen(slub_debug_slabs)) == 0))
1040 1041 1042 1043
				flags |= slub_debug;
	}

	return flags;
C
Christoph Lameter 已提交
1044 1045
}
#else
C
Christoph Lameter 已提交
1046 1047
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1048

C
Christoph Lameter 已提交
1049 1050
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1051

C
Christoph Lameter 已提交
1052 1053
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1054 1055 1056 1057 1058

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1059
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1060 1061
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1062
	void (*ctor)(struct kmem_cache *, void *))
1063 1064 1065
{
	return flags;
}
C
Christoph Lameter 已提交
1066 1067
#define slub_debug 0
#endif
C
Christoph Lameter 已提交
1068 1069 1070 1071 1072
/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1073
	struct page *page;
C
Christoph Lameter 已提交
1074 1075
	int pages = 1 << s->order;

1076
	flags |= s->allocflags;
1077

C
Christoph Lameter 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1097
	setup_object_debug(s, page, object);
1098
	if (unlikely(s->ctor))
1099
		s->ctor(s, object);
C
Christoph Lameter 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1110
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1111

C
Christoph Lameter 已提交
1112 1113
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1124
		SetSlabDebug(page);
C
Christoph Lameter 已提交
1125 1126

	start = page_address(page);
1127
	page->end = start + 1;
C
Christoph Lameter 已提交
1128 1129 1130 1131 1132

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
1133
	for_each_object(p, s, start) {
C
Christoph Lameter 已提交
1134 1135 1136 1137 1138
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1139
	set_freepointer(s, last, page->end);
C
Christoph Lameter 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	page->freelist = start;
	page->inuse = 0;
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

1151
	if (unlikely(SlabDebug(page))) {
C
Christoph Lameter 已提交
1152 1153 1154
		void *p;

		slab_pad_check(s, page);
1155
		for_each_object(p, s, slab_address(page))
C
Christoph Lameter 已提交
1156
			check_object(s, page, p, 0);
1157
		ClearSlabDebug(page);
C
Christoph Lameter 已提交
1158 1159 1160 1161 1162
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1163
		-pages);
C
Christoph Lameter 已提交
1164

1165
	page->mapping = NULL;
C
Christoph Lameter 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
1196
	__ClearPageSlab(page);
C
Christoph Lameter 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
N
Nick Piggin 已提交
1210
	__bit_spin_unlock(PG_locked, &page->flags);
C
Christoph Lameter 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
1224 1225
static void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
C
Christoph Lameter 已提交
1226
{
C
Christoph Lameter 已提交
1227 1228
	spin_lock(&n->list_lock);
	n->nr_partial++;
1229 1230 1231 1232
	if (tail)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1248
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1249
 *
C
Christoph Lameter 已提交
1250
 * Must hold list_lock.
C
Christoph Lameter 已提交
1251
 */
1252
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1253 1254 1255 1256
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1257
		SetSlabFrozen(page);
C
Christoph Lameter 已提交
1258 1259 1260 1261 1262 1263
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1264
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1265 1266 1267 1268 1269 1270 1271 1272
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1273 1274
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1275 1276 1277 1278 1279 1280
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1281
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1282 1283 1284 1285 1286 1287 1288 1289
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1290
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
C
Christoph Lameter 已提交
1300 1301 1302 1303
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1304
	 *
C
Christoph Lameter 已提交
1305 1306 1307 1308
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1309 1310
	 *
	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1311 1312 1313 1314 1315
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1316
	 */
1317 1318
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1319 1320
		return NULL;

I
Ingo Molnar 已提交
1321 1322
	zonelist = &NODE_DATA(
		slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
C
Christoph Lameter 已提交
1323 1324 1325 1326 1327 1328
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
C
Christoph Lameter 已提交
1329
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1361
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
C
Christoph Lameter 已提交
1362
{
C
Christoph Lameter 已提交
1363
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1364
	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1365

1366
	ClearSlabFrozen(page);
C
Christoph Lameter 已提交
1367
	if (page->inuse) {
C
Christoph Lameter 已提交
1368

1369
		if (page->freelist != page->end) {
1370
			add_partial(n, page, tail);
1371 1372 1373 1374 1375 1376
			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
		} else {
			stat(c, DEACTIVATE_FULL);
			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
				add_full(n, page);
		}
C
Christoph Lameter 已提交
1377 1378
		slab_unlock(page);
	} else {
1379
		stat(c, DEACTIVATE_EMPTY);
C
Christoph Lameter 已提交
1380 1381
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1382 1383 1384 1385 1386 1387
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
			 * order to fill them up. That way the size of the
			 * partial list stays small. kmem_cache_shrink can
			 * reclaim empty slabs from the partial list.
C
Christoph Lameter 已提交
1388
			 */
1389
			add_partial(n, page, 1);
C
Christoph Lameter 已提交
1390 1391 1392
			slab_unlock(page);
		} else {
			slab_unlock(page);
1393
			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
C
Christoph Lameter 已提交
1394 1395
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1396 1397 1398 1399 1400 1401
	}
}

/*
 * Remove the cpu slab
 */
1402
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1403
{
1404
	struct page *page = c->page;
1405
	int tail = 1;
1406 1407 1408

	if (c->freelist)
		stat(c, DEACTIVATE_REMOTE_FREES);
1409 1410 1411 1412
	/*
	 * Merge cpu freelist into freelist. Typically we get here
	 * because both freelists are empty. So this is unlikely
	 * to occur.
1413 1414 1415 1416
	 *
	 * We need to use _is_end here because deactivate slab may
	 * be called for a debug slab. Then c->freelist may contain
	 * a dummy pointer.
1417
	 */
1418
	while (unlikely(!is_end(c->freelist))) {
1419 1420
		void **object;

1421 1422
		tail = 0;	/* Hot objects. Put the slab first */

1423
		/* Retrieve object from cpu_freelist */
1424
		object = c->freelist;
1425
		c->freelist = c->freelist[c->offset];
1426 1427

		/* And put onto the regular freelist */
1428
		object[c->offset] = page->freelist;
1429 1430 1431
		page->freelist = object;
		page->inuse--;
	}
1432
	c->page = NULL;
1433
	unfreeze_slab(s, page, tail);
C
Christoph Lameter 已提交
1434 1435
}

1436
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1437
{
1438
	stat(c, CPUSLAB_FLUSH);
1439 1440
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1441 1442 1443 1444 1445 1446
}

/*
 * Flush cpu slab.
 * Called from IPI handler with interrupts disabled.
 */
1447
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1448
{
1449
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1450

1451 1452
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1453 1454 1455 1456 1457 1458
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1459
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1488
/*
1489 1490 1491 1492
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1493
 *
1494 1495 1496
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1497
 *
1498 1499 1500
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1501
 *
1502 1503
 * And if we were unable to get a new slab from the partial slab lists then
 * we need to allocate a new slab. This is slowest path since we may sleep.
C
Christoph Lameter 已提交
1504
 */
1505
static void *__slab_alloc(struct kmem_cache *s,
1506
		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1507 1508
{
	void **object;
1509
	struct page *new;
C
Christoph Lameter 已提交
1510

1511
	if (!c->page)
C
Christoph Lameter 已提交
1512 1513
		goto new_slab;

1514 1515
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1516
		goto another_slab;
1517
	stat(c, ALLOC_REFILL);
1518
load_freelist:
1519
	object = c->page->freelist;
1520
	if (unlikely(object == c->page->end))
C
Christoph Lameter 已提交
1521
		goto another_slab;
1522
	if (unlikely(SlabDebug(c->page)))
C
Christoph Lameter 已提交
1523 1524
		goto debug;

1525
	object = c->page->freelist;
1526
	c->freelist = object[c->offset];
1527
	c->page->inuse = s->objects;
1528
	c->page->freelist = c->page->end;
1529
	c->node = page_to_nid(c->page);
1530
unlock_out:
1531
	slab_unlock(c->page);
1532
	stat(c, ALLOC_SLOWPATH);
C
Christoph Lameter 已提交
1533 1534 1535
	return object;

another_slab:
1536
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1537 1538

new_slab:
1539 1540 1541
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1542
		stat(c, ALLOC_FROM_PARTIAL);
1543
		goto load_freelist;
C
Christoph Lameter 已提交
1544 1545
	}

1546 1547 1548
	if (gfpflags & __GFP_WAIT)
		local_irq_enable();

1549
	new = new_slab(s, gfpflags, node);
1550 1551 1552 1553

	if (gfpflags & __GFP_WAIT)
		local_irq_disable();

1554 1555
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
1556
		stat(c, ALLOC_SLAB);
1557
		if (c->page)
1558 1559 1560 1561
			flush_slab(s, c);
		slab_lock(new);
		SetSlabFrozen(new);
		c->page = new;
1562
		goto load_freelist;
C
Christoph Lameter 已提交
1563
	}
1564

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	/*
	 * No memory available.
	 *
	 * If the slab uses higher order allocs but the object is
	 * smaller than a page size then we can fallback in emergencies
	 * to the page allocator via kmalloc_large. The page allocator may
	 * have failed to obtain a higher order page and we can try to
	 * allocate a single page if the object fits into a single page.
	 * That is only possible if certain conditions are met that are being
	 * checked when a slab is created.
	 */
	if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
		return kmalloc_large(s->objsize, gfpflags);

	return NULL;
C
Christoph Lameter 已提交
1580
debug:
1581 1582
	object = c->page->freelist;
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1583
		goto another_slab;
1584

1585
	c->page->inuse++;
1586
	c->page->freelist = object[c->offset];
1587
	c->node = -1;
1588
	goto unlock_out;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
P
Pekka Enberg 已提交
1601
static __always_inline void *slab_alloc(struct kmem_cache *s,
1602
		gfp_t gfpflags, int node, void *addr)
1603 1604
{
	void **object;
1605
	struct kmem_cache_cpu *c;
1606 1607
	unsigned long flags;

1608
	local_irq_save(flags);
1609
	c = get_cpu_slab(s, smp_processor_id());
1610
	if (unlikely(is_end(c->freelist) || !node_match(c, node)))
1611

1612
		object = __slab_alloc(s, gfpflags, node, addr, c);
1613 1614

	else {
1615
		object = c->freelist;
1616
		c->freelist = object[c->offset];
1617
		stat(c, ALLOC_FASTPATH);
1618 1619
	}
	local_irq_restore(flags);
1620 1621

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1622
		memset(object, 0, c->objsize);
1623

1624
	return object;
C
Christoph Lameter 已提交
1625 1626 1627 1628
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1629
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1630 1631 1632 1633 1634 1635
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1636
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1637 1638 1639 1640 1641
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1642 1643
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1644
 *
1645 1646 1647
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1648
 */
1649
static void __slab_free(struct kmem_cache *s, struct page *page,
1650
				void *x, void *addr, unsigned int offset)
C
Christoph Lameter 已提交
1651 1652 1653
{
	void *prior;
	void **object = (void *)x;
1654
	struct kmem_cache_cpu *c;
C
Christoph Lameter 已提交
1655

1656 1657
	c = get_cpu_slab(s, raw_smp_processor_id());
	stat(c, FREE_SLOWPATH);
C
Christoph Lameter 已提交
1658 1659
	slab_lock(page);

1660
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1661 1662
		goto debug;
checks_ok:
1663
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1664 1665 1666
	page->freelist = object;
	page->inuse--;

1667 1668
	if (unlikely(SlabFrozen(page))) {
		stat(c, FREE_FROZEN);
C
Christoph Lameter 已提交
1669
		goto out_unlock;
1670
	}
C
Christoph Lameter 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it
	 * was not on the partial list before
	 * then add it.
	 */
1680
	if (unlikely(prior == page->end)) {
1681
		add_partial(get_node(s, page_to_nid(page)), page, 1);
1682 1683
		stat(c, FREE_ADD_PARTIAL);
	}
C
Christoph Lameter 已提交
1684 1685 1686 1687 1688 1689

out_unlock:
	slab_unlock(page);
	return;

slab_empty:
1690
	if (prior != page->end) {
C
Christoph Lameter 已提交
1691
		/*
C
Christoph Lameter 已提交
1692
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1693 1694
		 */
		remove_partial(s, page);
1695 1696
		stat(c, FREE_REMOVE_PARTIAL);
	}
C
Christoph Lameter 已提交
1697
	slab_unlock(page);
1698
	stat(c, FREE_SLAB);
C
Christoph Lameter 已提交
1699 1700 1701 1702
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1703
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1704 1705
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1706 1707
}

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
1719
static __always_inline void slab_free(struct kmem_cache *s,
1720 1721 1722
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
1723
	struct kmem_cache_cpu *c;
1724 1725
	unsigned long flags;

1726
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1727
	debug_check_no_locks_freed(object, s->objsize);
1728
	c = get_cpu_slab(s, smp_processor_id());
1729
	if (likely(page == c->page && c->node >= 0)) {
1730
		object[c->offset] = c->freelist;
1731
		c->freelist = object;
1732
		stat(c, FREE_FASTPATH);
1733
	} else
1734
		__slab_free(s, page, x, addr, c->offset);
1735 1736 1737 1738

	local_irq_restore(flags);
}

C
Christoph Lameter 已提交
1739 1740
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1741
	struct page *page;
C
Christoph Lameter 已提交
1742

1743
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1744

C
Christoph Lameter 已提交
1745
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1746 1747 1748 1749 1750 1751
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1752
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1753 1754 1755 1756 1757 1758 1759 1760

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1761 1762 1763 1764
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1765 1766 1767 1768
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1769
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1785
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1786 1787 1788 1789 1790 1791
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1803
 *
C
Christoph Lameter 已提交
1804 1805 1806 1807
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1808
 *
C
Christoph Lameter 已提交
1809 1810 1811 1812
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1813
 */
1814 1815
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1816 1817 1818
{
	int order;
	int rem;
1819
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1820

1821
	for (order = max(min_order,
1822 1823
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1824

1825
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1826

1827
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1828 1829 1830 1831
			continue;

		rem = slab_size % size;

1832
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1833 1834 1835
			break;

	}
C
Christoph Lameter 已提交
1836

C
Christoph Lameter 已提交
1837 1838 1839
	return order;
}

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1884
/*
C
Christoph Lameter 已提交
1885
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then
	 * follow that suggestion if the object is sufficiently
	 * large.
	 *
	 * The hardware cache alignment cannot override the
	 * specified alignment though. If that is greater
	 * then use it.
	 */
1899
	if ((flags & SLAB_HWCACHE_ALIGN) &&
1900 1901
			size > cache_line_size() / 2)
		return max_t(unsigned long, align, cache_line_size());
C
Christoph Lameter 已提交
1902 1903 1904 1905 1906 1907 1908

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

1909 1910 1911 1912
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
1913
	c->freelist = (void *)PAGE_MAPPING_ANON;
1914
	c->node = 0;
1915 1916
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
1917 1918
}

C
Christoph Lameter 已提交
1919 1920 1921 1922 1923 1924
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1925
#ifdef CONFIG_SLUB_DEBUG
1926
	INIT_LIST_HEAD(&n->full);
1927
#endif
C
Christoph Lameter 已提交
1928 1929
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
2055 2056 2057 2058 2059 2060 2061
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2062 2063
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2064
 */
2065 2066
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2067 2068 2069
{
	struct page *page;
	struct kmem_cache_node *n;
R
root 已提交
2070
	unsigned long flags;
C
Christoph Lameter 已提交
2071 2072 2073

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2074
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2075 2076

	BUG_ON(!page);
2077 2078 2079 2080 2081 2082 2083
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2084 2085 2086 2087 2088
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2089
#ifdef CONFIG_SLUB_DEBUG
2090 2091
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2092
#endif
C
Christoph Lameter 已提交
2093 2094
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
R
root 已提交
2095 2096 2097 2098 2099 2100
	/*
	 * lockdep requires consistent irq usage for each lock
	 * so even though there cannot be a race this early in
	 * the boot sequence, we still disable irqs.
	 */
	local_irq_save(flags);
2101
	add_partial(n, page, 0);
R
root 已提交
2102
	local_irq_restore(flags);
C
Christoph Lameter 已提交
2103 2104 2105 2106 2107 2108 2109
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2110
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2128
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2181
			!s->ctor)
C
Christoph Lameter 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

C
Christoph Lameter 已提交
2193
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2194
	/*
C
Christoph Lameter 已提交
2195
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2196
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2197
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2198 2199 2200
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2201
#endif
C
Christoph Lameter 已提交
2202 2203

	/*
C
Christoph Lameter 已提交
2204 2205
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2206 2207 2208 2209
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2210
		s->ctor)) {
C
Christoph Lameter 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2223
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2224 2225 2226 2227 2228 2229 2230
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2231
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2232 2233 2234 2235 2236 2237 2238 2239
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2240
#endif
C
Christoph Lameter 已提交
2241

C
Christoph Lameter 已提交
2242 2243
	/*
	 * Determine the alignment based on various parameters that the
2244 2245
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	if ((flags & __KMALLOC_CACHE) &&
			PAGE_SIZE / size < slub_min_objects) {
		/*
		 * Kmalloc cache that would not have enough objects in
		 * an order 0 page. Kmalloc slabs can fallback to
		 * page allocator order 0 allocs so take a reasonably large
		 * order that will allows us a good number of objects.
		 */
		s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
		s->flags |= __PAGE_ALLOC_FALLBACK;
		s->allocflags |= __GFP_NOWARN;
	} else
		s->order = calculate_order(size);

C
Christoph Lameter 已提交
2271 2272 2273
	if (s->order < 0)
		return 0;

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	s->allocflags = 0;
	if (s->order)
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= SLUB_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
2284 2285 2286 2287 2288
	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

2289
	return !!s->objects;
C
Christoph Lameter 已提交
2290 2291 2292 2293 2294 2295

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2296
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2297 2298 2299 2300 2301 2302
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2303
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2304 2305 2306 2307 2308 2309

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
2310
	s->remote_node_defrag_ratio = 100;
C
Christoph Lameter 已提交
2311
#endif
2312 2313
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2314

2315
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2316
		return 1;
2317
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
P
Pekka Enberg 已提交
2332
	struct page *page;
C
Christoph Lameter 已提交
2333 2334 2335 2336 2337 2338 2339

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2340
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
	 * purpose of kmem_ptr_valid is to check if the object belongs
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
C
Christoph Lameter 已提交
2369 2370
 * Attempt to free all slabs on a node. Return the number of slabs we
 * were unable to free.
C
Christoph Lameter 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
C
Christoph Lameter 已提交
2391
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2392
 */
2393
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2394 2395 2396 2397 2398 2399
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2400
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2401
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2402 2403
		struct kmem_cache_node *n = get_node(s, node);

2404
		n->nr_partial -= free_list(s, n, &n->partial);
C
Christoph Lameter 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
		if (atomic_long_read(&n->nr_slabs))
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2422
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2423 2424 2425
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
2426 2427
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2428 2429 2430 2431 2432 2433 2434
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2435
struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
C
Christoph Lameter 已提交
2436 2437 2438
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
2439
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
C
Christoph Lameter 已提交
2440 2441 2442 2443
#endif

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
2444
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
2445 2446 2447 2448 2449 2450 2451 2452

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
2453
	get_option(&str, &slub_max_order);
C
Christoph Lameter 已提交
2454 2455 2456 2457 2458 2459 2460 2461

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
2462
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2487
			flags | __KMALLOC_CACHE, NULL))
C
Christoph Lameter 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2500
#ifdef CONFIG_ZONE_DMA
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2529 2530 2531 2532 2533 2534 2535 2536 2537
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2538

2539
	realsize = kmalloc_caches[index].objsize;
I
Ingo Molnar 已提交
2540 2541
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
			 (unsigned int)realsize);
2542 2543 2544 2545 2546 2547 2548 2549
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2550
	}
2551 2552 2553 2554 2555 2556 2557

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2558
	up_write(&slub_lock);
2559
out:
2560
	return kmalloc_caches_dma[index];
2561 2562 2563
}
#endif

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2597 2598
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2599
	int index;
C
Christoph Lameter 已提交
2600

2601 2602 2603
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2604

2605
		index = size_index[(size - 1) / 8];
2606
	} else
2607
		index = fls(size - 1);
C
Christoph Lameter 已提交
2608 2609

#ifdef CONFIG_ZONE_DMA
2610
	if (unlikely((flags & SLUB_DMA)))
2611
		return dma_kmalloc_cache(index, flags);
2612

C
Christoph Lameter 已提交
2613 2614 2615 2616 2617 2618
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2619
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2620

2621
	if (unlikely(size > PAGE_SIZE))
2622
		return kmalloc_large(size, flags);
2623 2624 2625 2626

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2627 2628
		return s;

2629
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2630 2631 2632 2633 2634 2635
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2636
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2637

2638
	if (unlikely(size > PAGE_SIZE))
2639
		return kmalloc_large(size, flags);
2640 2641 2642 2643

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2644 2645
		return s;

2646
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2647 2648 2649 2650 2651 2652
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2653
	struct page *page;
C
Christoph Lameter 已提交
2654 2655
	struct kmem_cache *s;

2656 2657
	BUG_ON(!object);
	if (unlikely(object == ZERO_SIZE_PTR))
2658 2659
		return 0;

2660
	page = virt_to_head_page(object);
C
Christoph Lameter 已提交
2661
	BUG_ON(!page);
2662 2663 2664 2665

	if (unlikely(!PageSlab(page)))
		return PAGE_SIZE << compound_order(page);

C
Christoph Lameter 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	s = page->slab;
	BUG_ON(!s);

	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;

	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;
2694
	void *object = (void *)x;
C
Christoph Lameter 已提交
2695

2696
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2697 2698
		return;

2699
	page = virt_to_head_page(x);
2700 2701 2702 2703
	if (unlikely(!PageSlab(page))) {
		put_page(page);
		return;
	}
2704
	slab_free(page->slab, page, object, __builtin_return_address(0));
C
Christoph Lameter 已提交
2705 2706 2707
}
EXPORT_SYMBOL(kfree);

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2721
/*
C
Christoph Lameter 已提交
2722 2723 2724 2725 2726 2727 2728 2729
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2746
	for_each_node_state(node, N_NORMAL_MEMORY) {
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2758
		 * Build lists indexed by the items in use in each slab.
2759
		 *
C
Christoph Lameter 已提交
2760 2761
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2775 2776
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2777 2778 2779 2780
			}
		}

		/*
C
Christoph Lameter 已提交
2781 2782
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shoudn't call this
			 * callback. So, we must fail.
			 */
A
Al Viro 已提交
2834
			BUG_ON(atomic_long_read(&n->nr_slabs));
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

			s->node[offline_node] = NULL;
			kmem_cache_free(kmalloc_caches, n);
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
	 * We are bringing a node online. No memory is availabe yet. We must
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
		init_kmem_cache_node(n);
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	ret = notifier_from_errno(ret);
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
2910 2911 2912 2913 2914 2915 2916
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2917
	int caches = 0;
C
Christoph Lameter 已提交
2918

2919 2920
	init_alloc_cpu();

C
Christoph Lameter 已提交
2921 2922 2923
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2924
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2925 2926 2927 2928
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2929
	kmalloc_caches[0].refcount = -1;
2930
	caches++;
2931 2932

	hotplug_memory_notifier(slab_memory_callback, 1);
C
Christoph Lameter 已提交
2933 2934 2935 2936 2937 2938
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2939 2940
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2941
				"kmalloc-96", 96, GFP_KERNEL);
2942 2943 2944 2945
		caches++;
	}
	if (KMALLOC_MIN_SIZE <= 128) {
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
2946
				"kmalloc-192", 192, GFP_KERNEL);
2947 2948
		caches++;
	}
C
Christoph Lameter 已提交
2949

2950
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
2951 2952
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
2953 2954
		caches++;
	}
C
Christoph Lameter 已提交
2955

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * mips it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

2971
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2972 2973
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

C
Christoph Lameter 已提交
2974 2975 2976
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
2977
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
2978 2979 2980 2981 2982
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
2983 2984 2985 2986
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
2987 2988 2989
#endif


I
Ingo Molnar 已提交
2990 2991
	printk(KERN_INFO
		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2992 2993
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3006
	if ((s->flags & __PAGE_ALLOC_FALLBACK))
3007 3008
		return 1;

3009
	if (s->ctor)
C
Christoph Lameter 已提交
3010 3011
		return 1;

3012 3013 3014 3015 3016 3017
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3018 3019 3020 3021
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
3022
		size_t align, unsigned long flags, const char *name,
3023
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3024
{
3025
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3026 3027 3028 3029

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3030
	if (ctor)
C
Christoph Lameter 已提交
3031 3032 3033 3034 3035
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3036
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3037

3038
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3039 3040 3041 3042 3043 3044
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3045
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3046 3047 3048 3049 3050
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3051
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
3064
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3065 3066 3067 3068
{
	struct kmem_cache *s;

	down_write(&slub_lock);
3069
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3070
	if (s) {
3071 3072
		int cpu;

C
Christoph Lameter 已提交
3073 3074 3075 3076 3077 3078
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
3079 3080 3081 3082 3083 3084 3085

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
3086
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3087
		up_write(&slub_lock);
C
Christoph Lameter 已提交
3088 3089
		if (sysfs_slab_alias(s, name))
			goto err;
3090 3091 3092 3093 3094
		return s;
	}
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
3095
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
3096
			list_add(&s->list, &slab_caches);
3097 3098 3099 3100 3101 3102
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3117 3118
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3119 3120 3121 3122 3123
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3124 3125
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3126 3127

	switch (action) {
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
3138
	case CPU_UP_CANCELED:
3139
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3140
	case CPU_DEAD:
3141
	case CPU_DEAD_FROZEN:
3142 3143
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
3144 3145
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

3146 3147 3148
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
3149 3150
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
3151 3152
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
3153 3154 3155 3156 3157 3158 3159
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3160
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3161
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3162
};
C
Christoph Lameter 已提交
3163 3164 3165 3166 3167

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
3168 3169
	struct kmem_cache *s;

3170
	if (unlikely(size > PAGE_SIZE))
3171 3172
		return kmalloc_large(size, gfpflags);

3173
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3174

3175
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3176
		return s;
C
Christoph Lameter 已提交
3177

3178
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
3179 3180 3181 3182 3183
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
3184 3185
	struct kmem_cache *s;

3186
	if (unlikely(size > PAGE_SIZE))
3187 3188
		return kmalloc_large(size, gfpflags);

3189
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3190

3191
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3192
		return s;
C
Christoph Lameter 已提交
3193

3194
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
3195 3196
}

C
Christoph Lameter 已提交
3197
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3198 3199
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3200 3201
{
	void *p;
3202
	void *addr = slab_address(page);
3203 3204 3205 3206 3207 3208 3209 3210

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

3211 3212
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
3213 3214 3215 3216
		if (!check_object(s, page, p, 0))
			return 0;
	}

3217 3218
	for_each_object(p, s, addr)
		if (!test_bit(slab_index(p, s, addr), map))
3219 3220 3221 3222 3223
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3224 3225
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3226 3227
{
	if (slab_trylock(page)) {
3228
		validate_slab(s, page, map);
3229 3230 3231 3232 3233 3234
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3235 3236
		if (!SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3237 3238
				"on slab 0x%p\n", s->name, page);
	} else {
3239 3240
		if (SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3241 3242 3243 3244
				"slab 0x%p\n", s->name, page);
	}
}

3245 3246
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3247 3248 3249 3250 3251 3252 3253 3254
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3255
		validate_slab_slab(s, page, map);
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3266
		validate_slab_slab(s, page, map);
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3279
static long validate_slab_cache(struct kmem_cache *s)
3280 3281 3282
{
	int node;
	unsigned long count = 0;
3283 3284 3285 3286 3287
	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3288 3289

	flush_all(s);
C
Christoph Lameter 已提交
3290
	for_each_node_state(node, N_NORMAL_MEMORY) {
3291 3292
		struct kmem_cache_node *n = get_node(s, node);

3293
		count += validate_slab_node(s, n, map);
3294
	}
3295
	kfree(map);
3296 3297 3298
	return count;
}

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
I
Ingo Molnar 已提交
3319 3320 3321
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3322 3323 3324 3325 3326 3327 3328

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
I
Ingo Molnar 已提交
3329 3330
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
I
Ingo Molnar 已提交
3343 3344
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3357
/*
C
Christoph Lameter 已提交
3358
 * Generate lists of code addresses where slabcache objects are allocated
3359 3360 3361 3362 3363 3364
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
3365 3366 3367 3368 3369 3370 3371
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3387
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3388 3389 3390 3391 3392 3393
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3394
	l = (void *)__get_free_pages(flags, order);
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3408
				const struct track *track)
3409 3410 3411 3412
{
	long start, end, pos;
	struct location *l;
	void *caddr;
3413
	unsigned long age = jiffies - track->when;
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3448 3449 3450
			return 1;
		}

3451
		if (track->addr < caddr)
3452 3453 3454 3455 3456 3457
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3458
	 * Not found. Insert new tracking element.
3459
	 */
3460
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3461 3462 3463 3464 3465 3466 3467 3468
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3479 3480 3481 3482 3483 3484
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
3485
	void *addr = slab_address(page);
3486
	DECLARE_BITMAP(map, s->objects);
3487 3488 3489
	void *p;

	bitmap_zero(map, s->objects);
3490 3491
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3492

3493
	for_each_object(p, s, addr)
3494 3495
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3496 3497 3498 3499 3500
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
3501
	int len = 0;
3502
	unsigned long i;
3503
	struct loc_track t = { 0, 0, NULL };
3504 3505
	int node;

3506
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3507
			GFP_TEMPORARY))
3508
		return sprintf(buf, "Out of memory\n");
3509 3510 3511 3512

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3513
	for_each_node_state(node, N_NORMAL_MEMORY) {
3514 3515 3516 3517
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3518
		if (!atomic_long_read(&n->nr_slabs))
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3530
		struct location *l = &t.loc[i];
3531

3532
		if (len > PAGE_SIZE - 100)
3533
			break;
3534
		len += sprintf(buf + len, "%7ld ", l->count);
3535 3536

		if (l->addr)
3537
			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3538
		else
3539
			len += sprintf(buf + len, "<not-available>");
3540 3541 3542 3543

		if (l->sum_time != l->min_time) {
			unsigned long remainder;

3544
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3545 3546 3547 3548
			l->min_time,
			div_long_long_rem(l->sum_time, l->count, &remainder),
			l->max_time);
		} else
3549
			len += sprintf(buf + len, " age=%ld",
3550 3551 3552
				l->min_time);

		if (l->min_pid != l->max_pid)
3553
			len += sprintf(buf + len, " pid=%ld-%ld",
3554 3555
				l->min_pid, l->max_pid);
		else
3556
			len += sprintf(buf + len, " pid=%ld",
3557 3558
				l->min_pid);

3559
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3560 3561 3562
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3563 3564 3565
					l->cpus);
		}

3566
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3567 3568 3569
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3570 3571 3572
					l->nodes);
		}

3573
		len += sprintf(buf + len, "\n");
3574 3575 3576 3577
	}

	free_loc_track(&t);
	if (!t.count)
3578 3579
		len += sprintf(buf, "No data\n");
	return len;
3580 3581
}

C
Christoph Lameter 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

static unsigned long slab_objects(struct kmem_cache *s,
			char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
3608 3609
		struct page *page;
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
3610

3611 3612 3613 3614
		if (!c)
			continue;

		page = c->page;
3615 3616 3617
		node = c->node;
		if (node < 0)
			continue;
C
Christoph Lameter 已提交
3618 3619 3620 3621 3622 3623 3624
		if (page) {
			if (flags & SO_CPU) {
				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
3625
				nodes[node] += x;
C
Christoph Lameter 已提交
3626
			}
3627
			per_cpu[node]++;
C
Christoph Lameter 已提交
3628 3629 3630
		}
	}

C
Christoph Lameter 已提交
3631
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
3644
			int full_slabs = atomic_long_read(&n->nr_slabs)
C
Christoph Lameter 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3659
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

3673 3674 3675 3676
	for_each_possible_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c && c->page)
C
Christoph Lameter 已提交
3677
			return 1;
3678
	}
C
Christoph Lameter 已提交
3679

3680
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3681 3682
		struct kmem_cache_node *n = get_node(s, node);

3683 3684 3685
		if (!n)
			continue;

3686
		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
C
Christoph Lameter 已提交
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3826
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

3901 3902 3903 3904 3905 3906 3907 3908
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
3909 3910 3911 3912 3913 3914 3915 3916
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
3917 3918 3919
}
SLAB_ATTR(validate);

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
3955
#ifdef CONFIG_NUMA
3956
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
3957
{
3958
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
3959 3960
}

3961
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
3962 3963 3964 3965 3966
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
3967
		s->remote_node_defrag_ratio = n * 10;
C
Christoph Lameter 已提交
3968 3969
	return length;
}
3970
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
3971 3972
#endif

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
#ifdef CONFIG_SLUB_STATS

static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
		unsigned x = get_cpu_slab(s, cpu)->stat[si];

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
	}
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
SLAB_ATTR_RO(text);						\

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);

#endif

P
Pekka Enberg 已提交
4029
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4049
	&validate_attr.attr,
4050
	&shrink_attr.attr,
4051 4052
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
4053 4054 4055 4056
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4057
	&remote_node_defrag_ratio_attr.attr,
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
C
Christoph Lameter 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

C
Christoph Lameter 已提交
4123 4124 4125 4126 4127 4128 4129
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

	kfree(s);
}

C
Christoph Lameter 已提交
4130 4131 4132 4133 4134 4135 4136
static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
C
Christoph Lameter 已提交
4137
	.release = kmem_cache_release
C
Christoph Lameter 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

4153
static struct kset *slab_kset;
C
Christoph Lameter 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
 * format
 * :[flags-]size:[memory address of kmemcache]
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
4206
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
4207 4208 4209 4210 4211 4212 4213 4214 4215
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

4216
	s->kobj.kset = slab_kset;
4217 4218 4219
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4220
		return err;
4221
	}
C
Christoph Lameter 已提交
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
4239
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
4252
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
4262 4263
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
4279
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4280 4281
	int err;

4282
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4283
	if (!slab_kset) {
C
Christoph Lameter 已提交
4284 4285 4286 4287
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4288 4289
	slab_state = SYSFS;

4290
	list_for_each_entry(s, &slab_caches, list) {
4291
		err = sysfs_slab_add(s);
4292 4293 4294
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4295
	}
C
Christoph Lameter 已提交
4296 4297 4298 4299 4300 4301

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4302 4303 4304
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif
P
Pekka J Enberg 已提交
4314 4315 4316 4317

/*
 * The /proc/slabinfo ABI
 */
4318 4319 4320 4321 4322 4323 4324 4325
#ifdef CONFIG_SLABINFO

ssize_t slabinfo_write(struct file *file, const char __user * buffer,
                       size_t count, loff_t *ppos)
{
	return -EINVAL;
}

P
Pekka J Enberg 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398

static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
	unsigned long nr_objs;
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
		nr_inuse += count_partial(n);
	}

	nr_objs = nr_slabs * s->objects;
	nr_inuse += (nr_slabs - nr_partials) * s->objects;

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
		   nr_objs, s->size, s->objects, (1 << s->order));
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

4399
#endif /* CONFIG_SLABINFO */