slub.c 80.5 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
69 70
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
71
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
72 73
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
 * PageActive 		The slab is used as a cpu cache. Allocations
 * 			may be performed from the slab. The slab is not
 * 			on any slab list and cannot be moved onto one.
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
 * 			the fast path.
 */

/*
 * Issues still to be resolved:
 *
 * - The per cpu array is updated for each new slab and and is a remote
 *   cacheline for most nodes. This could become a bouncing cacheline given
C
Christoph Lameter 已提交
95 96
 *   enough frequent updates. There are 16 pointers in a cacheline, so at
 *   max 16 cpus could compete for the cacheline which may be okay.
C
Christoph Lameter 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

125 126 127 128
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
129 130
#define MIN_PARTIAL 2

131 132 133 134 135 136 137
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
138 139
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
140

C
Christoph Lameter 已提交
141 142 143 144 145 146 147 148 149 150
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
151
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
152 153 154
#endif

#ifndef ARCH_SLAB_MINALIGN
155
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
156 157 158 159 160
#endif

/* Internal SLUB flags */
#define __OBJECT_POISON 0x80000000	/* Poison object */

161 162 163 164 165
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
166 167 168 169 170 171 172 173 174
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
175
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
LIST_HEAD(slab_caches);

#ifdef CONFIG_SYSFS
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
#else
static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
static void sysfs_slab_remove(struct kmem_cache *s) {}
#endif

/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
			printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
			newline = 0;
		}
		printk(" %02x", addr[i]);
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
			printk(" %s\n",ascii);
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
			printk("   ");
			ascii[i] = ' ';
			i++;
		}
		printk(" %s\n", ascii);
	}
}

/*
 * Slow version of get and set free pointer.
 *
C
Christoph Lameter 已提交
249 250 251
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
C
Christoph Lameter 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
 */
static void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
	if (s->flags & SLAB_STORE_USER) {
		set_track(s, object, TRACK_FREE, NULL);
		set_track(s, object, TRACK_ALLOC, NULL);
	}
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

	printk(KERN_ERR "%s: ", s);
	__print_symbol("%s", (unsigned long)t->addr);
	printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_trailer(struct kmem_cache *s, u8 *p)
{
	unsigned int off;	/* Offset of last byte */

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
			p + s->offset,
			get_freepointer(s, p));

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

	if (s->flags & SLAB_STORE_USER) {
		print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
		print_track("Last free ", get_track(s, p, TRACK_FREE));
		off += 2 * sizeof(struct track);
	}

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
		print_section("Filler", p + off, s->size - off);
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
	u8 *addr = page_address(page);

	printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
			s->name, reason, object, page);
	printk(KERN_ERR "    offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
		object - addr, page->flags, page->inuse, page->freelist);
	if (object > addr + 16)
		print_section("Bytes b4", object - 16, 16);
	print_section("Object", object, min(s->objsize, 128));
	print_trailer(s, object);
	dump_stack();
}

static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
{
	va_list args;
	char buf[100];

	va_start(args, reason);
	vsnprintf(buf, sizeof(buf), reason, args);
	va_end(args);
	printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
		page);
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
		p[s->objsize -1] = POISON_END;
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
{
	while (bytes) {
		if (*start != (u8)value)
			return 0;
		start++;
		bytes--;
	}
	return 1;
}

409 410
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
C
Christoph Lameter 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
433
 *
C
Christoph Lameter 已提交
434 435 436 437 438
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
439 440 441
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
442 443 444 445
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
446 447
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
448 449
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
450 451 452 453 454
 * 	C. Padding to reach required alignment boundary or at mininum
 * 		one word if debuggin is on to be able to detect writes
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
455 456
 *
 * object + s->size
C
Christoph Lameter 已提交
457
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
458
 *
C
Christoph Lameter 已提交
459 460
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
461 462 463 464 465 466
 * may be used with merged slabcaches.
 */

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
467
	printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
C
Christoph Lameter 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		s->name, message, data, from, to - 1);
	memset(from, data, to - from);
}

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

	if (check_bytes(p + off, POISON_INUSE, s->size - off))
		return 1;

	object_err(s, page, p, "Object padding check fails");

	/*
	 * Restore padding
	 */
	restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
	return 0;
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
	u8 *p;
	int length, remainder;

	if (!(s->flags & SLAB_POISON))
		return 1;

	p = page_address(page);
	length = s->objects * s->size;
	remainder = (PAGE_SIZE << s->order) - length;
	if (!remainder)
		return 1;

	if (!check_bytes(p + length, POISON_INUSE, remainder)) {
514
		slab_err(s, page, "Padding check failed");
C
Christoph Lameter 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
		restore_bytes(s, "slab padding", POISON_INUSE, p + length,
			p + length + remainder);
		return 0;
	}
	return 1;
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

		if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
			object_err(s, page, object,
			active ? "Redzone Active" : "Redzone Inactive");
			restore_bytes(s, "redzone", red,
				endobject, object + s->inuse);
			return 0;
		}
	} else {
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
			!check_bytes(endobject, POISON_INUSE,
					s->inuse - s->objsize)) {
		object_err(s, page, p, "Alignment padding check fails");
		/*
		 * Fix it so that there will not be another report.
		 *
		 * Hmmm... We may be corrupting an object that now expects
		 * to be longer than allowed.
		 */
		restore_bytes(s, "alignment padding", POISON_INUSE,
			endobject, object + s->inuse);
		}
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
			(!check_bytes(p, POISON_FREE, s->objsize - 1) ||
				p[s->objsize - 1] != POISON_END)) {

			object_err(s, page, p, "Poison check failed");
			restore_bytes(s, "Poison", POISON_FREE,
						p, p + s->objsize -1);
			restore_bytes(s, "Poison", POISON_END,
					p + s->objsize - 1, p + s->objsize);
			return 0;
		}
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
586
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
587 588 589 590 591 592 593 594 595 596 597 598
		 */
		set_freepointer(s, p, NULL);
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
599 600
		slab_err(s, page, "Not a valid slab page flags=%lx "
			"mapping=0x%p count=%d", page->flags, page->mapping,
C
Christoph Lameter 已提交
601 602 603 604
			page_count(page));
		return 0;
	}
	if (page->offset * sizeof(void *) != s->offset) {
605 606
		slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
			"mapping=0x%p count=%d",
C
Christoph Lameter 已提交
607 608 609 610 611 612 613
			(unsigned long)(page->offset * sizeof(void *)),
			page->flags,
			page->mapping,
			page_count(page));
		return 0;
	}
	if (page->inuse > s->objects) {
614 615 616
		slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
			"mapping=0x%p count=%d",
			s->name, page->inuse, s->objects, page->flags,
C
Christoph Lameter 已提交
617 618 619 620 621 622 623 624 625
			page->mapping, page_count(page));
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
626 627
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

	while (fp && nr <= s->objects) {
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
				set_freepointer(s, object, NULL);
				break;
			} else {
645 646
				slab_err(s, page, "Freepointer 0x%p corrupt",
									fp);
C
Christoph Lameter 已提交
647 648
				page->freelist = NULL;
				page->inuse = s->objects;
649 650 651
				printk(KERN_ERR "@@@ SLUB %s: Freelist "
					"cleared. Slab 0x%p\n",
					s->name, page);
C
Christoph Lameter 已提交
652 653 654 655 656 657 658 659 660 661
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
662 663 664
		slab_err(s, page, "Wrong object count. Counter is %d but "
			"counted were %d", s, page, page->inuse,
							s->objects - nr);
C
Christoph Lameter 已提交
665
		page->inuse = s->objects - nr;
666 667
		printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
			"Slab @0x%p\n", s->name, page);
C
Christoph Lameter 已提交
668 669 670 671
	}
	return search == NULL;
}

672
/*
C
Christoph Lameter 已提交
673
 * Tracking of fully allocated slabs for debugging purposes.
674
 */
C
Christoph Lameter 已提交
675
static void add_full(struct kmem_cache_node *n, struct page *page)
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

C
Christoph Lameter 已提交
696 697 698 699 700 701 702
static int alloc_object_checks(struct kmem_cache *s, struct page *page,
							void *object)
{
	if (!check_slab(s, page))
		goto bad;

	if (object && !on_freelist(s, page, object)) {
703 704
		slab_err(s, page, "Object 0x%p already allocated", object);
		goto bad;
C
Christoph Lameter 已提交
705 706 707 708
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
709
		goto bad;
C
Christoph Lameter 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723
	}

	if (!object)
		return 1;

	if (!check_object(s, page, object, 0))
		goto bad;

	return 1;
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
724
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
		 */
		printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
			s->name, page);
		page->inuse = s->objects;
		page->freelist = NULL;
		/* Fix up fields that may be corrupted */
		page->offset = s->offset / sizeof(void *);
	}
	return 0;
}

static int free_object_checks(struct kmem_cache *s, struct page *page,
							void *object)
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
743
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
744 745 746 747
		goto fail;
	}

	if (on_freelist(s, page, object)) {
748
		slab_err(s, page, "Object 0x%p already free", object);
C
Christoph Lameter 已提交
749 750 751 752 753 754 755 756
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
		if (!PageSlab(page))
757 758
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
C
Christoph Lameter 已提交
759
		else
760
		if (!page->slab) {
C
Christoph Lameter 已提交
761
			printk(KERN_ERR
762
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
763
						object);
764 765
			dump_stack();
		}
C
Christoph Lameter 已提交
766
		else
767 768
			slab_err(s, page, "object at 0x%p belongs "
				"to slab %s", object, page->slab->name);
C
Christoph Lameter 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
		goto fail;
	}
	return 1;
fail:
	printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
		s->name, page, object);
	return 0;
}

/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page * page;
	int pages = 1 << s->order;

	if (s->order)
		flags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		flags |= SLUB_DMA;

	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	if (PageError(page)) {
		init_object(s, object, 0);
		init_tracking(s, object);
	}

816 817
	if (unlikely(s->ctor))
		s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
C
Christoph Lameter 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *end;
	void *last;
	void *p;

	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));

	if (flags & __GFP_WAIT)
		local_irq_enable();

	page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->offset = s->offset / sizeof(void *);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
		page->flags |= 1 << PG_error;

	start = page_address(page);
	end = start + s->objects * s->size;

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
	for (p = start + s->size; p < end; p += s->size) {
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
	set_freepointer(s, last, NULL);

	page->freelist = start;
	page->inuse = 0;
out:
	if (flags & __GFP_WAIT)
		local_irq_disable();
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

	if (unlikely(PageError(page) || s->dtor)) {
		void *start = page_address(page);
		void *end = start + (pages << PAGE_SHIFT);
		void *p;

		slab_pad_check(s, page);
		for (p = start; p <= end - s->size; p += s->size) {
			if (s->dtor)
				s->dtor(p, s, 0);
			check_object(s, page, p, 0);
		}
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		- pages);

	page->mapping = NULL;
	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
	page->flags &= ~(1 << PG_slab | 1 << PG_error);
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	bit_spin_unlock(PG_locked, &page->flags);
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
C
Christoph Lameter 已提交
952
static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
953
{
C
Christoph Lameter 已提交
954 955 956 957 958
	spin_lock(&n->list_lock);
	n->nr_partial++;
	list_add_tail(&page->lru, &n->partial);
	spin_unlock(&n->list_lock);
}
C
Christoph Lameter 已提交
959

C
Christoph Lameter 已提交
960 961
static void add_partial(struct kmem_cache_node *n, struct page *page)
{
C
Christoph Lameter 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	spin_lock(&n->list_lock);
	n->nr_partial++;
	list_add(&page->lru, &n->partial);
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
980
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
981
 *
C
Christoph Lameter 已提交
982
 * Must hold list_lock.
C
Christoph Lameter 已提交
983 984 985 986 987 988 989 990 991 992 993 994
 */
static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
995
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
996 997 998 999 1000 1001 1002 1003
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1004 1005
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
		if (lock_and_del_slab(n, page))
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1021
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
C
Christoph Lameter 已提交
1031 1032 1033 1034
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1035
	 *
C
Christoph Lameter 已提交
1036 1037 1038 1039
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1040 1041
	 *
	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1042 1043 1044 1045 1046
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	 */
	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
C
Christoph Lameter 已提交
1059
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
static void putback_slab(struct kmem_cache *s, struct page *page)
{
C
Christoph Lameter 已提交
1093 1094
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

C
Christoph Lameter 已提交
1095
	if (page->inuse) {
C
Christoph Lameter 已提交
1096

C
Christoph Lameter 已提交
1097
		if (page->freelist)
C
Christoph Lameter 已提交
1098 1099 1100
			add_partial(n, page);
		else if (PageError(page) && (s->flags & SLAB_STORE_USER))
			add_full(n, page);
C
Christoph Lameter 已提交
1101
		slab_unlock(page);
C
Christoph Lameter 已提交
1102

C
Christoph Lameter 已提交
1103
	} else {
C
Christoph Lameter 已提交
1104 1105
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1106 1107 1108 1109 1110 1111
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
			 * order to fill them up. That way the size of the
			 * partial list stays small. kmem_cache_shrink can
			 * reclaim empty slabs from the partial list.
C
Christoph Lameter 已提交
1112 1113 1114 1115 1116 1117 1118
			 */
			add_partial_tail(n, page);
			slab_unlock(page);
		} else {
			slab_unlock(page);
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	}
}

/*
 * Remove the cpu slab
 */
static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
{
	s->cpu_slab[cpu] = NULL;
	ClearPageActive(page);

	putback_slab(s, page);
}

static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
{
	slab_lock(page);
	deactivate_slab(s, page, cpu);
}

/*
 * Flush cpu slab.
 * Called from IPI handler with interrupts disabled.
 */
static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
{
	struct page *page = s->cpu_slab[cpu];

	if (likely(page))
		flush_slab(s, page, cpu);
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;
	int cpu = smp_processor_id();

	__flush_cpu_slab(s, cpu);
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

/*
 * slab_alloc is optimized to only modify two cachelines on the fast path
 * (aside from the stack):
 *
 * 1. The page struct
 * 2. The first cacheline of the object to be allocated.
 *
C
Christoph Lameter 已提交
1179
 * The only other cache lines that are read (apart from code) is the
C
Christoph Lameter 已提交
1180 1181 1182 1183 1184
 * per cpu array in the kmem_cache struct.
 *
 * Fastpath is not possible if we need to get a new slab or have
 * debugging enabled (which means all slabs are marked with PageError)
 */
C
Christoph Lameter 已提交
1185 1186
static void *slab_alloc(struct kmem_cache *s,
				gfp_t gfpflags, int node, void *addr)
C
Christoph Lameter 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
{
	struct page *page;
	void **object;
	unsigned long flags;
	int cpu;

	local_irq_save(flags);
	cpu = smp_processor_id();
	page = s->cpu_slab[cpu];
	if (!page)
		goto new_slab;

	slab_lock(page);
	if (unlikely(node != -1 && page_to_nid(page) != node))
		goto another_slab;
redo:
	object = page->freelist;
	if (unlikely(!object))
		goto another_slab;
	if (unlikely(PageError(page)))
		goto debug;

have_object:
	page->inuse++;
	page->freelist = object[page->offset];
	slab_unlock(page);
	local_irq_restore(flags);
	return object;

another_slab:
	deactivate_slab(s, page, cpu);

new_slab:
	page = get_partial(s, gfpflags, node);
	if (likely(page)) {
have_slab:
		s->cpu_slab[cpu] = page;
		SetPageActive(page);
		goto redo;
	}

	page = new_slab(s, gfpflags, node);
	if (page) {
		cpu = smp_processor_id();
		if (s->cpu_slab[cpu]) {
			/*
C
Christoph Lameter 已提交
1233 1234 1235 1236 1237
			 * Someone else populated the cpu_slab while we
			 * enabled interrupts, or we have gotten scheduled
			 * on another cpu. The page may not be on the
			 * requested node even if __GFP_THISNODE was
			 * specified. So we need to recheck.
C
Christoph Lameter 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
			 */
			if (node == -1 ||
				page_to_nid(s->cpu_slab[cpu]) == node) {
				/*
				 * Current cpuslab is acceptable and we
				 * want the current one since its cache hot
				 */
				discard_slab(s, page);
				page = s->cpu_slab[cpu];
				slab_lock(page);
				goto redo;
			}
C
Christoph Lameter 已提交
1250
			/* New slab does not fit our expectations */
C
Christoph Lameter 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			flush_slab(s, s->cpu_slab[cpu], cpu);
		}
		slab_lock(page);
		goto have_slab;
	}
	local_irq_restore(flags);
	return NULL;
debug:
	if (!alloc_object_checks(s, page, object))
		goto another_slab;
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
1262
		set_track(s, object, TRACK_ALLOC, addr);
1263 1264 1265 1266 1267 1268 1269
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
			s->name, object, page->inuse,
			page->freelist);
		dump_stack();
	}
	init_object(s, object, 1);
C
Christoph Lameter 已提交
1270 1271 1272 1273 1274
	goto have_object;
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
C
Christoph Lameter 已提交
1275
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1276 1277 1278 1279 1280 1281
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
C
Christoph Lameter 已提交
1282
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1283 1284 1285 1286 1287 1288 1289 1290
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
 * The fastpath only writes the cacheline of the page struct and the first
 * cacheline of the object.
 *
C
Christoph Lameter 已提交
1291 1292
 * We read the cpu_slab cacheline to check if the slab is the per cpu
 * slab for this processor.
C
Christoph Lameter 已提交
1293
 */
C
Christoph Lameter 已提交
1294 1295
static void slab_free(struct kmem_cache *s, struct page *page,
					void *x, void *addr)
C
Christoph Lameter 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
{
	void *prior;
	void **object = (void *)x;
	unsigned long flags;

	local_irq_save(flags);
	slab_lock(page);

	if (unlikely(PageError(page)))
		goto debug;
checks_ok:
	prior = object[page->offset] = page->freelist;
	page->freelist = object;
	page->inuse--;

	if (unlikely(PageActive(page)))
		/*
		 * Cpu slabs are never on partial lists and are
		 * never freed.
		 */
		goto out_unlock;

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it
	 * was not on the partial list before
	 * then add it.
	 */
	if (unlikely(!prior))
C
Christoph Lameter 已提交
1327
		add_partial(get_node(s, page_to_nid(page)), page);
C
Christoph Lameter 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336

out_unlock:
	slab_unlock(page);
	local_irq_restore(flags);
	return;

slab_empty:
	if (prior)
		/*
C
Christoph Lameter 已提交
1337
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346
		 */
		remove_partial(s, page);

	slab_unlock(page);
	discard_slab(s, page);
	local_irq_restore(flags);
	return;

debug:
C
Christoph Lameter 已提交
1347 1348
	if (!free_object_checks(s, page, x))
		goto out_unlock;
1349 1350
	if (!PageActive(page) && !page->freelist)
		remove_full(s, page);
C
Christoph Lameter 已提交
1351 1352
	if (s->flags & SLAB_STORE_USER)
		set_track(s, x, TRACK_FREE, addr);
1353 1354 1355 1356 1357 1358 1359 1360
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n",
			s->name, object, page->inuse,
			page->freelist);
		print_section("Object", (void *)object, s->objsize);
		dump_stack();
	}
	init_object(s, object, 0);
C
Christoph Lameter 已提交
1361
	goto checks_ok;
C
Christoph Lameter 已提交
1362 1363 1364 1365
}

void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1366
	struct page *page;
C
Christoph Lameter 已提交
1367

1368
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1369

C
Christoph Lameter 已提交
1370
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1371 1372 1373 1374 1375 1376
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1377
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1378 1379 1380 1381 1382 1383 1384 1385

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1386 1387 1388 1389
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1390 1391 1392 1393
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1394
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1410
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
 */
static int slub_nomerge;

/*
 * Debug settings:
 */
static int slub_debug;

static char *slub_debug_slabs;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1435
 *
C
Christoph Lameter 已提交
1436 1437 1438 1439
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1440
 *
C
Christoph Lameter 已提交
1441 1442 1443 1444
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
 */
static int calculate_order(int size)
{
	int order;
	int rem;

	for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
			order < MAX_ORDER; order++) {
		unsigned long slab_size = PAGE_SIZE << order;

		if (slub_max_order > order &&
				slab_size < slub_min_objects * size)
			continue;

		if (slab_size < size)
			continue;

		rem = slab_size % size;

C
Christoph Lameter 已提交
1464
		if (rem <= slab_size / 8)
C
Christoph Lameter 已提交
1465 1466 1467 1468 1469
			break;

	}
	if (order >= MAX_ORDER)
		return -E2BIG;
C
Christoph Lameter 已提交
1470

C
Christoph Lameter 已提交
1471 1472 1473 1474
	return order;
}

/*
C
Christoph Lameter 已提交
1475
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then
	 * follow that suggestion if the object is sufficiently
	 * large.
	 *
	 * The hardware cache alignment cannot override the
	 * specified alignment though. If that is greater
	 * then use it.
	 */
1489
	if ((flags & SLAB_HWCACHE_ALIGN) &&
1490 1491
			size > cache_line_size() / 2)
		return max_t(unsigned long, align, cache_line_size());
C
Christoph Lameter 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1505
	INIT_LIST_HEAD(&n->full);
C
Christoph Lameter 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
}

#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
 * when allocating for the kmalloc_node_cache.
 */
static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
								int node)
{
	struct page *page;
	struct kmem_cache_node *n;

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

	page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
	/* new_slab() disables interupts */
	local_irq_enable();

	BUG_ON(!page);
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
	init_object(kmalloc_caches, n, 1);
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
C
Christoph Lameter 已提交
1538
	add_partial(n, page);
C
Christoph Lameter 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

	for_each_online_node(node) {
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
			!s->ctor && !s->dtor)
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

	/*
C
Christoph Lameter 已提交
1630
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
1631
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
1632
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
1633 1634 1635 1636 1637
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);

	/*
C
Christoph Lameter 已提交
1638 1639
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
		s->ctor || s->dtor)) {
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

1664
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
1665 1666 1667 1668 1669 1670 1671 1672
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
1673

C
Christoph Lameter 已提交
1674 1675
	/*
	 * Determine the alignment based on various parameters that the
1676 1677
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

	s->order = calculate_order(size);
	if (s->order < 0)
		return 0;

	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

	/*
	 * Verify that the number of objects is within permitted limits.
	 * The page->inuse field is only 16 bit wide! So we cannot have
	 * more than 64k objects per slab.
	 */
	if (!s->objects || s->objects > 65535)
		return 0;
	return 1;

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
		void (*ctor)(void *, struct kmem_cache *, unsigned long),
		void (*dtor)(void *, struct kmem_cache *, unsigned long))
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->dtor = dtor;
	s->objsize = size;
	s->flags = flags;
	s->align = align;

	/*
	 * The page->offset field is only 16 bit wide. This is an offset
	 * in units of words from the beginning of an object. If the slab
	 * size is bigger then we cannot move the free pointer behind the
	 * object anymore.
	 *
	 * On 32 bit platforms the limit is 256k. On 64bit platforms
	 * the limit is 512k.
	 *
	 * Debugging or ctor/dtors may create a need to move the free
	 * pointer. Fail if this happens.
	 */
	if (s->size >= 65535 * sizeof(void *)) {
		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
		BUG_ON(ctor || dtor);
	}
	else
		/*
		 * Enable debugging if selected on the kernel commandline.
		 */
		if (slub_debug && (!slub_debug_slabs ||
		    strncmp(slub_debug_slabs, name,
		    	strlen(slub_debug_slabs)) == 0))
				s->flags |= slub_debug;

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
	s->defrag_ratio = 100;
#endif

	if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		return 1;
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_open);

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
	struct page * page;

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

1782
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
	 * purpose of kmem_ptr_valid is to check if the object belongs
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
C
Christoph Lameter 已提交
1811 1812
 * Attempt to free all slabs on a node. Return the number of slabs we
 * were unable to free.
C
Christoph Lameter 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
C
Christoph Lameter 已提交
1833
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
 */
static int kmem_cache_close(struct kmem_cache *s)
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

1845
		n->nr_partial -= free_list(s, n, &n->partial);
C
Christoph Lameter 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
		if (atomic_long_read(&n->nr_slabs))
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
		kfree(s);
	}
	up_write(&slub_lock);
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
#endif

static int __init setup_slub_min_order(char *str)
{
	get_option (&str, &slub_min_order);

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
	get_option (&str, &slub_max_order);

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
	get_option (&str, &slub_min_objects);

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static int __init setup_slub_debug(char *str)
{
	if (!str || *str != '=')
		slub_debug = DEBUG_DEFAULT_FLAGS;
	else {
		str++;
		if (*str == 0 || *str == ',')
			slub_debug = DEBUG_DEFAULT_FLAGS;
		else
		for( ;*str && *str != ','; str++)
			switch (*str) {
			case 'f' : case 'F' :
				slub_debug |= SLAB_DEBUG_FREE;
				break;
			case 'z' : case 'Z' :
				slub_debug |= SLAB_RED_ZONE;
				break;
			case 'p' : case 'P' :
				slub_debug |= SLAB_POISON;
				break;
			case 'u' : case 'U' :
				slub_debug |= SLAB_STORE_USER;
				break;
			case 't' : case 'T' :
				slub_debug |= SLAB_TRACE;
				break;
			default:
				printk(KERN_ERR "slub_debug option '%c' "
					"unknown. skipped\n",*str);
			}
	}

	if (*str == ',')
		slub_debug_slabs = str + 1;
	return 1;
}

__setup("slub_debug", setup_slub_debug);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
			flags, NULL, NULL))
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
	int index = kmalloc_index(size);

1984
	if (!index)
C
Christoph Lameter 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
		return NULL;

	/* Allocation too large? */
	BUG_ON(index < 0);

#ifdef CONFIG_ZONE_DMA
	if ((flags & SLUB_DMA)) {
		struct kmem_cache *s;
		struct kmem_cache *x;
		char *text;
		size_t realsize;

		s = kmalloc_caches_dma[index];
		if (s)
			return s;

		/* Dynamically create dma cache */
		x = kmalloc(kmem_size, flags & ~SLUB_DMA);
		if (!x)
			panic("Unable to allocate memory for dma cache\n");

		if (index <= KMALLOC_SHIFT_HIGH)
			realsize = 1 << index;
		else {
			if (index == 1)
				realsize = 96;
			else
				realsize = 192;
		}

		text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
				(unsigned int)realsize);
		s = create_kmalloc_cache(x, text, realsize, flags);
		kmalloc_caches_dma[index] = s;
		return s;
	}
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
	struct kmem_cache *s = get_slab(size, flags);

	if (s)
C
Christoph Lameter 已提交
2030
		return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	return NULL;
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	struct kmem_cache *s = get_slab(size, flags);

	if (s)
C
Christoph Lameter 已提交
2041
		return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	return NULL;
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
	struct page *page = get_object_page(object);
	struct kmem_cache *s;

	BUG_ON(!page);
	s = page->slab;
	BUG_ON(!s);

	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;

	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct kmem_cache *s;
	struct page *page;

	if (!x)
		return;

2086
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
2087 2088
	s = page->slab;

C
Christoph Lameter 已提交
2089
	slab_free(s, page, (void *)x, __builtin_return_address(0));
C
Christoph Lameter 已提交
2090 2091 2092
}
EXPORT_SYMBOL(kfree);

2093
/*
C
Christoph Lameter 已提交
2094 2095 2096 2097 2098 2099 2100 2101
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
	for_each_online_node(node) {
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2130
		 * Build lists indexed by the items in use in each slab.
2131
		 *
C
Christoph Lameter 已提交
2132 2133
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
				if (n->nr_partial > MAX_PARTIAL)
					list_move(&page->lru,
					slabs_by_inuse + page->inuse);
			}
		}

		if (n->nr_partial <= MAX_PARTIAL)
			goto out;

		/*
C
Christoph Lameter 已提交
2157 2158
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

	out:
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

C
Christoph Lameter 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 *
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;
C
Christoph Lameter 已提交
2187
	size_t ks;
C
Christoph Lameter 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196

	if (unlikely(!p))
		return kmalloc(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

C
Christoph Lameter 已提交
2197 2198
	ks = ksize(p);
	if (ks >= new_size)
C
Christoph Lameter 已提交
2199 2200 2201 2202
		return (void *)p;

	ret = kmalloc(new_size, flags);
	if (ret) {
C
Christoph Lameter 已提交
2203
		memcpy(ret, p, min(new_size, ks));
C
Christoph Lameter 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;

#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2221
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
	create_kmalloc_cache(&kmalloc_caches[1],
				"kmalloc-96", 96, GFP_KERNEL);
	create_kmalloc_cache(&kmalloc_caches[2],
				"kmalloc-192", 192, GFP_KERNEL);

	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);

	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
#endif

	if (nr_cpu_ids)	/* Remove when nr_cpu_ids is fixed upstream ! */
		kmem_size = offsetof(struct kmem_cache, cpu_slab)
			 + nr_cpu_ids * sizeof(struct page *);

	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
		" Processors=%d, Nodes=%d\n",
2258
		KMALLOC_SHIFT_HIGH, cache_line_size(),
C
Christoph Lameter 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

	if (s->ctor || s->dtor)
		return 1;

	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
		size_t align, unsigned long flags,
		void (*ctor)(void *, struct kmem_cache *, unsigned long),
		void (*dtor)(void *, struct kmem_cache *, unsigned long))
{
	struct list_head *h;

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

	if (ctor || dtor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);

	list_for_each(h, &slab_caches) {
		struct kmem_cache *s =
			container_of(h, struct kmem_cache, list);

		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
			(s->flags & SLUB_MERGE_SAME))
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align -1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
		void (*ctor)(void *, struct kmem_cache *, unsigned long),
		void (*dtor)(void *, struct kmem_cache *, unsigned long))
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	s = find_mergeable(size, align, flags, dtor, ctor);
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
		if (sysfs_slab_alias(s, name))
			goto err;
	} else {
		s = kmalloc(kmem_size, GFP_KERNEL);
		if (s && kmem_cache_open(s, GFP_KERNEL, name,
				size, align, flags, ctor, dtor)) {
			if (sysfs_slab_add(s)) {
				kfree(s);
				goto err;
			}
			list_add(&s->list, &slab_caches);
		} else
			kfree(s);
	}
	up_write(&slub_lock);
	return s;

err:
	up_write(&slub_lock);
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
{
	void *x;

C
Christoph Lameter 已提交
2370
	x = slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	if (x)
		memset(x, 0, s->objsize);
	return x;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

#ifdef CONFIG_SMP
static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
{
	struct list_head *h;

	down_read(&slub_lock);
	list_for_each(h, &slab_caches) {
		struct kmem_cache *s =
			container_of(h, struct kmem_cache, list);

		func(s, cpu);
	}
	up_read(&slub_lock);
}

/*
C
Christoph Lameter 已提交
2393 2394
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_DEAD:
		for_all_slabs(__flush_cpu_slab, cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata slab_notifier =
	{ &slab_cpuup_callback, NULL, 0 };

#endif

#ifdef CONFIG_NUMA

/*****************************************************************
 * Generic reaper used to support the page allocator
 * (the cpu slabs are reaped by a per slab workqueue).
 *
 * Maybe move this to the page allocator?
 ****************************************************************/

static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
		node = first_node(node_online_map);

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}
#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

#define REAPTIMEOUT_CPUC	(2*HZ)

#ifdef CONFIG_SMP
static DEFINE_PER_CPU(struct delayed_work, reap_work);

static void cache_reap(struct work_struct *unused)
{
	next_reap_node();
	refresh_cpu_vm_stats(smp_processor_id());
	schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
}

static void __devinit start_cpu_timer(int cpu)
{
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->work.func == NULL) {
		init_reap_node(cpu);
		INIT_DELAYED_WORK(reap_work, cache_reap);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

static int __init cpucache_init(void)
{
	int cpu;

	/*
	 * Register the timers that drain pcp pages and update vm statistics
	 */
	for_each_online_cpu(cpu)
		start_cpu_timer(cpu);
	return 0;
}
__initcall(cpucache_init);
#endif

#ifdef SLUB_RESILIENCY_TEST
static unsigned long validate_slab_cache(struct kmem_cache *s);

static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
		 	" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
	struct kmem_cache *s = get_slab(size, gfpflags);

	if (!s)
		return NULL;

C
Christoph Lameter 已提交
2566
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
	struct kmem_cache *s = get_slab(size, gfpflags);

	if (!s)
		return NULL;

C
Christoph Lameter 已提交
2577
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
2578 2579 2580 2581
}

#ifdef CONFIG_SYSFS

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
static int validate_slab(struct kmem_cache *s, struct page *page)
{
	void *p;
	void *addr = page_address(page);
	unsigned long map[BITS_TO_LONGS(s->objects)];

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

	for(p = page->freelist; p; p = get_freepointer(s, p)) {
		set_bit((p - addr) / s->size, map);
		if (!check_object(s, page, p, 0))
			return 0;
	}

	for(p = addr; p < addr + s->objects * s->size; p += s->size)
		if (!test_bit((p - addr) / s->size, map))
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

static void validate_slab_slab(struct kmem_cache *s, struct page *page)
{
	if (slab_trylock(page)) {
		validate_slab(s, page);
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
		if (!PageError(page))
			printk(KERN_ERR "SLUB %s: PageError not set "
				"on slab 0x%p\n", s->name, page);
	} else {
		if (PageError(page))
			printk(KERN_ERR "SLUB %s: PageError set on "
				"slab 0x%p\n", s->name, page);
	}
}

static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
		validate_slab_slab(s, page);
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
		validate_slab_slab(s, page);
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

static unsigned long validate_slab_cache(struct kmem_cache *s)
{
	int node;
	unsigned long count = 0;

	flush_all(s);
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		count += validate_slab_node(s, n);
	}
	return count;
}

2675
/*
C
Christoph Lameter 已提交
2676
 * Generate lists of code addresses where slabcache objects are allocated
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

static int alloc_loc_track(struct loc_track *t, unsigned long max)
{
	struct location *l;
	int order;

	if (!max)
		max = PAGE_SIZE / sizeof(struct location);

	order = get_order(sizeof(struct location) * max);

	l = (void *)__get_free_pages(GFP_KERNEL, order);

	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
						void *addr)
{
	long start, end, pos;
	struct location *l;
	void *caddr;

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
		if (addr == caddr) {
			t->loc[pos].count++;
			return 1;
		}

		if (addr < caddr)
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
2755
	 * Not found. Insert new tracking element.
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	 */
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
	l->addr = addr;
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
	void *addr = page_address(page);
	unsigned long map[BITS_TO_LONGS(s->objects)];
	void *p;

	bitmap_zero(map, s->objects);
	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit((p - addr) / s->size, map);

	for (p = addr; p < addr + s->objects * s->size; p += s->size)
		if (!test_bit((p - addr) / s->size, map)) {
			void *addr = get_track(s, p, alloc)->addr;

			add_location(t, s, addr);
		}
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
	int n = 0;
	unsigned long i;
	struct loc_track t;
	int node;

	t.count = 0;
	t.max = 0;

	/* Push back cpu slabs */
	flush_all(s);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

		if (!atomic_read(&n->nr_slabs))
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
		void *addr = t.loc[i].addr;

		if (n > PAGE_SIZE - 100)
			break;
		n += sprintf(buf + n, "%7ld ", t.loc[i].count);
		if (addr)
			n += sprint_symbol(buf + n, (unsigned long)t.loc[i].addr);
		else
			n += sprintf(buf + n, "<not-available>");
		n += sprintf(buf + n, "\n");
	}

	free_loc_track(&t);
	if (!t.count)
		n += sprintf(buf, "No data\n");
	return n;
}

C
Christoph Lameter 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

static unsigned long slab_objects(struct kmem_cache *s,
			char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
		struct page *page = s->cpu_slab[cpu];
		int node;

		if (page) {
			node = page_to_nid(page);
			if (flags & SO_CPU) {
				int x = 0;

				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
				nodes[node] += x;
			}
			per_cpu[node]++;
		}
	}

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
			int full_slabs = atomic_read(&n->nr_slabs)
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
	for_each_online_node(node)
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

	for_each_possible_cpu(cpu)
		if (s->cpu_slab[cpu])
			return 1;

	for_each_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (n->nr_partial || atomic_read(&n->nr_slabs))
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t dtor_show(struct kmem_cache *s, char *buf)
{
	if (s->dtor) {
		int n = sprint_symbol(buf, (unsigned long)s->dtor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(dtor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3096
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1')
		validate_slab_cache(s);
	else
		return -EINVAL;
	return length;
}
SLAB_ATTR(validate);

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
#ifdef CONFIG_NUMA
static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
}

static ssize_t defrag_ratio_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
		s->defrag_ratio = n * 10;
	return length;
}
SLAB_ATTR(defrag_ratio);
#endif

static struct attribute * slab_attrs[] = {
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&dtor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
3261
	&validate_attr.attr,
3262
	&shrink_attr.attr,
3263 3264
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
	&defrag_ratio_attr.attr,
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

decl_subsys(slab, &slab_ktype, &slab_uevent_ops);

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
 * format
 * :[flags-]size:[memory address of kmemcache]
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
L
Linus Torvalds 已提交
3391
		sysfs_remove_link(&slab_subsys.kobj, s->name);
C
Christoph Lameter 已提交
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

	kobj_set_kset_s(s, slab_subsys);
	kobject_set_name(&s->kobj, name);
	kobject_init(&s->kobj);
	err = kobject_add(&s->kobj);
	if (err)
		return err;

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

struct saved_alias *alias_list;

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
L
Linus Torvalds 已提交
3446 3447
		sysfs_remove_link(&slab_subsys.kobj, name);
		return sysfs_create_link(&slab_subsys.kobj,
C
Christoph Lameter 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
						&s->kobj, name);
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
3464
	struct list_head *h;
C
Christoph Lameter 已提交
3465 3466 3467 3468 3469 3470 3471 3472
	int err;

	err = subsystem_register(&slab_subsys);
	if (err) {
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

3473 3474 3475 3476 3477 3478 3479 3480 3481
	slab_state = SYSFS;

	list_for_each(h, &slab_caches) {
		struct kmem_cache *s =
			container_of(h, struct kmem_cache, list);

		err = sysfs_slab_add(s);
		BUG_ON(err);
	}
C
Christoph Lameter 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
		BUG_ON(err);
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif