efx.c 83.1 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 85
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
87 88
};

89 90 91 92 93 94
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

95 96 97 98 99 100
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

101 102 103 104 105 106 107 108 109
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
110 111
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
112
 *
113
 * This is only used in MSI-X interrupt mode
114
 */
115 116
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
117 118
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
119 120 121 122 123 124 125

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
126 127
 * monitor.
 * On Falcon-based NICs, this will:
128 129
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
130 131
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
132
 */
S
stephen hemminger 已提交
133
static unsigned int efx_monitor_interval = 1 * HZ;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
166
 * The default (0) means to assign an interrupt to each core.
167 168 169 170 171
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

172 173
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
174 175
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

176
static unsigned irq_adapt_low_thresh = 8000;
177 178 179 180
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

181
static unsigned irq_adapt_high_thresh = 16000;
182 183 184 185
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

186 187 188 189 190 191 192
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

193 194 195 196 197
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
198

199
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
200
static void efx_soft_disable_interrupts(struct efx_nic *efx);
201
static void efx_remove_channel(struct efx_channel *channel);
202
static void efx_remove_channels(struct efx_nic *efx);
203
static const struct efx_channel_type efx_default_channel_type;
204
static void efx_remove_port(struct efx_nic *efx);
205
static void efx_init_napi_channel(struct efx_channel *channel);
206
static void efx_fini_napi(struct efx_nic *efx);
207
static void efx_fini_napi_channel(struct efx_channel *channel);
208 209 210
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
211 212 213

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
214
		if ((efx->state == STATE_READY) ||	\
215
		    (efx->state == STATE_RECOVERY) ||	\
216
		    (efx->state == STATE_DISABLED))	\
217 218 219
			ASSERT_RTNL();			\
	} while (0)

220 221
static int efx_check_disabled(struct efx_nic *efx)
{
222
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
223 224 225 226 227 228 229
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

230 231 232 233 234 235 236 237 238 239 240 241 242
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
243
static int efx_process_channel(struct efx_channel *channel, int budget)
244
{
245
	int spent;
246

247
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
248
		return 0;
249

250
	spent = efx_nic_process_eventq(channel, budget);
251 252 253 254
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

255
		efx_rx_flush_packet(channel);
256
		efx_fast_push_rx_descriptors(rx_queue, true);
257 258
	}

259
	return spent;
260 261 262 263 264 265 266 267 268 269 270
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
271
	struct efx_nic *efx = channel->efx;
272
	int spent;
273

274 275 276
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
277

278
	spent = efx_process_channel(channel, budget);
279

280
	if (spent < budget) {
281
		if (efx_channel_has_rx_queue(channel) &&
282 283 284 285
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
286 287
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
288
					efx->type->push_irq_moderation(channel);
289
				}
290 291
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
292 293 294
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
295
					efx->type->push_irq_moderation(channel);
296
				}
297 298 299 300 301
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

302 303
		efx_filter_rfs_expire(channel);

304
		/* There is no race here; although napi_disable() will
305
		 * only wait for napi_complete(), this isn't a problem
306
		 * since efx_nic_eventq_read_ack() will have no effect if
307 308
		 * interrupts have already been disabled.
		 */
309
		napi_complete(napi);
310
		efx_nic_eventq_read_ack(channel);
311 312
	}

313
	return spent;
314 315 316 317 318 319 320 321 322
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
323 324 325
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

326
	netif_dbg(efx, probe, efx->net_dev,
327
		  "chan %d create event queue\n", channel->channel);
328

329 330 331 332 333 334
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

335
	return efx_nic_probe_eventq(channel);
336 337 338
}

/* Prepare channel's event queue */
339
static int efx_init_eventq(struct efx_channel *channel)
340
{
341
	struct efx_nic *efx = channel->efx;
342 343 344 345
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

346
	netif_dbg(efx, drv, efx->net_dev,
347
		  "chan %d init event queue\n", channel->channel);
348

349 350
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
351
		efx->type->push_irq_moderation(channel);
352 353 354 355
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
356 357
}

358 359 360 361 362 363
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

364
	/* Make sure the NAPI handler sees the enabled flag set */
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

382 383
static void efx_fini_eventq(struct efx_channel *channel)
{
384 385 386
	if (!channel->eventq_init)
		return;

387 388
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
389

390
	efx_nic_fini_eventq(channel);
391
	channel->eventq_init = false;
392 393 394 395
}

static void efx_remove_eventq(struct efx_channel *channel)
{
396 397
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
398

399
	efx_nic_remove_eventq(channel);
400 401 402 403 404 405 406 407
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

408
/* Allocate and initialise a channel structure. */
409 410 411 412 413 414 415 416
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

417 418 419
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
420

421 422 423
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
424

425 426 427 428 429 430
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
431

432 433 434 435
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
436

437 438 439 440 441 442 443 444 445 446 447 448 449
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
450

451 452 453 454 455 456 457 458
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
459

460 461 462
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
463
			tx_queue->channel = channel;
464 465
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
466 467 468
	}

	rx_queue = &channel->rx_queue;
469 470
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
471 472 473 474 475 476
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

477 478 479 480 481 482
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

483 484
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
485

486 487 488 489
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

490 491
	rc = efx_probe_eventq(channel);
	if (rc)
492
		goto fail;
493 494 495 496

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
497
			goto fail;
498 499 500 501 502
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
503
			goto fail;
504 505 506 507 508 509
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

510 511
fail:
	efx_remove_channel(channel);
512 513 514
	return rc;
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
533

534 535 536 537
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

538 539
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
540 541
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
542 543
}

544 545 546 547 548 549 550 551
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

552 553 554 555 556 557
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

575 576 577 578
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
579
static void efx_start_datapath(struct efx_nic *efx)
580
{
581
	bool old_rx_scatter = efx->rx_scatter;
582 583 584
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
585
	size_t rx_buf_len;
586

587 588 589 590
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
591
	efx->rx_dma_len = (efx->rx_prefix_size +
592 593
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
594
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
595
		      efx->rx_ip_align + efx->rx_dma_len);
596
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
597
		efx->rx_scatter = efx->type->always_rx_scatter;
598 599
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
600
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
601
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
602 603 604
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
605 606 607 608 609 610 611 612
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

613 614 615 616 617 618 619 620 621 622 623
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
624

J
Jon Cooper 已提交
625
	/* RX filters may also have scatter-enabled flags */
626
	if (efx->rx_scatter != old_rx_scatter)
627
		efx->type->filter_update_rx_scatter(efx);
628

629 630 631 632 633 634 635 636 637 638
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

639 640
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
641
		efx_for_each_channel_tx_queue(tx_queue, channel) {
642
			efx_init_tx_queue(tx_queue);
643 644
			atomic_inc(&efx->active_queues);
		}
645

646
		efx_for_each_channel_rx_queue(rx_queue, channel) {
647
			efx_init_rx_queue(rx_queue);
648
			atomic_inc(&efx->active_queues);
649 650 651
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
652
		}
653

654
		WARN_ON(channel->rx_pkt_n_frags);
655 656
	}

657 658
	efx_ptp_start_datapath(efx);

659 660
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
661 662
}

663
static void efx_stop_datapath(struct efx_nic *efx)
664 665 666 667
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
668
	int rc;
669 670 671 672

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

673 674
	efx_ptp_stop_datapath(efx);

675 676 677 678 679 680
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

681
	efx_for_each_channel(channel, efx) {
682 683 684 685 686 687 688 689 690 691
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
692
	}
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
712 713
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
714
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
715 716 717 718 719 720 721 722 723
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

724 725
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
726 727 728

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
729
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
730 731
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
732
	channel->type->post_remove(channel);
733 734
}

735 736 737 738 739 740 741 742 743 744 745 746 747
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
748
	unsigned i, next_buffer_table = 0;
749
	int rc, rc2;
750 751 752 753

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
776

777
	efx_device_detach_sync(efx);
778
	efx_stop_all(efx);
B
Ben Hutchings 已提交
779
	efx_soft_disable_interrupts(efx);
780

781
	/* Clone channels (where possible) */
782 783
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
784 785 786
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

805 806
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
807 808

	for (i = 0; i < efx->n_channels; i++) {
809 810 811 812 813 814 815
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
816
	}
817

818
out:
819 820 821 822 823 824 825 826 827
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
828

829 830 831 832 833 834 835 836 837 838
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
839 840 841 842 843 844 845 846 847 848 849 850 851 852
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

853
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
854
{
855
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
856 857
}

858 859
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
860
	.post_remove		= efx_channel_dummy_op_void,
861 862 863 864 865 866 867 868 869 870
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

871 872 873 874
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

875 876 877 878 879 880 881 882 883 884
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
885
void efx_link_status_changed(struct efx_nic *efx)
886
{
887 888
	struct efx_link_state *link_state = &efx->link_state;

889 890 891 892 893 894 895
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

896
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
897 898
		efx->n_link_state_changes++;

899
		if (link_state->up)
900 901 902 903 904 905
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
906
	if (link_state->up)
907
		netif_info(efx, link, efx->net_dev,
908
			   "link up at %uMbps %s-duplex (MTU %d)\n",
909
			   link_state->speed, link_state->fd ? "full" : "half",
910
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
911
	else
912
		netif_info(efx, link, efx->net_dev, "link down\n");
913 914
}

B
Ben Hutchings 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

928
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

943 944
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
945 946 947 948 949 950 951 952
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
953
{
B
Ben Hutchings 已提交
954 955
	enum efx_phy_mode phy_mode;
	int rc;
956

B
Ben Hutchings 已提交
957
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
958

B
Ben Hutchings 已提交
959 960
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
961 962 963 964 965
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
966
	rc = efx->type->reconfigure_port(efx);
967

B
Ben Hutchings 已提交
968 969
	if (rc)
		efx->phy_mode = phy_mode;
970

B
Ben Hutchings 已提交
971
	return rc;
972 973 974 975
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
976
int efx_reconfigure_port(struct efx_nic *efx)
977
{
B
Ben Hutchings 已提交
978 979
	int rc;

980 981 982
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
983
	rc = __efx_reconfigure_port(efx);
984
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
985 986

	return rc;
987 988
}

989 990 991
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
992 993 994 995 996
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
997
	if (efx->port_enabled)
998
		efx->type->reconfigure_mac(efx);
999 1000 1001
	mutex_unlock(&efx->mac_lock);
}

1002 1003 1004 1005
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1006
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1007

1008 1009 1010
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1011 1012
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1013
	if (rc)
1014
		return rc;
1015

1016 1017
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1018 1019 1020 1021 1022 1023 1024 1025

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1026
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1027

1028 1029
	mutex_lock(&efx->mac_lock);

1030
	rc = efx->phy_op->init(efx);
1031
	if (rc)
1032
		goto fail1;
1033

1034
	efx->port_initialized = true;
1035

B
Ben Hutchings 已提交
1036 1037
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1038
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1039 1040 1041 1042 1043 1044

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1045
	mutex_unlock(&efx->mac_lock);
1046
	return 0;
1047

1048
fail2:
1049
	efx->phy_op->fini(efx);
1050 1051
fail1:
	mutex_unlock(&efx->mac_lock);
1052
	return rc;
1053 1054 1055 1056
}

static void efx_start_port(struct efx_nic *efx)
{
1057
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1058 1059 1060
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1061
	efx->port_enabled = true;
1062

1063
	/* Ensure MAC ingress/egress is enabled */
1064
	efx->type->reconfigure_mac(efx);
1065

1066 1067 1068
	mutex_unlock(&efx->mac_lock);
}

1069 1070 1071 1072 1073
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1074 1075
static void efx_stop_port(struct efx_nic *efx)
{
1076
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1077

1078 1079
	EFX_ASSERT_RESET_SERIALISED(efx);

1080
	mutex_lock(&efx->mac_lock);
1081
	efx->port_enabled = false;
1082 1083 1084
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1085 1086
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1087 1088 1089 1090

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1091 1092 1093 1094
}

static void efx_fini_port(struct efx_nic *efx)
{
1095
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1096 1097 1098 1099

	if (!efx->port_initialized)
		return;

1100
	efx->phy_op->fini(efx);
1101
	efx->port_initialized = false;
1102

1103
	efx->link_state.up = false;
1104 1105 1106 1107 1108
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1109
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1110

1111
	efx->type->remove_port(efx);
1112 1113 1114 1115 1116 1117 1118 1119
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1191 1192 1193 1194 1195
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1196
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1197 1198
	int rc;

1199
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1200 1201 1202

	rc = pci_enable_device(pci_dev);
	if (rc) {
1203 1204
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1216
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1217
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1218 1219 1220
			if (rc == 0)
				break;
		}
1221 1222 1223
		dma_mask >>= 1;
	}
	if (rc) {
1224 1225
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1226 1227
		goto fail2;
	}
1228 1229
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1230

1231 1232
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1233
	if (rc) {
1234 1235
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1236 1237 1238
		rc = -EIO;
		goto fail3;
	}
1239
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1240
	if (!efx->membase) {
1241 1242
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1243
			  (unsigned long long)efx->membase_phys, mem_map_size);
1244 1245 1246
		rc = -ENOMEM;
		goto fail4;
	}
1247 1248
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1249 1250
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1251 1252 1253 1254

	return 0;

 fail4:
1255
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1256
 fail3:
1257
	efx->membase_phys = 0;
1258 1259 1260 1261 1262 1263 1264 1265
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1266
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1267 1268 1269 1270 1271 1272 1273

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1274
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1275
		efx->membase_phys = 0;
1276 1277 1278 1279 1280
	}

	pci_disable_device(efx->pci_dev);
}

1281
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1282
{
1283
	cpumask_var_t thread_mask;
1284
	unsigned int count;
1285
	int cpu;
1286

1287 1288 1289 1290 1291 1292 1293 1294
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1306 1307
	}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1319 1320 1321 1322 1323 1324 1325 1326
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1327
static int efx_probe_interrupts(struct efx_nic *efx)
1328
{
1329 1330
	unsigned int extra_channels = 0;
	unsigned int i, j;
1331
	int rc;
1332

1333 1334 1335 1336
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1337
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1338
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1339
		unsigned int n_channels;
1340

1341
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1342 1343
		if (separate_tx_channels)
			n_channels *= 2;
1344
		n_channels += extra_channels;
1345
		n_channels = min(n_channels, efx->max_channels);
1346

B
Ben Hutchings 已提交
1347
		for (i = 0; i < n_channels; i++)
1348
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1349
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1350
		if (rc > 0) {
1351 1352
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1353
				  " available (%d < %u).\n", rc, n_channels);
1354 1355
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1356 1357
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1358
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1359
					     n_channels);
1360 1361 1362
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1363
			efx->n_channels = n_channels;
1364 1365
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1366
			if (separate_tx_channels) {
1367 1368 1369 1370
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1371
			} else {
1372 1373
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1374
			}
1375
			for (i = 0; i < efx->n_channels; i++)
1376 1377
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1378 1379 1380
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1381 1382
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1383 1384 1385 1386 1387
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1388
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1389 1390
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1391 1392
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1393
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1394
		} else {
1395 1396
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1397 1398 1399 1400 1401 1402
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1403
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1404 1405
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1406 1407
		efx->legacy_irq = efx->pci_dev->irq;
	}
1408

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1424
	/* RSS might be usable on VFs even if it is disabled on the PF */
1425
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1426 1427
			   efx->n_rx_channels : efx_vf_size(efx));

1428
	return 0;
1429 1430
}

1431
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1432
{
1433 1434
	struct efx_channel *channel, *end_channel;
	int rc;
1435

1436 1437
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1438 1439
	efx->irq_soft_enabled = true;
	smp_wmb();
1440 1441

	efx_for_each_channel(channel, efx) {
1442 1443 1444 1445 1446
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1447 1448 1449 1450
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1464 1465
}

B
Ben Hutchings 已提交
1466
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1467 1468 1469
{
	struct efx_channel *channel;

1470 1471 1472
	if (efx->state == STATE_DISABLED)
		return;

1473 1474
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1475 1476 1477 1478
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1479 1480 1481 1482 1483 1484 1485
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1486
		if (!channel->type->keep_eventq)
1487
			efx_fini_eventq(channel);
1488
	}
1489 1490 1491

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1492 1493
}

1494
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1495
{
1496 1497
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1498 1499 1500 1501 1502 1503 1504 1505

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1506
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1507 1508

	efx_for_each_channel(channel, efx) {
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1527
		if (channel->type->keep_eventq)
1528
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1529 1530
	}

1531 1532 1533
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1547
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1548 1549
}

1550 1551 1552 1553 1554
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1555
	efx_for_each_channel(channel, efx)
1556 1557 1558 1559 1560 1561 1562 1563
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1564
static void efx_set_channels(struct efx_nic *efx)
1565
{
1566 1567 1568
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1569
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1570
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1571

1572 1573
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1574 1575 1576
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1577 1578 1579 1580 1581
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1582 1583 1584 1585
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1586 1587 1588 1589
}

static int efx_probe_nic(struct efx_nic *efx)
{
1590
	size_t i;
1591 1592
	int rc;

1593
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1594 1595

	/* Carry out hardware-type specific initialisation */
1596
	rc = efx->type->probe(efx);
1597 1598 1599
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1600
	/* Determine the number of channels and queues by trying to hook
1601
	 * in MSI-X interrupts. */
1602 1603
	rc = efx_probe_interrupts(efx);
	if (rc)
1604
		goto fail1;
1605

1606 1607 1608
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1609

1610 1611
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1612
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1613
		efx->rx_indir_table[i] =
1614
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1615

1616
	efx_set_channels(efx);
1617 1618
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1619 1620

	/* Initialise the interrupt moderation settings */
1621 1622
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1623 1624

	return 0;
1625

1626 1627 1628
fail2:
	efx_remove_interrupts(efx);
fail1:
1629 1630
	efx->type->remove(efx);
	return rc;
1631 1632 1633 1634
}

static void efx_remove_nic(struct efx_nic *efx)
{
1635
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1636 1637

	efx_remove_interrupts(efx);
1638
	efx->type->remove(efx);
1639 1640
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1691
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1692 1693 1694 1695 1696
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1697
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1698 1699 1700
		goto fail2;
	}

1701 1702 1703 1704 1705
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1706
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1707

B
Ben Hutchings 已提交
1708 1709 1710 1711
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1712
		goto fail3;
B
Ben Hutchings 已提交
1713 1714
	}

1715 1716 1717 1718
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1719 1720
	return 0;

B
Ben Hutchings 已提交
1721
 fail4:
1722
	efx_remove_filters(efx);
1723 1724 1725 1726 1727 1728 1729 1730
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1731 1732 1733 1734 1735 1736
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1737
 */
1738 1739 1740
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1741
	BUG_ON(efx->state == STATE_DISABLED);
1742 1743 1744

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1745
	if (efx->port_enabled || !netif_running(efx->net_dev))
1746 1747 1748
		return;

	efx_start_port(efx);
1749
	efx_start_datapath(efx);
1750

1751 1752
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1753 1754
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1755 1756 1757 1758 1759

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1760 1761 1762 1763 1764
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1765

1766
	efx->type->start_stats(efx);
1767 1768 1769 1770
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1771 1772
}

1773 1774 1775 1776 1777
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1778 1779 1780 1781 1782 1783 1784 1785
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1786 1787 1788 1789 1790 1791 1792
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1793
	efx->type->stop_stats(efx);
1794 1795
	efx_stop_port(efx);

1796 1797 1798 1799 1800 1801
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1802 1803 1804
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1805 1806 1807 1808
}

static void efx_remove_all(struct efx_nic *efx)
{
1809
	efx_remove_channels(efx);
1810
	efx_remove_filters(efx);
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1821
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1822
{
1823 1824
	if (usecs == 0)
		return 0;
1825
	if (usecs * 1000 < quantum_ns)
1826
		return 1; /* never round down to 0 */
1827
	return usecs * 1000 / quantum_ns;
1828 1829
}

1830
/* Set interrupt moderation parameters */
1831 1832 1833
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1834
{
1835
	struct efx_channel *channel;
1836 1837 1838 1839 1840
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1841 1842 1843

	EFX_ASSERT_RESET_SERIALISED(efx);

1844
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1845 1846
		return -EINVAL;

1847 1848 1849
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1850 1851 1852 1853 1854 1855 1856
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1857
	efx->irq_rx_adaptive = rx_adaptive;
1858
	efx->irq_rx_moderation = rx_ticks;
1859
	efx_for_each_channel(channel, efx) {
1860
		if (efx_channel_has_rx_queue(channel))
1861
			channel->irq_moderation = rx_ticks;
1862
		else if (efx_channel_has_tx_queues(channel))
1863 1864
			channel->irq_moderation = tx_ticks;
	}
1865 1866

	return 0;
1867 1868
}

1869 1870 1871
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1872 1873 1874 1875
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1876
	*rx_adaptive = efx->irq_rx_adaptive;
1877 1878 1879
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1880 1881 1882 1883 1884 1885 1886 1887

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1888
		*tx_usecs = DIV_ROUND_UP(
1889
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1890 1891
			efx->timer_quantum_ns,
			1000);
1892 1893
}

1894 1895 1896 1897 1898 1899
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1900
/* Run periodically off the general workqueue */
1901 1902 1903 1904 1905
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1906 1907 1908
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1909
	BUG_ON(efx->type->monitor == NULL);
1910 1911 1912

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1913 1914 1915 1916 1917 1918
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1935
	struct efx_nic *efx = netdev_priv(net_dev);
1936
	struct mii_ioctl_data *data = if_mii(ifr);
1937

1938
	if (cmd == SIOCSHWTSTAMP)
1939 1940 1941
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
1942

1943 1944 1945 1946 1947 1948
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1949 1950 1951 1952 1953 1954 1955 1956
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1957 1958 1959 1960 1961 1962 1963 1964 1965
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1966
static void efx_init_napi(struct efx_nic *efx)
1967 1968 1969
{
	struct efx_channel *channel;

1970 1971
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1972 1973 1974 1975 1976 1977 1978
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1979 1980 1981 1982 1983 1984
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1985 1986
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2003
	struct efx_nic *efx = netdev_priv(net_dev);
2004 2005
	struct efx_channel *channel;

2006
	efx_for_each_channel(channel, efx)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
2021
	struct efx_nic *efx = netdev_priv(net_dev);
2022 2023
	int rc;

2024 2025
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2026

2027 2028 2029
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2030 2031
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2032 2033
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2034

2035 2036 2037 2038
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2039
	efx_start_all(efx);
2040
	efx_selftest_async_start(efx);
2041 2042 2043 2044 2045 2046 2047 2048 2049
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
2050
	struct efx_nic *efx = netdev_priv(net_dev);
2051

2052 2053
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2054

2055 2056
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2057 2058 2059 2060

	return 0;
}

2061
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2062 2063
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2064
{
2065
	struct efx_nic *efx = netdev_priv(net_dev);
2066

2067
	spin_lock_bh(&efx->stats_lock);
2068
	efx->type->update_stats(efx, NULL, stats);
2069 2070
	spin_unlock_bh(&efx->stats_lock);

2071 2072 2073 2074 2075 2076
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2077
	struct efx_nic *efx = netdev_priv(net_dev);
2078

2079 2080 2081
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2082

2083
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2084 2085 2086 2087 2088 2089
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2090
	struct efx_nic *efx = netdev_priv(net_dev);
2091
	int rc;
2092

2093 2094 2095
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2096 2097 2098
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2099
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2100

2101 2102 2103
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2104
	mutex_lock(&efx->mac_lock);
2105
	net_dev->mtu = new_mtu;
2106
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2107 2108
	mutex_unlock(&efx->mac_lock);

2109
	efx_start_all(efx);
2110
	netif_device_attach(efx->net_dev);
2111
	return 0;
2112 2113 2114 2115
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2116
	struct efx_nic *efx = netdev_priv(net_dev);
2117 2118 2119 2120
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2121 2122 2123
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2124
		return -EADDRNOTAVAIL;
2125 2126 2127
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2128
	efx_sriov_mac_address_changed(efx);
2129 2130

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2131
	mutex_lock(&efx->mac_lock);
2132
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2133
	mutex_unlock(&efx->mac_lock);
2134 2135 2136 2137

	return 0;
}

2138
/* Context: netif_addr_lock held, BHs disabled. */
2139
static void efx_set_rx_mode(struct net_device *net_dev)
2140
{
2141
	struct efx_nic *efx = netdev_priv(net_dev);
2142

2143 2144 2145
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2146 2147
}

2148
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2149 2150 2151 2152 2153
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2154
		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2155 2156 2157 2158

	return 0;
}

2159
static const struct net_device_ops efx_farch_netdev_ops = {
S
Stephen Hemminger 已提交
2160 2161
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2162
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2163 2164 2165 2166 2167 2168
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2169
	.ndo_set_rx_mode	= efx_set_rx_mode,
2170
	.ndo_set_features	= efx_set_features,
2171 2172 2173 2174 2175 2176
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2177 2178 2179
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2180
	.ndo_setup_tc		= efx_setup_tc,
2181 2182 2183
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2184 2185
};

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
static const struct net_device_ops efx_ef10_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats64	= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_rx_mode	= efx_set_rx_mode,
	.ndo_set_features	= efx_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= efx_netpoll,
#endif
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
};

2206 2207 2208 2209 2210 2211 2212
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2213 2214 2215
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2216
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2217

2218 2219
	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2220 2221
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2222 2223 2224 2225 2226 2227 2228 2229

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2230 2231 2232 2233 2234 2235
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2236
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2237

2238 2239 2240
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2241
	struct efx_channel *channel;
2242 2243 2244 2245
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2246 2247 2248 2249 2250 2251
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
		net_dev->netdev_ops = &efx_ef10_netdev_ops;
		net_dev->priv_flags |= IFF_UNICAST_FLT;
	} else {
		net_dev->netdev_ops = &efx_farch_netdev_ops;
	}
2252
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2253
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2254

2255
	rtnl_lock();
2256

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2270 2271 2272
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2273
	efx_update_name(efx);
2274

2275 2276 2277
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2278 2279 2280 2281
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2282 2283
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2284 2285
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2286 2287
	}

2288 2289
	efx_associate(efx);

2290
	rtnl_unlock();
2291

B
Ben Hutchings 已提交
2292 2293
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2294 2295
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2296 2297 2298
		goto fail_registered;
	}

2299
	return 0;
B
Ben Hutchings 已提交
2300

2301 2302
fail_registered:
	rtnl_lock();
2303
	efx_dissociate(efx);
2304
	unregister_netdevice(net_dev);
2305
fail_locked:
2306
	efx->state = STATE_UNINIT;
2307
	rtnl_unlock();
2308
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2309
	return rc;
2310 2311 2312 2313 2314 2315 2316
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2317
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2318

2319 2320
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2321 2322 2323 2324 2325

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2326 2327 2328 2329 2330 2331 2332 2333
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2334 2335
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2336
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2337 2338 2339
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2340
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2341
	efx_disable_interrupts(efx);
2342 2343

	mutex_lock(&efx->mac_lock);
2344 2345
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2346
	efx->type->fini(efx);
2347 2348
}

B
Ben Hutchings 已提交
2349 2350 2351 2352 2353
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2354
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2355 2356 2357
{
	int rc;

B
Ben Hutchings 已提交
2358
	EFX_ASSERT_RESET_SERIALISED(efx);
2359

2360
	rc = efx->type->init(efx);
2361
	if (rc) {
2362
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2363
		goto fail;
2364 2365
	}

2366 2367 2368
	if (!ok)
		goto fail;

2369
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2370 2371 2372 2373
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2374 2375
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2376 2377
	}

2378 2379 2380
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
B
Ben Hutchings 已提交
2381
	efx_restore_filters(efx);
2382
	efx_sriov_reset(efx);
2383 2384 2385 2386 2387 2388 2389 2390 2391

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2392 2393 2394

	mutex_unlock(&efx->mac_lock);

2395 2396 2397
	return rc;
}

2398 2399
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2400
 *
2401
 * Caller must hold the rtnl_lock.
2402
 */
2403
int efx_reset(struct efx_nic *efx, enum reset_type method)
2404
{
2405 2406
	int rc, rc2;
	bool disabled;
2407

2408 2409
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2410

2411
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2412
	efx_reset_down(efx, method);
2413

2414
	rc = efx->type->reset(efx, method);
2415
	if (rc) {
2416
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2417
		goto out;
2418 2419
	}

2420 2421 2422 2423
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2424 2425 2426 2427 2428 2429 2430

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2431
out:
2432
	/* Leave device stopped if necessary */
2433 2434 2435
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2436 2437 2438 2439 2440
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2441 2442
	}

2443
	if (disabled) {
2444
		dev_close(efx->net_dev);
2445
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2446 2447
		efx->state = STATE_DISABLED;
	} else {
2448
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2449
		netif_device_attach(efx->net_dev);
2450
	}
2451 2452 2453
	return rc;
}

2454 2455 2456 2457 2458
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2459
int efx_try_recovery(struct efx_nic *efx)
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2498 2499 2500 2501 2502
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2503
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2504 2505 2506 2507 2508 2509
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2510 2511 2512
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2513 2514 2515 2516
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2517

2518
	if (!pending)
2519 2520
		return;

2521
	rtnl_lock();
2522 2523 2524 2525 2526 2527

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2528
		(void)efx_reset(efx, method);
2529

2530
	rtnl_unlock();
2531 2532 2533 2534 2535 2536
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2537 2538 2539 2540 2541 2542 2543
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2544 2545 2546
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2547
	case RESET_TYPE_RECOVER_OR_ALL:
2548 2549
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2550
	case RESET_TYPE_RECOVER_OR_DISABLE:
2551
	case RESET_TYPE_MC_BIST:
2552
		method = type;
2553 2554
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2555 2556
		break;
	default:
2557
		method = efx->type->map_reset_reason(type);
2558 2559 2560
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2561 2562
		break;
	}
2563

2564
	set_bit(method, &efx->reset_pending);
2565 2566 2567 2568 2569 2570 2571
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2572

2573 2574 2575 2576
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2577
	queue_work(reset_workqueue, &efx->reset_work);
2578 2579 2580 2581 2582 2583 2584 2585 2586
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2587
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2588 2589
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2590
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2591 2592
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2593
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2594
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2595
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2596
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2597
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2598 2599
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2600 2601 2602 2603 2604
	{0}			/* end of list */
};

/**************************************************************************
 *
2605
 * Dummy PHY/MAC operations
2606
 *
2607
 * Can be used for some unimplemented operations
2608 2609 2610 2611 2612 2613 2614 2615 2616
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2617 2618

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2619 2620 2621
{
	return false;
}
2622

2623
static const struct efx_phy_operations efx_dummy_phy_operations = {
2624
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2625
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2626
	.poll		 = efx_port_dummy_op_poll,
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2639
static int efx_init_struct(struct efx_nic *efx,
2640 2641
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2642
	int i;
2643 2644

	/* Initialise common structures */
2645 2646
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2647
	spin_lock_init(&efx->biu_lock);
2648 2649 2650
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2651 2652
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2653
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2654
	efx->pci_dev = pci_dev;
2655
	efx->msg_enable = debug;
2656
	efx->state = STATE_UNINIT;
2657 2658 2659
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2660
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2661 2662
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2663 2664
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2665 2666
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2667 2668 2669
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2670
	efx->mdio.dev = net_dev;
2671
	INIT_WORK(&efx->mac_work, efx_mac_work);
2672
	init_waitqueue_head(&efx->flush_wq);
2673 2674

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2675 2676 2677
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2678 2679
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2680 2681 2682 2683 2684 2685
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2686 2687 2688 2689
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2690
	if (!efx->workqueue)
2691
		goto fail;
2692

2693
	return 0;
2694 2695 2696 2697

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2698 2699 2700 2701
}

static void efx_fini_struct(struct efx_nic *efx)
{
2702 2703 2704 2705 2706
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2707 2708
	kfree(efx->vpd_sn);

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2726 2727 2728 2729 2730 2731
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2732
	efx_disable_interrupts(efx);
2733
	efx_nic_fini_interrupt(efx);
2734
	efx_fini_port(efx);
2735
	efx->type->fini(efx);
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2753
	efx_dissociate(efx);
2754
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2755
	efx_disable_interrupts(efx);
2756 2757
	rtnl_unlock();

2758
	efx_sriov_fini(efx);
2759 2760
	efx_unregister_netdev(efx);

2761 2762
	efx_mtd_remove(efx);

2763 2764 2765
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2766
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2767 2768 2769

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
2770 2771

	pci_disable_pcie_error_reporting(pci_dev);
2772 2773
};

2774 2775 2776 2777 2778 2779
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
2780
static void efx_probe_vpd_strings(struct efx_nic *efx)
2781 2782 2783 2784
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
2785
	int ro_start, ro_size, i, j;
2786 2787 2788 2789 2790 2791 2792 2793 2794

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
2795 2796
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
2797 2798 2799 2800
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

2801 2802 2803
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2844 2845 2846
}


2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2859
	efx_init_napi(efx);
2860

2861
	rc = efx->type->init(efx);
2862
	if (rc) {
2863 2864
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2865
		goto fail3;
2866 2867 2868 2869
	}

	rc = efx_init_port(efx);
	if (rc) {
2870 2871
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2872
		goto fail4;
2873 2874
	}

2875
	rc = efx_nic_init_interrupt(efx);
2876
	if (rc)
2877
		goto fail5;
2878 2879 2880
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2881 2882 2883

	return 0;

2884 2885
 fail6:
	efx_nic_fini_interrupt(efx);
2886
 fail5:
2887 2888
	efx_fini_port(efx);
 fail4:
2889
	efx->type->fini(efx);
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2900
 * theoretically).  It sets up PCI mappings, resets the NIC,
2901 2902 2903 2904 2905
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2906
static int efx_pci_probe(struct pci_dev *pci_dev,
2907
			 const struct pci_device_id *entry)
2908 2909 2910
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2911
	int rc;
2912 2913

	/* Allocate and initialise a struct net_device and struct efx_nic */
2914 2915
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2916 2917
	if (!net_dev)
		return -ENOMEM;
2918 2919 2920
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2921
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2922
			      NETIF_F_RXCSUM);
2923
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2924
		net_dev->features |= NETIF_F_TSO6;
2925 2926
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2927 2928 2929 2930
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2931
	pci_set_drvdata(pci_dev, efx);
2932
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2933
	rc = efx_init_struct(efx, pci_dev, net_dev);
2934 2935 2936
	if (rc)
		goto fail1;

2937
	netif_info(efx, probe, efx->net_dev,
2938
		   "Solarflare NIC detected\n");
2939

2940
	efx_probe_vpd_strings(efx);
2941

2942 2943 2944 2945 2946
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2947 2948 2949
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2950 2951 2952

	rc = efx_register_netdev(efx);
	if (rc)
2953
		goto fail4;
2954

2955 2956 2957 2958 2959
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2960
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2961

2962
	/* Try to create MTDs, but allow this to fail */
2963
	rtnl_lock();
2964
	rc = efx_mtd_probe(efx);
2965
	rtnl_unlock();
2966 2967 2968 2969
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2970 2971 2972 2973 2974
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2975 2976 2977
	return 0;

 fail4:
2978
	efx_pci_remove_main(efx);
2979 2980 2981 2982 2983
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2984
	WARN_ON(rc > 0);
2985
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2986 2987 2988 2989
	free_netdev(net_dev);
	return rc;
}

2990 2991 2992 2993
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2994 2995
	rtnl_lock();

2996 2997
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2998

2999
		efx_device_detach_sync(efx);
3000

3001
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3002
		efx_disable_interrupts(efx);
3003
	}
3004

3005 3006
	rtnl_unlock();

3007 3008 3009 3010 3011
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3012
	int rc;
3013 3014
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3015 3016
	rtnl_lock();

3017
	if (efx->state != STATE_DISABLED) {
3018 3019 3020
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3021

3022 3023 3024
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3025

3026
		efx_start_all(efx);
3027

3028
		netif_device_attach(efx->net_dev);
3029

3030
		efx->state = STATE_READY;
3031

3032 3033
		efx->type->resume_wol(efx);
	}
3034

3035 3036
	rtnl_unlock();

3037 3038 3039
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3040
	return 0;
3041 3042 3043 3044 3045

fail:
	rtnl_unlock();

	return rc;
3046 3047 3048 3049 3050 3051 3052 3053 3054
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3055
	efx->reset_pending = 0;
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3082 3083
	rc = efx_pm_thaw(dev);
	return rc;
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3097
static const struct dev_pm_ops efx_pm_ops = {
3098 3099 3100 3101 3102 3103 3104 3105
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3106 3107 3108 3109
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3110 3111
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3128
		efx_disable_interrupts(efx);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3146
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3205
static struct pci_driver efx_pci_driver = {
3206
	.name		= KBUILD_MODNAME,
3207 3208 3209
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3210
	.driver.pm	= &efx_pm_ops,
3211
	.err_handler	= &efx_err_handlers,
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3234 3235 3236 3237
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3238 3239 3240 3241 3242
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3243 3244 3245 3246 3247 3248 3249 3250

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3251 3252
	destroy_workqueue(reset_workqueue);
 err_reset:
3253 3254
	efx_fini_sriov();
 err_sriov:
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3265
	destroy_workqueue(reset_workqueue);
3266
	efx_fini_sriov();
3267 3268 3269 3270 3271 3272 3273
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3274 3275
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3276 3277 3278
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);