mmu.c 113.8 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65 66 67 68 69 70 71 72 73 74 75 76

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

77
#ifdef MMU_DEBUG
78
static bool dbg = 0;
79
module_param(dbg, bool, 0644);
80
#endif
A
Avi Kivity 已提交
81

82 83 84
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
A
Avi Kivity 已提交
85 86 87 88 89
#define ASSERT(x)							\
	if (!(x)) {							\
		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
		       __FILE__, __LINE__, #x);				\
	}
90
#endif
A
Avi Kivity 已提交
91

92 93
#define PTE_PREFETCH_NUM		8

94
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
95 96 97 98 99
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
100
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
101 102 103 104 105 106 107 108

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
109
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
110

111 112 113
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117 118

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


119
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
120 121
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 123 124 125 126 127
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
128 129 130 131

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 133 134
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
135

136 137
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
138

139 140 141 142 143
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

144 145
#include <trace/events/kvm.h>

146 147 148
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

149 150
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151

152 153
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

154 155 156
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

157 158 159
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
160 161
};

162 163 164 165
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
166
	int level;
167 168 169 170 171 172 173 174
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

175 176 177 178 179 180
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

181
static struct kmem_cache *pte_list_desc_cache;
182
static struct kmem_cache *mmu_page_header_cache;
183
static struct percpu_counter kvm_total_used_mmu_pages;
184

S
Sheng Yang 已提交
185 186 187 188 189
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
190 191 192
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
193
static void mmu_free_roots(struct kvm_vcpu *vcpu);
194 195 196 197 198 199 200

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

201
/*
202 203 204 205 206 207 208
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
209
 */
210
#define MMIO_SPTE_GEN_LOW_SHIFT		2
211 212
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

213 214 215
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
216 217
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
#define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

	WARN_ON(gen > MMIO_MAX_GEN);

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

241 242
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
243
	return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
244 245
}

246 247
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
248
{
249 250
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
251

252
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
253 254
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

255
	trace_mark_mmio_spte(sptep, gfn, access, gen);
256
	mmu_spte_set(sptep, mask);
257 258 259 260 261 262 263 264 265
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
266 267
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) >> PAGE_SHIFT;
268 269 270 271
}

static unsigned get_mmio_spte_access(u64 spte)
{
272 273
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) & ~PAGE_MASK;
274 275
}

276 277
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
278 279
{
	if (unlikely(is_noslot_pfn(pfn))) {
280
		mark_mmio_spte(kvm, sptep, gfn, access);
281 282 283 284 285
		return true;
	}

	return false;
}
286

287 288
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
289 290 291 292 293 294 295
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
296 297
}

S
Sheng Yang 已提交
298
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
299
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
300 301 302 303 304 305 306 307 308
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
309 310 311 312 313
static int is_cpuid_PSE36(void)
{
	return 1;
}

314 315
static int is_nx(struct kvm_vcpu *vcpu)
{
316
	return vcpu->arch.efer & EFER_NX;
317 318
}

319 320
static int is_shadow_present_pte(u64 pte)
{
321
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
322 323
}

M
Marcelo Tosatti 已提交
324 325 326 327 328
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

329
static int is_rmap_spte(u64 pte)
330
{
331
	return is_shadow_present_pte(pte);
332 333
}

334 335 336 337
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
338
	if (is_large_pte(pte))
339 340 341 342
		return 1;
	return 0;
}

343
static pfn_t spte_to_pfn(u64 pte)
344
{
345
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
346 347
}

348 349 350 351 352 353 354
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

355
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
356
static void __set_spte(u64 *sptep, u64 spte)
357
{
358
	*sptep = spte;
359 360
}

361
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
362
{
363 364 365 366 367 368 369
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
370 371 372 373 374

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
375 376 377 378 379 380

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
381
#else
382 383 384 385 386 387 388
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
389

390 391 392 393 394 395 396 397 398 399 400 401
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

402 403 404
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
405

406 407 408 409 410 411 412 413 414 415 416 417 418
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
419 420
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
437
	count_spte_clear(sptep, spte);
438 439 440 441 442 443 444 445 446 447 448
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
449 450
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
451
	count_spte_clear(sptep, spte);
452 453 454

	return orig.spte;
}
455 456 457 458

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
459 460 461 462 463 464 465 466 467 468 469 470 471 472
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
513 514
#endif

515 516
static bool spte_is_locklessly_modifiable(u64 spte)
{
517 518
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
519 520
}

521 522
static bool spte_has_volatile_bits(u64 spte)
{
523 524 525 526 527 528 529 530 531
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

532 533 534 535 536 537
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

538 539
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
540 541 542 543 544
		return false;

	return true;
}

545 546 547 548 549
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
564 565 566 567 568 569
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
570
 */
571
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
572
{
573
	u64 old_spte = *sptep;
574
	bool ret = false;
575 576

	WARN_ON(!is_rmap_spte(new_spte));
577

578 579 580 581
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
582

583
	if (!spte_has_volatile_bits(old_spte))
584
		__update_clear_spte_fast(sptep, new_spte);
585
	else
586
		old_spte = __update_clear_spte_slow(sptep, new_spte);
587

588 589 590 591 592
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
593 594
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
595 596
		ret = true;

597
	if (!shadow_accessed_mask)
598
		return ret;
599 600 601 602 603

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
604 605

	return ret;
606 607
}

608 609 610 611 612 613 614 615 616 617 618
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
619
		__update_clear_spte_fast(sptep, 0ull);
620
	else
621
		old_spte = __update_clear_spte_slow(sptep, 0ull);
622 623 624 625 626

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
627 628 629 630 631 632

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
633
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
634

635 636 637 638 639 640 641 642 643 644 645 646 647 648
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
649
	__update_clear_spte_fast(sptep, 0ull);
650 651
}

652 653 654 655 656 657 658
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
659 660 661 662 663 664 665 666 667 668 669
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
670 671 672 673
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
674 675 676 677 678 679 680 681
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
682 683
}

684
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
685
				  struct kmem_cache *base_cache, int min)
686 687 688 689
{
	void *obj;

	if (cache->nobjs >= min)
690
		return 0;
691
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
692
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
693
		if (!obj)
694
			return -ENOMEM;
695 696
		cache->objects[cache->nobjs++] = obj;
	}
697
	return 0;
698 699
}

700 701 702 703 704
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

705 706
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
707 708
{
	while (mc->nobjs)
709
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
710 711
}

A
Avi Kivity 已提交
712
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
713
				       int min)
A
Avi Kivity 已提交
714
{
715
	void *page;
A
Avi Kivity 已提交
716 717 718 719

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
720
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
721 722
		if (!page)
			return -ENOMEM;
723
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
724 725 726 727 728 729 730
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
731
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
732 733
}

734
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
735
{
736 737
	int r;

738
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
739
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
740 741
	if (r)
		goto out;
742
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
743 744
	if (r)
		goto out;
745
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
746
				   mmu_page_header_cache, 4);
747 748
out:
	return r;
749 750 751 752
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
753 754
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
755
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
756 757
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
758 759
}

760
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
761 762 763 764 765 766 767 768
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

769
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
770
{
771
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
772 773
}

774
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
775
{
776
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
777 778
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
795
/*
796 797
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
798
 */
799 800 801
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
802 803 804
{
	unsigned long idx;

805
	idx = gfn_to_index(gfn, slot->base_gfn, level);
806
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
807 808 809 810
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
811
	struct kvm_memory_slot *slot;
812
	struct kvm_lpage_info *linfo;
813
	int i;
M
Marcelo Tosatti 已提交
814

A
Avi Kivity 已提交
815
	slot = gfn_to_memslot(kvm, gfn);
816 817
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
818 819
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
820
	}
821
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
822 823 824 825
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
826
	struct kvm_memory_slot *slot;
827
	struct kvm_lpage_info *linfo;
828
	int i;
M
Marcelo Tosatti 已提交
829

A
Avi Kivity 已提交
830
	slot = gfn_to_memslot(kvm, gfn);
831 832
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
833 834 835
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
836
	}
837
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
838 839
}

840 841 842
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
843
{
844
	struct kvm_memory_slot *slot;
845
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
846

A
Avi Kivity 已提交
847
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
848
	if (slot) {
849 850
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
851 852 853 854 855
	}

	return 1;
}

856
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
857
{
J
Joerg Roedel 已提交
858
	unsigned long page_size;
859
	int i, ret = 0;
M
Marcelo Tosatti 已提交
860

J
Joerg Roedel 已提交
861
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
862

863 864 865 866 867 868 869 870
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

871
	return ret;
M
Marcelo Tosatti 已提交
872 873
}

874 875 876
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
877 878
{
	struct kvm_memory_slot *slot;
879 880 881 882 883 884 885 886 887 888 889

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
890
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
891 892 893 894 895
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
896

897 898 899 900 901
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
902
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
903 904

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
905 906 907 908
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
909 910
}

911
/*
912
 * Pte mapping structures:
913
 *
914
 * If pte_list bit zero is zero, then pte_list point to the spte.
915
 *
916 917
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
918
 *
919
 * Returns the number of pte entries before the spte was added or zero if
920 921
 * the spte was not added.
 *
922
 */
923 924
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
925
{
926
	struct pte_list_desc *desc;
927
	int i, count = 0;
928

929 930 931 932 933 934 935
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
936
		desc->sptes[1] = spte;
937
		*pte_list = (unsigned long)desc | 1;
938
		++count;
939
	} else {
940 941 942
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
943
			desc = desc->more;
944
			count += PTE_LIST_EXT;
945
		}
946 947
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
948 949
			desc = desc->more;
		}
A
Avi Kivity 已提交
950
		for (i = 0; desc->sptes[i]; ++i)
951
			++count;
A
Avi Kivity 已提交
952
		desc->sptes[i] = spte;
953
	}
954
	return count;
955 956
}

957 958 959
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
960 961 962
{
	int j;

963
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
964
		;
A
Avi Kivity 已提交
965 966
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
967 968 969
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
970
		*pte_list = (unsigned long)desc->sptes[0];
971 972 973 974
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
975 976
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
977 978
}

979
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
980
{
981 982
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
983 984
	int i;

985 986
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
987
		BUG();
988 989 990 991
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
992 993
			BUG();
		}
994
		*pte_list = 0;
995
	} else {
996 997
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
998 999
		prev_desc = NULL;
		while (desc) {
1000
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
1001
				if (desc->sptes[i] == spte) {
1002
					pte_list_desc_remove_entry(pte_list,
1003
							       desc, i,
1004 1005 1006 1007 1008 1009
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1010
		pr_err("pte_list_remove: %p many->many\n", spte);
1011 1012 1013 1014
		BUG();
	}
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1035
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1036
				    struct kvm_memory_slot *slot)
1037
{
1038
	unsigned long idx;
1039

1040
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1041
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1052
	return __gfn_to_rmap(gfn, level, slot);
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1147
static void drop_spte(struct kvm *kvm, u64 *sptep)
1148
{
1149
	if (mmu_spte_clear_track_bits(sptep))
1150
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1174
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1175
 * spte write-protection is caused by protecting shadow page table.
1176
 *
T
Tiejun Chen 已提交
1177
 * Note: write protection is difference between dirty logging and spte
1178 1179 1180 1181 1182
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1183
 *
1184
 * Return true if tlb need be flushed.
1185
 */
1186
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1187 1188 1189
{
	u64 spte = *sptep;

1190 1191
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1192 1193 1194 1195
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1196 1197
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1198
	spte = spte & ~PT_WRITABLE_MASK;
1199

1200
	return mmu_spte_update(sptep, spte);
1201 1202
}

1203
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1204
				 bool pt_protect)
1205
{
1206 1207
	u64 *sptep;
	struct rmap_iterator iter;
1208
	bool flush = false;
1209

1210 1211
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1212

1213
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1214
		sptep = rmap_get_next(&iter);
1215
	}
1216

1217
	return flush;
1218 1219
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1233 1234 1235
{
	unsigned long *rmapp;

1236
	while (mask) {
1237 1238
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1239
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1240

1241 1242 1243
		/* clear the first set bit */
		mask &= mask - 1;
	}
1244 1245
}

1246
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1247 1248
{
	struct kvm_memory_slot *slot;
1249 1250
	unsigned long *rmapp;
	int i;
1251
	bool write_protected = false;
1252 1253

	slot = gfn_to_memslot(kvm, gfn);
1254 1255 1256 1257

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1258
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1259 1260 1261
	}

	return write_protected;
1262 1263
}

F
Frederik Deweerdt 已提交
1264
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1265 1266
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
1267
{
1268 1269
	u64 *sptep;
	struct rmap_iterator iter;
1270 1271
	int need_tlb_flush = 0;

1272 1273
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1274 1275
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1276 1277

		drop_spte(kvm, sptep);
1278 1279
		need_tlb_flush = 1;
	}
1280

1281 1282 1283
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1284
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1285 1286
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1287
{
1288 1289
	u64 *sptep;
	struct rmap_iterator iter;
1290
	int need_flush = 0;
1291
	u64 new_spte;
1292 1293 1294 1295 1296
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1297 1298 1299

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
1300 1301
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1302

1303
		need_flush = 1;
1304

1305
		if (pte_write(*ptep)) {
1306 1307
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1308
		} else {
1309
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1310 1311 1312 1313
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1314
			new_spte &= ~shadow_accessed_mask;
1315 1316 1317 1318

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1319 1320
		}
	}
1321

1322 1323 1324 1325 1326 1327
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1328 1329 1330 1331 1332 1333
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1334
					       struct kvm_memory_slot *slot,
1335 1336
					       gfn_t gfn,
					       int level,
1337
					       unsigned long data))
1338
{
1339
	int j;
1340
	int ret = 0;
1341
	struct kvm_memslots *slots;
1342
	struct kvm_memory_slot *memslot;
1343

1344
	slots = kvm_memslots(kvm);
1345

1346
	kvm_for_each_memslot(memslot, slots) {
1347
		unsigned long hva_start, hva_end;
1348
		gfn_t gfn_start, gfn_end;
1349

1350 1351 1352 1353 1354 1355 1356
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1357
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1358
		 */
1359
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1360
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1361

1362 1363 1364 1365
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1366
			gfn_t gfn = gfn_start;
1367

1368 1369 1370 1371 1372 1373
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1374

1375
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1376

1377 1378 1379 1380
			for (; idx <= idx_end;
			       ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
				ret |= handler(kvm, rmapp++, memslot,
					       gfn, j, data);
1381 1382 1383
		}
	}

1384
	return ret;
1385 1386
}

1387 1388 1389
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1390
					 struct kvm_memory_slot *slot,
1391
					 gfn_t gfn, int level,
1392 1393 1394
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1395 1396 1397 1398
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1399 1400 1401
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1402 1403 1404 1405 1406
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1407 1408
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1409
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1410 1411
}

F
Frederik Deweerdt 已提交
1412
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1413 1414
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1415
{
1416
	u64 *sptep;
1417
	struct rmap_iterator uninitialized_var(iter);
1418 1419
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1420
	BUG_ON(!shadow_accessed_mask);
1421

1422 1423
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1424
		BUG_ON(!is_shadow_present_pte(*sptep));
1425

1426
		if (*sptep & shadow_accessed_mask) {
1427
			young = 1;
1428 1429
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1430 1431
		}
	}
1432
	trace_kvm_age_page(gfn, level, slot, young);
1433 1434 1435
	return young;
}

A
Andrea Arcangeli 已提交
1436
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1437 1438
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1439
{
1440 1441
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1452 1453
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1454
		BUG_ON(!is_shadow_present_pte(*sptep));
1455

1456
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1457 1458 1459 1460 1461 1462 1463 1464
			young = 1;
			break;
		}
	}
out:
	return young;
}

1465 1466
#define RMAP_RECYCLE_THRESHOLD 1000

1467
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1468 1469
{
	unsigned long *rmapp;
1470 1471 1472
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1473

1474
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1475

1476
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1477 1478 1479
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1480
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1481
{
A
Andres Lagar-Cavilla 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1503 1504
}

A
Andrea Arcangeli 已提交
1505 1506 1507 1508 1509
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1510
#ifdef MMU_DEBUG
1511
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1512
{
1513 1514 1515
	u64 *pos;
	u64 *end;

1516
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1517
		if (is_shadow_present_pte(*pos)) {
1518
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1519
			       pos, *pos);
A
Avi Kivity 已提交
1520
			return 0;
1521
		}
A
Avi Kivity 已提交
1522 1523
	return 1;
}
1524
#endif
A
Avi Kivity 已提交
1525

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1538
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1539
{
1540
	ASSERT(is_empty_shadow_page(sp->spt));
1541
	hlist_del(&sp->hash_link);
1542 1543
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1544 1545
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1546
	kmem_cache_free(mmu_page_header_cache, sp);
1547 1548
}

1549 1550
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1551
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1552 1553
}

1554
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1555
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1556 1557 1558 1559
{
	if (!parent_pte)
		return;

1560
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1561 1562
}

1563
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1564 1565
				       u64 *parent_pte)
{
1566
	pte_list_remove(parent_pte, &sp->parent_ptes);
1567 1568
}

1569 1570 1571 1572
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1573
	mmu_spte_clear_no_track(parent_pte);
1574 1575
}

1576 1577
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1578
{
1579
	struct kvm_mmu_page *sp;
1580

1581 1582
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1583
	if (!direct)
1584
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1585
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1586 1587 1588 1589 1590 1591

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1592 1593 1594 1595 1596
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1597 1598
}

1599
static void mark_unsync(u64 *spte);
1600
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1601
{
1602
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1603 1604
}

1605
static void mark_unsync(u64 *spte)
1606
{
1607
	struct kvm_mmu_page *sp;
1608
	unsigned int index;
1609

1610
	sp = page_header(__pa(spte));
1611 1612
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1613
		return;
1614
	if (sp->unsync_children++)
1615
		return;
1616
	kvm_mmu_mark_parents_unsync(sp);
1617 1618
}

1619
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1620
			       struct kvm_mmu_page *sp)
1621 1622 1623 1624
{
	return 1;
}

M
Marcelo Tosatti 已提交
1625 1626 1627 1628
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1629 1630
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1631
				 const void *pte)
1632 1633 1634 1635
{
	WARN_ON(1);
}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1646 1647
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1648
{
1649
	int i;
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1666

1667
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1668
		struct kvm_mmu_page *child;
1669 1670
		u64 ent = sp->spt[i];

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1700 1701 1702
	}


1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1714 1715 1716 1717 1718
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1719
	trace_kvm_mmu_sync_page(sp);
1720 1721 1722 1723
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1724 1725 1726 1727
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1739 1740 1741 1742 1743 1744 1745 1746
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1747

1748
/* @sp->gfn should be write-protected at the call site */
1749
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1750
			   struct list_head *invalid_list, bool clear_unsync)
1751
{
1752
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1753
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1754 1755 1756
		return 1;
	}

1757
	if (clear_unsync)
1758 1759
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1760
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1761
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1762 1763 1764
		return 1;
	}

1765
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1766 1767 1768
	return 0;
}

1769 1770 1771
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1772
	LIST_HEAD(invalid_list);
1773 1774
	int ret;

1775
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1776
	if (ret)
1777 1778
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1779 1780 1781
	return ret;
}

1782 1783 1784 1785 1786 1787 1788
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1789 1790
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1791
{
1792
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1793 1794
}

1795 1796 1797 1798
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1799
	LIST_HEAD(invalid_list);
1800 1801
	bool flush = false;

1802
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1803
		if (!s->unsync)
1804 1805 1806
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1807
		kvm_unlink_unsync_page(vcpu->kvm, s);
1808
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1809
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1810
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1811 1812 1813 1814 1815
			continue;
		}
		flush = true;
	}

1816
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1817
	if (flush)
1818
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1819 1820
}

1821 1822 1823
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1824 1825
};

1826 1827 1828 1829 1830 1831
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1832 1833 1834
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1853
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1854
{
1855 1856 1857 1858 1859
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1860

1861 1862 1863 1864 1865 1866 1867 1868 1869
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1870 1871
}

1872 1873 1874
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1875
{
1876 1877 1878
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1879

1880 1881 1882 1883 1884 1885 1886
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1887
	LIST_HEAD(invalid_list);
1888 1889 1890

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1891
		bool protected = false;
1892 1893 1894 1895 1896 1897 1898

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1899
		for_each_sp(pages, sp, parents, i) {
1900
			kvm_sync_page(vcpu, sp, &invalid_list);
1901 1902
			mmu_pages_clear_parents(&parents);
		}
1903
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1904
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1905 1906
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1907 1908
}

1909 1910 1911 1912 1913 1914 1915 1916
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1929 1930 1931 1932 1933
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1934 1935 1936 1937
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1938
					     int direct,
1939
					     unsigned access,
1940
					     u64 *parent_pte)
1941 1942 1943
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1944 1945
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1946

1947
	role = vcpu->arch.mmu.base_role;
1948
	role.level = level;
1949
	role.direct = direct;
1950
	if (role.direct)
1951
		role.cr4_pae = 0;
1952
	role.access = access;
1953 1954
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1955 1956 1957 1958
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1959
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1960 1961 1962
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1963 1964
		if (!need_sync && sp->unsync)
			need_sync = true;
1965

1966 1967
		if (sp->role.word != role.word)
			continue;
1968

1969 1970
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1971

1972 1973
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1974
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1975 1976 1977
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1978

1979
		__clear_sp_write_flooding_count(sp);
1980 1981 1982
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1983
	++vcpu->kvm->stat.mmu_cache_miss;
1984
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1985 1986 1987 1988
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1989 1990
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1991
	if (!direct) {
1992 1993
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1994 1995 1996
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1997 1998
		account_shadowed(vcpu->kvm, gfn);
	}
1999
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2000
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
2001
	trace_kvm_mmu_get_page(sp, true);
2002
	return sp;
2003 2004
}

2005 2006 2007 2008 2009 2010
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2011 2012 2013 2014 2015 2016

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2031

2032 2033 2034 2035 2036
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2037 2038
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2039
{
2040
	if (is_last_spte(spte, iterator->level)) {
2041 2042 2043 2044
		iterator->level = 0;
		return;
	}

2045
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2046 2047 2048
	--iterator->level;
}

2049 2050 2051 2052 2053
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2054
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2055 2056 2057
{
	u64 spte;

2058 2059 2060
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2061
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2062 2063 2064 2065
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2066

2067
	mmu_spte_set(sptep, spte);
2068 2069
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2087
		drop_parent_pte(child, sptep);
2088 2089 2090 2091
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2092
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2093 2094 2095 2096 2097 2098 2099
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2100
		if (is_last_spte(pte, sp->role.level)) {
2101
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2102 2103 2104
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2105
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2106
			drop_parent_pte(child, spte);
2107
		}
X
Xiao Guangrong 已提交
2108 2109 2110 2111
		return true;
	}

	if (is_mmio_spte(pte))
2112
		mmu_spte_clear_no_track(spte);
2113

X
Xiao Guangrong 已提交
2114
	return false;
2115 2116
}

2117
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2118
					 struct kvm_mmu_page *sp)
2119
{
2120 2121
	unsigned i;

2122 2123
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2124 2125
}

2126
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2127
{
2128
	mmu_page_remove_parent_pte(sp, parent_pte);
2129 2130
}

2131
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2132
{
2133 2134
	u64 *sptep;
	struct rmap_iterator iter;
2135

2136 2137
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2138 2139
}

2140
static int mmu_zap_unsync_children(struct kvm *kvm,
2141 2142
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2143
{
2144 2145 2146
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2147

2148
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2149
		return 0;
2150 2151 2152 2153 2154 2155

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2156
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2157
			mmu_pages_clear_parents(&parents);
2158
			zapped++;
2159 2160 2161 2162 2163
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2164 2165
}

2166 2167
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2168
{
2169
	int ret;
A
Avi Kivity 已提交
2170

2171
	trace_kvm_mmu_prepare_zap_page(sp);
2172
	++kvm->stat.mmu_shadow_zapped;
2173
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2174
	kvm_mmu_page_unlink_children(kvm, sp);
2175
	kvm_mmu_unlink_parents(kvm, sp);
2176

2177
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2178
		unaccount_shadowed(kvm, sp->gfn);
2179

2180 2181
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2182
	if (!sp->root_count) {
2183 2184
		/* Count self */
		ret++;
2185
		list_move(&sp->link, invalid_list);
2186
		kvm_mod_used_mmu_pages(kvm, -1);
2187
	} else {
A
Avi Kivity 已提交
2188
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2189 2190 2191 2192 2193 2194 2195

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2196
	}
2197 2198

	sp->role.invalid = 1;
2199
	return ret;
2200 2201
}

2202 2203 2204
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2205
	struct kvm_mmu_page *sp, *nsp;
2206 2207 2208 2209

	if (list_empty(invalid_list))
		return;

2210 2211 2212 2213 2214
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2215

2216 2217 2218 2219 2220
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2221

2222
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2223
		WARN_ON(!sp->role.invalid || sp->root_count);
2224
		kvm_mmu_free_page(sp);
2225
	}
2226 2227
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2243 2244
/*
 * Changing the number of mmu pages allocated to the vm
2245
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2246
 */
2247
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2248
{
2249
	LIST_HEAD(invalid_list);
2250

2251 2252
	spin_lock(&kvm->mmu_lock);

2253
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2254 2255 2256 2257
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2258

2259
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2260
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2261 2262
	}

2263
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2264 2265

	spin_unlock(&kvm->mmu_lock);
2266 2267
}

2268
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2269
{
2270
	struct kvm_mmu_page *sp;
2271
	LIST_HEAD(invalid_list);
2272 2273
	int r;

2274
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2275
	r = 0;
2276
	spin_lock(&kvm->mmu_lock);
2277
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2278
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2279 2280
			 sp->role.word);
		r = 1;
2281
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2282
	}
2283
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2284 2285
	spin_unlock(&kvm->mmu_lock);

2286
	return r;
2287
}
2288
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2289

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2383
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2384 2385 2386 2387 2388 2389 2390 2391 2392
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2393
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2394

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2405 2406
{
	struct kvm_mmu_page *s;
2407

2408
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2409
		if (s->unsync)
2410
			continue;
2411 2412
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2413 2414 2415 2416 2417 2418
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2419 2420 2421
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2422
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2423 2424 2425
		if (!can_unsync)
			return 1;

2426
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2427
			return 1;
2428

G
Gleb Natapov 已提交
2429
		if (!s->unsync)
2430
			need_unsync = true;
2431
	}
2432 2433
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2434 2435 2436
	return 0;
}

A
Avi Kivity 已提交
2437
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2438
		    unsigned pte_access, int level,
2439
		    gfn_t gfn, pfn_t pfn, bool speculative,
2440
		    bool can_unsync, bool host_writable)
2441
{
2442
	u64 spte;
M
Marcelo Tosatti 已提交
2443
	int ret = 0;
S
Sheng Yang 已提交
2444

2445
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2446 2447
		return 0;

2448
	spte = PT_PRESENT_MASK;
2449
	if (!speculative)
2450
		spte |= shadow_accessed_mask;
2451

S
Sheng Yang 已提交
2452 2453 2454 2455
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2456

2457
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2458
		spte |= shadow_user_mask;
2459

2460
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2461
		spte |= PT_PAGE_SIZE_MASK;
2462
	if (tdp_enabled)
2463
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2464
			kvm_is_reserved_pfn(pfn));
2465

2466
	if (host_writable)
2467
		spte |= SPTE_HOST_WRITEABLE;
2468 2469
	else
		pte_access &= ~ACC_WRITE_MASK;
2470

2471
	spte |= (u64)pfn << PAGE_SHIFT;
2472

2473
	if (pte_access & ACC_WRITE_MASK) {
2474

X
Xiao Guangrong 已提交
2475
		/*
2476 2477 2478 2479
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2480
		 */
2481
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2482
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2483
			goto done;
2484

2485
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2486

2487 2488 2489 2490 2491 2492
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2493
		if (!can_unsync && is_writable_pte(*sptep))
2494 2495
			goto set_pte;

2496
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2497
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2498
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2499
			ret = 1;
2500
			pte_access &= ~ACC_WRITE_MASK;
2501
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2502 2503 2504 2505 2506 2507
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2508
set_pte:
2509
	if (mmu_spte_update(sptep, spte))
2510
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2511
done:
M
Marcelo Tosatti 已提交
2512 2513 2514
	return ret;
}

A
Avi Kivity 已提交
2515
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2516 2517 2518
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2519 2520
{
	int was_rmapped = 0;
2521
	int rmap_count;
M
Marcelo Tosatti 已提交
2522

2523 2524
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2525

A
Avi Kivity 已提交
2526
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2527 2528 2529 2530
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2531 2532
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2533
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2534
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2535 2536

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2537
			drop_parent_pte(child, sptep);
2538
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2539
		} else if (pfn != spte_to_pfn(*sptep)) {
2540
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2541
				 spte_to_pfn(*sptep), pfn);
2542
			drop_spte(vcpu->kvm, sptep);
2543
			kvm_flush_remote_tlbs(vcpu->kvm);
2544 2545
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2546
	}
2547

2548 2549
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2550
		if (write_fault)
2551
			*emulate = 1;
2552
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2553
	}
M
Marcelo Tosatti 已提交
2554

2555 2556 2557
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2558
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2559
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2560
		 is_large_pte(*sptep)? "2MB" : "4kB",
2561 2562
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2563
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2564 2565
		++vcpu->kvm->stat.lpages;

2566 2567 2568 2569 2570 2571
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2572
	}
2573

X
Xiao Guangrong 已提交
2574
	kvm_release_pfn_clean(pfn);
2575 2576
}

2577 2578 2579 2580 2581
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2582
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2583
	if (!slot)
2584
		return KVM_PFN_ERR_FAULT;
2585

2586
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2599
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2600 2601 2602 2603 2604 2605 2606
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2607
		mmu_set_spte(vcpu, start, access, 0, NULL,
2608 2609
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2626
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2657
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2658 2659
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2660
{
2661
	struct kvm_shadow_walk_iterator iterator;
2662
	struct kvm_mmu_page *sp;
2663
	int emulate = 0;
2664
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2665

2666 2667 2668
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2669
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2670
		if (iterator.level == level) {
2671
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2672 2673
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2674
			direct_pte_prefetch(vcpu, iterator.sptep);
2675 2676
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2677 2678
		}

2679
		drop_large_spte(vcpu, iterator.sptep);
2680
		if (!is_shadow_present_pte(*iterator.sptep)) {
2681 2682 2683 2684
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2685 2686 2687
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2688

2689
			link_shadow_page(iterator.sptep, sp, true);
2690 2691
		}
	}
2692
	return emulate;
A
Avi Kivity 已提交
2693 2694
}

H
Huang Ying 已提交
2695
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2696
{
H
Huang Ying 已提交
2697 2698 2699 2700 2701 2702 2703
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2704

H
Huang Ying 已提交
2705
	send_sig_info(SIGBUS, &info, tsk);
2706 2707
}

2708
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2709
{
X
Xiao Guangrong 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2719
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2720
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2721
		return 0;
2722
	}
2723

2724
	return -EFAULT;
2725 2726
}

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2740
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2762
			kvm_get_pfn(pfn);
2763 2764 2765 2766 2767
			*pfnp = pfn;
		}
	}
}

2768 2769 2770 2771 2772 2773
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2774
	if (unlikely(is_error_pfn(pfn))) {
2775 2776 2777 2778
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2779
	if (unlikely(is_noslot_pfn(pfn)))
2780 2781 2782 2783 2784 2785 2786
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2787
static bool page_fault_can_be_fast(u32 error_code)
2788
{
2789 2790 2791 2792 2793 2794 2795
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2809 2810
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2837
	struct kvm_mmu_page *sp;
2838 2839 2840
	bool ret = false;
	u64 spte = 0ull;

2841 2842 2843
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2844
	if (!page_fault_can_be_fast(error_code))
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2861 2862
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2896 2897 2898 2899 2900
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2901
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2902
exit:
X
Xiao Guangrong 已提交
2903 2904
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2905 2906 2907 2908 2909
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2910
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2911
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2912
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2913

2914 2915
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2916 2917
{
	int r;
2918
	int level;
2919
	int force_pt_level;
2920
	pfn_t pfn;
2921
	unsigned long mmu_seq;
2922
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2934

2935 2936 2937
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2938

2939 2940 2941
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2942
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2943
	smp_rmb();
2944

2945
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2946
		return 0;
2947

2948 2949
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2950

2951
	spin_lock(&vcpu->kvm->mmu_lock);
2952
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2953
		goto out_unlock;
2954
	make_mmu_pages_available(vcpu);
2955 2956
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2957 2958
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2959 2960 2961
	spin_unlock(&vcpu->kvm->mmu_lock);


2962
	return r;
2963 2964 2965 2966 2967

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2968 2969 2970
}


2971 2972 2973
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2974
	struct kvm_mmu_page *sp;
2975
	LIST_HEAD(invalid_list);
2976

2977
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2978
		return;
2979

2980 2981 2982
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2983
		hpa_t root = vcpu->arch.mmu.root_hpa;
2984

2985
		spin_lock(&vcpu->kvm->mmu_lock);
2986 2987
		sp = page_header(root);
		--sp->root_count;
2988 2989 2990 2991
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2992
		spin_unlock(&vcpu->kvm->mmu_lock);
2993
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2994 2995
		return;
	}
2996 2997

	spin_lock(&vcpu->kvm->mmu_lock);
2998
	for (i = 0; i < 4; ++i) {
2999
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3000

A
Avi Kivity 已提交
3001 3002
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3003 3004
			sp = page_header(root);
			--sp->root_count;
3005
			if (!sp->root_count && sp->role.invalid)
3006 3007
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3008
		}
3009
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3010
	}
3011
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3012
	spin_unlock(&vcpu->kvm->mmu_lock);
3013
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3014 3015
}

3016 3017 3018 3019 3020
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3021
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3022 3023 3024 3025 3026 3027
		ret = 1;
	}

	return ret;
}

3028 3029 3030
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3031
	unsigned i;
3032 3033 3034

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3035
		make_mmu_pages_available(vcpu);
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

			ASSERT(!VALID_PAGE(root));
			spin_lock(&vcpu->kvm->mmu_lock);
3047
			make_mmu_pages_available(vcpu);
3048 3049
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3050 3051 3052 3053 3054 3055 3056
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3057
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3058 3059 3060 3061 3062 3063 3064
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3065
{
3066
	struct kvm_mmu_page *sp;
3067 3068 3069
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3070

3071
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3072

3073 3074 3075 3076 3077 3078 3079 3080
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3081
		hpa_t root = vcpu->arch.mmu.root_hpa;
3082 3083

		ASSERT(!VALID_PAGE(root));
3084

3085
		spin_lock(&vcpu->kvm->mmu_lock);
3086
		make_mmu_pages_available(vcpu);
3087 3088
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3089 3090
		root = __pa(sp->spt);
		++sp->root_count;
3091
		spin_unlock(&vcpu->kvm->mmu_lock);
3092
		vcpu->arch.mmu.root_hpa = root;
3093
		return 0;
3094
	}
3095

3096 3097
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3098 3099
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3100
	 */
3101 3102 3103 3104
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3105
	for (i = 0; i < 4; ++i) {
3106
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3107 3108

		ASSERT(!VALID_PAGE(root));
3109
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3110
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3111
			if (!is_present_gpte(pdptr)) {
3112
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3113 3114
				continue;
			}
A
Avi Kivity 已提交
3115
			root_gfn = pdptr >> PAGE_SHIFT;
3116 3117
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3118
		}
3119
		spin_lock(&vcpu->kvm->mmu_lock);
3120
		make_mmu_pages_available(vcpu);
3121
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3122
				      PT32_ROOT_LEVEL, 0,
3123
				      ACC_ALL, NULL);
3124 3125
		root = __pa(sp->spt);
		++sp->root_count;
3126 3127
		spin_unlock(&vcpu->kvm->mmu_lock);

3128
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3129
	}
3130
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3157
	return 0;
3158 3159
}

3160 3161 3162 3163 3164 3165 3166 3167
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3168 3169 3170 3171 3172
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3173 3174 3175
	if (vcpu->arch.mmu.direct_map)
		return;

3176 3177
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3178

3179
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3180
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3181
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3182 3183 3184
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3185
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3186 3187 3188 3189 3190
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3191
		if (root && VALID_PAGE(root)) {
3192 3193 3194 3195 3196
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3197
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3198 3199 3200 3201 3202 3203
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3204
	spin_unlock(&vcpu->kvm->mmu_lock);
3205
}
N
Nadav Har'El 已提交
3206
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3207

3208
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3209
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3210
{
3211 3212
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3213 3214 3215
	return vaddr;
}

3216
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3217 3218
					 u32 access,
					 struct x86_exception *exception)
3219
{
3220 3221
	if (exception)
		exception->error_code = 0;
3222
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3223 3224
}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3253 3254 3255
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3270
		return RET_MMIO_PF_EMULATE;
3271 3272 3273 3274 3275 3276 3277

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3278 3279 3280
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3281 3282
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3283 3284

		trace_handle_mmio_page_fault(addr, gfn, access);
3285
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3286
		return RET_MMIO_PF_EMULATE;
3287 3288 3289 3290 3291 3292 3293
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3294
		return RET_MMIO_PF_BUG;
3295 3296 3297 3298 3299

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3300
	return RET_MMIO_PF_RETRY;
3301 3302 3303 3304 3305 3306 3307 3308 3309
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3310
	WARN_ON(ret == RET_MMIO_PF_BUG);
3311 3312 3313
	return ret;
}

A
Avi Kivity 已提交
3314
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3315
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3316
{
3317
	gfn_t gfn;
3318
	int r;
A
Avi Kivity 已提交
3319

3320
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3321

3322 3323 3324 3325 3326 3327
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3328

3329 3330 3331
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3332

A
Avi Kivity 已提交
3333
	ASSERT(vcpu);
3334
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3335

3336
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3337

3338
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3339
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3340 3341
}

3342
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3343 3344
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3345

3346
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3347
	arch.gfn = gfn;
3348
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3349
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3350

3351
	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3363
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3364
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3365 3366 3367
{
	bool async;

3368
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3369 3370 3371 3372

	if (!async)
		return false; /* *pfn has correct page already */

3373
	if (!prefault && can_do_async_pf(vcpu)) {
3374
		trace_kvm_try_async_get_page(gva, gfn);
3375 3376 3377 3378 3379 3380 3381 3382
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3383
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3384 3385 3386 3387

	return false;
}

G
Gleb Natapov 已提交
3388
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3389
			  bool prefault)
3390
{
3391
	pfn_t pfn;
3392
	int r;
3393
	int level;
3394
	int force_pt_level;
M
Marcelo Tosatti 已提交
3395
	gfn_t gfn = gpa >> PAGE_SHIFT;
3396
	unsigned long mmu_seq;
3397 3398
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3399 3400 3401 3402

	ASSERT(vcpu);
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

3403 3404 3405 3406 3407 3408
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3409

3410 3411 3412 3413
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3414 3415 3416 3417 3418 3419
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3420

3421 3422 3423
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3424
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3425
	smp_rmb();
3426

3427
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3428 3429
		return 0;

3430 3431 3432
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3433
	spin_lock(&vcpu->kvm->mmu_lock);
3434
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3435
		goto out_unlock;
3436
	make_mmu_pages_available(vcpu);
3437 3438
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3439
	r = __direct_map(vcpu, gpa, write, map_writable,
3440
			 level, gfn, pfn, prefault);
3441 3442 3443
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3444 3445 3446 3447 3448

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3449 3450
}

3451 3452
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3453 3454 3455
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3456
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3457
	context->invlpg = nonpaging_invlpg;
3458
	context->update_pte = nonpaging_update_pte;
3459
	context->root_level = 0;
A
Avi Kivity 已提交
3460
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3461
	context->root_hpa = INVALID_PAGE;
3462
	context->direct_map = true;
3463
	context->nx = false;
A
Avi Kivity 已提交
3464 3465
}

3466
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3467
{
3468
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3469 3470
}

3471 3472
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3473
	return kvm_read_cr3(vcpu);
3474 3475
}

3476 3477
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3478
{
3479
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3480 3481
}

3482 3483
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3484 3485 3486 3487 3488 3489 3490 3491
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3492
		mark_mmio_spte(kvm, sptep, gfn, access);
3493 3494 3495 3496 3497 3498
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3508 3509 3510 3511 3512
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3513 3514 3515 3516 3517 3518 3519 3520
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3521
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3522
				  struct kvm_mmu *context)
3523 3524 3525
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;
3526
	u64 gbpages_bit_rsvd = 0;
3527
	u64 nonleaf_bit8_rsvd = 0;
3528

3529 3530
	context->bad_mt_xwr = 0;

3531
	if (!context->nx)
3532
		exb_bit_rsvd = rsvd_bits(63, 63);
3533 3534
	if (!guest_cpuid_has_gbpages(vcpu))
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3535 3536 3537 3538 3539 3540 3541 3542

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
	if (guest_cpuid_is_amd(vcpu))
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3543
	switch (context->root_level) {
3544 3545 3546 3547
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3548 3549 3550 3551 3552 3553 3554
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3555 3556 3557 3558 3559 3560 3561 3562
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3563 3564
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3565
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3566
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3567
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3568 3569 3570 3571 3572
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3573
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3574 3575 3576
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3577
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3578
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3579
			nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3580
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3581
			rsvd_bits(maxphyaddr, 51);
3582 3583 3584
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3585
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3586
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3587
			rsvd_bits(13, 29);
3588
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3589 3590
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3591
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3592 3593 3594 3595
		break;
	}
}

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

F
Feng Wu 已提交
3628
void update_permission_bitmask(struct kvm_vcpu *vcpu,
3629
		struct kvm_mmu *mmu, bool ept)
3630 3631 3632
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3633
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3634

F
Feng Wu 已提交
3635
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3636
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3637 3638 3639 3640 3641 3642
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3643 3644 3645 3646 3647 3648
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3649 3650 3651 3652 3653
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3654 3655 3656 3657 3658 3659
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3660
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3681 3682 3683
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3684

F
Feng Wu 已提交
3685 3686
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3687 3688 3689 3690 3691 3692
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3711 3712 3713
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3714
{
3715
	context->nx = is_nx(vcpu);
3716
	context->root_level = level;
3717

3718
	reset_rsvds_bits_mask(vcpu, context);
3719
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3720
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3721 3722 3723 3724

	ASSERT(is_pae(vcpu));
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3725
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3726
	context->invlpg = paging64_invlpg;
3727
	context->update_pte = paging64_update_pte;
3728
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3729
	context->root_hpa = INVALID_PAGE;
3730
	context->direct_map = false;
A
Avi Kivity 已提交
3731 3732
}

3733 3734
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3735
{
3736
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3737 3738
}

3739 3740
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3741
{
3742
	context->nx = false;
3743
	context->root_level = PT32_ROOT_LEVEL;
3744

3745
	reset_rsvds_bits_mask(vcpu, context);
3746
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3747
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3748 3749 3750

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3751
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3752
	context->invlpg = paging32_invlpg;
3753
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3754
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3755
	context->root_hpa = INVALID_PAGE;
3756
	context->direct_map = false;
A
Avi Kivity 已提交
3757 3758
}

3759 3760
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3761
{
3762
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3763 3764
}

3765
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3766
{
3767
	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3768

3769
	context->base_role.word = 0;
3770
	context->page_fault = tdp_page_fault;
3771
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3772
	context->invlpg = nonpaging_invlpg;
3773
	context->update_pte = nonpaging_update_pte;
3774
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3775
	context->root_hpa = INVALID_PAGE;
3776
	context->direct_map = true;
3777
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3778
	context->get_cr3 = get_cr3;
3779
	context->get_pdptr = kvm_pdptr_read;
3780
	context->inject_page_fault = kvm_inject_page_fault;
3781 3782

	if (!is_paging(vcpu)) {
3783
		context->nx = false;
3784 3785 3786
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3787
		context->nx = is_nx(vcpu);
3788
		context->root_level = PT64_ROOT_LEVEL;
3789 3790
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3791
	} else if (is_pae(vcpu)) {
3792
		context->nx = is_nx(vcpu);
3793
		context->root_level = PT32E_ROOT_LEVEL;
3794 3795
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3796
	} else {
3797
		context->nx = false;
3798
		context->root_level = PT32_ROOT_LEVEL;
3799 3800
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3801 3802
	}

3803
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3804
	update_last_pte_bitmap(vcpu, context);
3805 3806
}

3807
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
A
Avi Kivity 已提交
3808
{
3809
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
A
Avi Kivity 已提交
3810
	ASSERT(vcpu);
3811
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3812 3813

	if (!is_paging(vcpu))
3814
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3815
	else if (is_long_mode(vcpu))
3816
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3817
	else if (is_pae(vcpu))
3818
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3819
	else
3820
		paging32_init_context(vcpu, context);
3821

3822
	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3823
	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3824
	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3825 3826
	vcpu->arch.mmu.base_role.smep_andnot_wp
		= smep && !is_write_protection(vcpu);
3827 3828 3829
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3830
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
N
Nadav Har'El 已提交
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
		bool execonly)
{
	ASSERT(vcpu);
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3853
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3854
{
3855
	kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3856 3857
	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3858
	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3859
	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
3860 3861
}

3862
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3863 3864 3865 3866
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3867
	g_context->get_pdptr         = kvm_pdptr_read;
3868 3869 3870 3871 3872 3873 3874 3875 3876
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3877
		g_context->nx = false;
3878 3879 3880
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3881
		g_context->nx = is_nx(vcpu);
3882
		g_context->root_level = PT64_ROOT_LEVEL;
3883
		reset_rsvds_bits_mask(vcpu, g_context);
3884 3885
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3886
		g_context->nx = is_nx(vcpu);
3887
		g_context->root_level = PT32E_ROOT_LEVEL;
3888
		reset_rsvds_bits_mask(vcpu, g_context);
3889 3890
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3891
		g_context->nx = false;
3892
		g_context->root_level = PT32_ROOT_LEVEL;
3893
		reset_rsvds_bits_mask(vcpu, g_context);
3894 3895 3896
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3897
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3898
	update_last_pte_bitmap(vcpu, g_context);
3899 3900
}

3901
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3902
{
3903 3904 3905
	if (mmu_is_nested(vcpu))
		return init_kvm_nested_mmu(vcpu);
	else if (tdp_enabled)
3906 3907 3908 3909 3910
		return init_kvm_tdp_mmu(vcpu);
	else
		return init_kvm_softmmu(vcpu);
}

3911
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3912 3913 3914
{
	ASSERT(vcpu);

3915
	kvm_mmu_unload(vcpu);
3916
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3917
}
3918
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3919 3920

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3921
{
3922 3923
	int r;

3924
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3925 3926
	if (r)
		goto out;
3927
	r = mmu_alloc_roots(vcpu);
3928
	kvm_mmu_sync_roots(vcpu);
3929 3930
	if (r)
		goto out;
3931
	/* set_cr3() should ensure TLB has been flushed */
3932
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3933 3934
out:
	return r;
A
Avi Kivity 已提交
3935
}
A
Avi Kivity 已提交
3936 3937 3938 3939 3940
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
3941
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3942
}
3943
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3944

3945
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3946 3947
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3948
{
3949
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3950 3951
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3952
        }
3953

A
Avi Kivity 已提交
3954
	++vcpu->kvm->stat.mmu_pte_updated;
3955
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3956 3957
}

3958 3959 3960 3961 3962 3963 3964 3965
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
3966 3967
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
3968 3969 3970
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3971 3972
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3973
{
3974 3975 3976 3977
	if (zap_page)
		return;

	if (remote_flush)
3978
		kvm_flush_remote_tlbs(vcpu->kvm);
3979
	else if (local_flush)
3980
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3981 3982
}

3983 3984
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3985
{
3986 3987
	u64 gentry;
	int r;
3988 3989 3990

	/*
	 * Assume that the pte write on a page table of the same type
3991 3992
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3993
	 */
3994
	if (is_pae(vcpu) && *bytes == 4) {
3995
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3996 3997
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3998
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3999 4000
		if (r)
			gentry = 0;
4001 4002 4003
		new = (const u8 *)&gentry;
	}

4004
	switch (*bytes) {
4005 4006 4007 4008 4009 4010 4011 4012 4013
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4014 4015
	}

4016 4017 4018 4019 4020 4021 4022
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4023
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4024
{
4025 4026 4027 4028
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4029
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4030
		return false;
4031

4032
	return ++sp->write_flooding_count >= 3;
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4049 4050 4051 4052 4053 4054 4055 4056

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4103
	bool remote_flush, local_flush, zap_page;
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4127
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4128

4129
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4130
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4131
		if (detect_write_misaligned(sp, gpa, bytes) ||
4132
		      detect_write_flooding(sp)) {
4133
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4134
						     &invalid_list);
A
Avi Kivity 已提交
4135
			++vcpu->kvm->stat.mmu_flooded;
4136 4137
			continue;
		}
4138 4139 4140 4141 4142

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4143
		local_flush = true;
4144
		while (npte--) {
4145
			entry = *spte;
4146
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4147 4148
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4149
			      & mask.word) && rmap_can_add(vcpu))
4150
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4151
			if (need_remote_flush(entry, *spte))
4152
				remote_flush = true;
4153
			++spte;
4154 4155
		}
	}
4156
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4157
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4158
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4159
	spin_unlock(&vcpu->kvm->mmu_lock);
4160 4161
}

4162 4163
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4164 4165
	gpa_t gpa;
	int r;
4166

4167
	if (vcpu->arch.mmu.direct_map)
4168 4169
		return 0;

4170
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4171 4172

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4173

4174
	return r;
4175
}
4176
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4177

4178
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4179
{
4180
	LIST_HEAD(invalid_list);
4181

4182 4183 4184
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4185 4186 4187
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4188

A
Avi Kivity 已提交
4189
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4190
	}
4191
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4192 4193
}

4194 4195 4196 4197 4198 4199 4200 4201
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4202 4203
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4204
{
4205
	int r, emulation_type = EMULTYPE_RETRY;
4206 4207
	enum emulation_result er;

G
Gleb Natapov 已提交
4208
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4209 4210 4211 4212 4213 4214 4215 4216
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4217 4218 4219 4220
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4221 4222 4223 4224

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4225
	case EMULATE_USER_EXIT:
4226
		++vcpu->stat.mmio_exits;
4227
		/* fall through */
4228
	case EMULATE_FAIL:
4229
		return 0;
4230 4231 4232 4233 4234 4235 4236 4237
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4238 4239 4240
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4241
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4242 4243 4244 4245
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4246 4247 4248 4249 4250 4251
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4252 4253 4254 4255 4256 4257
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4258 4259
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4260
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4261 4262
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4263 4264 4265 4266
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4267
	struct page *page;
A
Avi Kivity 已提交
4268 4269 4270 4271
	int i;

	ASSERT(vcpu);

4272 4273 4274 4275 4276 4277 4278
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4279 4280
		return -ENOMEM;

4281
	vcpu->arch.mmu.pae_root = page_address(page);
4282
	for (i = 0; i < 4; ++i)
4283
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4284

A
Avi Kivity 已提交
4285 4286 4287
	return 0;
}

4288
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4289 4290
{
	ASSERT(vcpu);
4291 4292 4293 4294 4295

	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4296

4297 4298
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4299

4300
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4301 4302
{
	ASSERT(vcpu);
4303
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4304

4305
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4306 4307
}

4308
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4309
{
4310 4311 4312
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4313

4314 4315
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4316

4317 4318
	spin_lock(&kvm->mmu_lock);

4319 4320 4321 4322
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4323

4324 4325
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4326

4327 4328 4329
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4330

4331
			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4332
				cond_resched_lock(&kvm->mmu_lock);
4333
		}
A
Avi Kivity 已提交
4334
	}
4335

4336
	spin_unlock(&kvm->mmu_lock);
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
	kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4357
}
4358

X
Xiao Guangrong 已提交
4359
#define BATCH_ZAP_PAGES	10
4360 4361 4362
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4363
	int batch = 0;
4364 4365 4366 4367

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4368 4369
		int ret;

4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4385 4386 4387 4388
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4389
		if (batch >= BATCH_ZAP_PAGES &&
4390
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4391
			batch = 0;
4392 4393 4394
			goto restart;
		}

4395 4396
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4397 4398 4399
		batch += ret;

		if (ret)
4400 4401 4402
			goto restart;
	}

4403 4404 4405 4406
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4407
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4422
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4423 4424
	kvm->arch.mmu_valid_gen++;

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4436 4437 4438 4439
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4440 4441 4442 4443 4444
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4445 4446 4447 4448 4449 4450
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4451
	if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4452
		printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4453
		kvm_mmu_invalidate_zap_all_pages(kvm);
4454
	}
4455 4456
}

4457 4458
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4459 4460
{
	struct kvm *kvm;
4461
	int nr_to_scan = sc->nr_to_scan;
4462
	unsigned long freed = 0;
4463

4464
	spin_lock(&kvm_lock);
4465 4466

	list_for_each_entry(kvm, &vm_list, vm_list) {
4467
		int idx;
4468
		LIST_HEAD(invalid_list);
4469

4470 4471 4472 4473 4474 4475 4476 4477
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4478 4479 4480 4481 4482 4483
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4484 4485
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4486 4487
			continue;

4488
		idx = srcu_read_lock(&kvm->srcu);
4489 4490
		spin_lock(&kvm->mmu_lock);

4491 4492 4493 4494 4495 4496
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4497 4498
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4499
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4500

4501
unlock:
4502
		spin_unlock(&kvm->mmu_lock);
4503
		srcu_read_unlock(&kvm->srcu, idx);
4504

4505 4506 4507 4508 4509
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4510 4511
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4512 4513
	}

4514
	spin_unlock(&kvm_lock);
4515 4516 4517 4518 4519 4520
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4521
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4522 4523 4524
}

static struct shrinker mmu_shrinker = {
4525 4526
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4527 4528 4529
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4530
static void mmu_destroy_caches(void)
4531
{
4532 4533
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4534 4535
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4536 4537 4538 4539
}

int kvm_mmu_module_init(void)
{
4540 4541
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4542
					    0, 0, NULL);
4543
	if (!pte_list_desc_cache)
4544 4545
		goto nomem;

4546 4547
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4548
						  0, 0, NULL);
4549 4550 4551
	if (!mmu_page_header_cache)
		goto nomem;

4552
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4553 4554
		goto nomem;

4555 4556
	register_shrinker(&mmu_shrinker);

4557 4558 4559
	return 0;

nomem:
4560
	mmu_destroy_caches();
4561 4562 4563
	return -ENOMEM;
}

4564 4565 4566 4567 4568 4569 4570
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4571
	struct kvm_memslots *slots;
4572
	struct kvm_memory_slot *memslot;
4573

4574 4575
	slots = kvm_memslots(kvm);

4576 4577
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4578 4579 4580 4581 4582 4583 4584 4585

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4586 4587 4588
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4589
	u64 spte;
4590 4591
	int nr_sptes = 0;

4592 4593 4594
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4595 4596 4597
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4598
		nr_sptes++;
4599
		if (!is_shadow_present_pte(spte))
4600 4601
			break;
	}
4602
	walk_shadow_page_lockless_end(vcpu);
4603 4604 4605 4606 4607

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4608 4609 4610 4611
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);

4612
	kvm_mmu_unload(vcpu);
4613 4614
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4615 4616 4617 4618 4619 4620 4621
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4622 4623
	mmu_audit_disable();
}