efx.c 78.4 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/aer.h>
25
#include <linux/interrupt.h>
26 27
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
28
#include "nic.h"
29
#include "selftest.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79 80 81 82 83 84 85 86 87
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH]      = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH]      = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
88 89
};

90 91 92 93 94 95
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

96 97 98 99 100 101 102 103 104
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
105 106
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
107
 *
108
 * This is only used in MSI-X interrupt mode
109
 */
110 111
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
112 113
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
114 115 116 117 118 119 120

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
121 122
 * monitor.
 * On Falcon-based NICs, this will:
123 124
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
125 126
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
127
 */
S
stephen hemminger 已提交
128
static unsigned int efx_monitor_interval = 1 * HZ;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
161
 * The default (0) means to assign an interrupt to each core.
162 163 164 165 166
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

167 168
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
169 170
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

171
static unsigned irq_adapt_low_thresh = 8000;
172 173 174 175
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

176
static unsigned irq_adapt_high_thresh = 16000;
177 178 179 180
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

181 182 183 184 185 186 187
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

188 189 190 191 192
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
193

B
Ben Hutchings 已提交
194 195
static void efx_soft_enable_interrupts(struct efx_nic *efx);
static void efx_soft_disable_interrupts(struct efx_nic *efx);
196
static void efx_remove_channel(struct efx_channel *channel);
197
static void efx_remove_channels(struct efx_nic *efx);
198
static const struct efx_channel_type efx_default_channel_type;
199
static void efx_remove_port(struct efx_nic *efx);
200
static void efx_init_napi_channel(struct efx_channel *channel);
201
static void efx_fini_napi(struct efx_nic *efx);
202
static void efx_fini_napi_channel(struct efx_channel *channel);
203 204 205
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
206 207 208

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
209
		if ((efx->state == STATE_READY) ||	\
210
		    (efx->state == STATE_RECOVERY) ||	\
211
		    (efx->state == STATE_DISABLED))	\
212 213 214
			ASSERT_RTNL();			\
	} while (0)

215 216
static int efx_check_disabled(struct efx_nic *efx)
{
217
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
218 219 220 221 222 223 224
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

225 226 227 228 229 230 231 232 233 234 235 236 237
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
238
static int efx_process_channel(struct efx_channel *channel, int budget)
239
{
240
	int spent;
241

242
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
243
		return 0;
244

245
	spent = efx_nic_process_eventq(channel, budget);
246 247 248 249
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

250
		efx_rx_flush_packet(channel);
251
		efx_fast_push_rx_descriptors(rx_queue);
252 253
	}

254
	return spent;
255 256 257 258 259 260 261 262 263 264 265
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
266
	struct efx_nic *efx = channel->efx;
267
	int spent;
268

269 270 271
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
272

273
	spent = efx_process_channel(channel, budget);
274

275
	if (spent < budget) {
276
		if (efx_channel_has_rx_queue(channel) &&
277 278 279 280
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
281 282
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
283
					efx->type->push_irq_moderation(channel);
284
				}
285 286
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
287 288 289
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
290
					efx->type->push_irq_moderation(channel);
291
				}
292 293 294 295 296
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

297 298
		efx_filter_rfs_expire(channel);

299
		/* There is no race here; although napi_disable() will
300
		 * only wait for napi_complete(), this isn't a problem
301
		 * since efx_nic_eventq_read_ack() will have no effect if
302 303
		 * interrupts have already been disabled.
		 */
304
		napi_complete(napi);
305
		efx_nic_eventq_read_ack(channel);
306 307
	}

308
	return spent;
309 310 311 312 313 314 315 316 317
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
318 319 320
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

321
	netif_dbg(efx, probe, efx->net_dev,
322
		  "chan %d create event queue\n", channel->channel);
323

324 325 326 327 328 329
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

330
	return efx_nic_probe_eventq(channel);
331 332 333
}

/* Prepare channel's event queue */
334
static void efx_init_eventq(struct efx_channel *channel)
335
{
336 337
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
338 339 340

	channel->eventq_read_ptr = 0;

341
	efx_nic_init_eventq(channel);
342 343
}

344 345 346 347 348 349
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

350
	/* Make sure the NAPI handler sees the enabled flag set */
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

368 369
static void efx_fini_eventq(struct efx_channel *channel)
{
370 371
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
372

373
	efx_nic_fini_eventq(channel);
374 375 376 377
}

static void efx_remove_eventq(struct efx_channel *channel)
{
378 379
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
380

381
	efx_nic_remove_eventq(channel);
382 383 384 385 386 387 388 389
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

390
/* Allocate and initialise a channel structure. */
391 392 393 394 395 396 397 398
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

399 400 401
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
402

403 404 405
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
406

407 408 409 410 411 412
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
413

414 415 416 417
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
418

419 420 421 422 423 424 425 426 427 428 429 430 431
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
432

433 434 435 436 437 438 439 440
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
441

442 443 444
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
445
			tx_queue->channel = channel;
446 447
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
448 449 450
	}

	rx_queue = &channel->rx_queue;
451 452
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
453 454 455 456 457 458
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

459 460 461 462 463 464
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

465 466
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
467

468 469 470 471
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

472 473
	rc = efx_probe_eventq(channel);
	if (rc)
474
		goto fail;
475 476 477 478

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
479
			goto fail;
480 481 482 483 484
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
485
			goto fail;
486 487 488 489 490 491
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

492 493
fail:
	efx_remove_channel(channel);
494 495 496
	return rc;
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
515

516 517 518 519
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

520 521
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
522 523
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
524 525
}

526 527 528 529 530 531 532 533
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

534 535 536 537 538 539
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

557 558 559 560
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
561
static void efx_start_datapath(struct efx_nic *efx)
562
{
563
	bool old_rx_scatter = efx->rx_scatter;
564 565 566
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
567
	size_t rx_buf_len;
568

569 570 571 572
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
573 574 575
	efx->rx_dma_len = (efx->type->rx_buffer_hash_size +
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
576
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
577
		      NET_IP_ALIGN + efx->rx_dma_len);
578 579 580 581
	if (rx_buf_len <= PAGE_SIZE) {
		efx->rx_scatter = false;
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
582
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
583
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
584 585 586
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
587 588 589 590 591 592 593 594
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

595 596 597 598 599 600 601 602 603 604 605
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
606

607 608 609
	/* RX filters also have scatter-enabled flags */
	if (efx->rx_scatter != old_rx_scatter)
		efx_filter_update_rx_scatter(efx);
610

611 612 613 614 615 616 617 618 619 620
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

621 622
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
623 624
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
625

626
		efx_for_each_channel_rx_queue(rx_queue, channel) {
627
			efx_init_rx_queue(rx_queue);
628 629
			efx_nic_generate_fill_event(rx_queue);
		}
630

631
		WARN_ON(channel->rx_pkt_n_frags);
632 633
	}

634 635
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
636 637
}

638
static void efx_stop_datapath(struct efx_nic *efx)
639 640 641 642
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
643
	int rc;
644 645 646 647

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

648 649 650 651 652 653
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

654
	efx_for_each_channel(channel, efx) {
655 656 657 658 659 660 661 662 663 664
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
665
	}
666

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
685 686
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
687
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
688 689 690 691 692 693 694 695 696
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

697 698
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
699 700 701

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
702
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
703 704
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
705
	channel->type->post_remove(channel);
706 707
}

708 709 710 711 712 713 714 715 716 717 718 719 720
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
721
	unsigned i, next_buffer_table = 0;
722 723 724 725 726
	int rc;

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
749

750
	efx_device_detach_sync(efx);
751
	efx_stop_all(efx);
B
Ben Hutchings 已提交
752
	efx_soft_disable_interrupts(efx);
753

754
	/* Clone channels (where possible) */
755 756
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
757 758 759
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

778 779
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
780 781

	for (i = 0; i < efx->n_channels; i++) {
782 783 784 785 786 787 788
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
789
	}
790

791
out:
792 793 794 795 796 797 798 799 800
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
801

B
Ben Hutchings 已提交
802
	efx_soft_enable_interrupts(efx);
803
	efx_start_all(efx);
804
	netif_device_attach(efx->net_dev);
805 806 807 808 809 810 811 812 813 814 815 816 817 818
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

819
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
820
{
821
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
822 823
}

824 825
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
826
	.post_remove		= efx_channel_dummy_op_void,
827 828 829 830 831 832 833 834 835 836
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

837 838 839 840
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

841 842 843 844 845 846 847 848 849 850
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
851
void efx_link_status_changed(struct efx_nic *efx)
852
{
853 854
	struct efx_link_state *link_state = &efx->link_state;

855 856 857 858 859 860 861
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

862
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
863 864
		efx->n_link_state_changes++;

865
		if (link_state->up)
866 867 868 869 870 871
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
872
	if (link_state->up)
873 874 875 876 877
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
878
	else
879
		netif_info(efx, link, efx->net_dev, "link down\n");
880 881
}

B
Ben Hutchings 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

895
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

910 911
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
912 913 914 915 916 917 918 919
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
920
{
B
Ben Hutchings 已提交
921 922
	enum efx_phy_mode phy_mode;
	int rc;
923

B
Ben Hutchings 已提交
924
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
925

926
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
927 928
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
929

B
Ben Hutchings 已提交
930 931
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
932 933 934 935 936
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
937
	rc = efx->type->reconfigure_port(efx);
938

B
Ben Hutchings 已提交
939 940
	if (rc)
		efx->phy_mode = phy_mode;
941

B
Ben Hutchings 已提交
942
	return rc;
943 944 945 946
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
947
int efx_reconfigure_port(struct efx_nic *efx)
948
{
B
Ben Hutchings 已提交
949 950
	int rc;

951 952 953
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
954
	rc = __efx_reconfigure_port(efx);
955
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
956 957

	return rc;
958 959
}

960 961 962
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
963 964 965 966 967
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
968
	if (efx->port_enabled)
969
		efx->type->reconfigure_mac(efx);
970 971 972
	mutex_unlock(&efx->mac_lock);
}

973 974 975 976
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

977
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
978

979 980 981
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

982 983
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
984
	if (rc)
985
		return rc;
986

987 988
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
989 990 991 992 993 994 995 996

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

997
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
998

999 1000
	mutex_lock(&efx->mac_lock);

1001
	rc = efx->phy_op->init(efx);
1002
	if (rc)
1003
		goto fail1;
1004

1005
	efx->port_initialized = true;
1006

B
Ben Hutchings 已提交
1007 1008
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1009
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1010 1011 1012 1013 1014 1015

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1016
	mutex_unlock(&efx->mac_lock);
1017
	return 0;
1018

1019
fail2:
1020
	efx->phy_op->fini(efx);
1021 1022
fail1:
	mutex_unlock(&efx->mac_lock);
1023
	return rc;
1024 1025 1026 1027
}

static void efx_start_port(struct efx_nic *efx)
{
1028
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1029 1030 1031
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1032
	efx->port_enabled = true;
1033 1034 1035

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1036
	efx->type->reconfigure_mac(efx);
1037

1038 1039 1040
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1041
/* Prevent efx_mac_work() and efx_monitor() from working */
1042 1043
static void efx_stop_port(struct efx_nic *efx)
{
1044
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1045 1046

	mutex_lock(&efx->mac_lock);
1047
	efx->port_enabled = false;
1048 1049 1050
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1051 1052
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1053 1054 1055 1056
}

static void efx_fini_port(struct efx_nic *efx)
{
1057
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1058 1059 1060 1061

	if (!efx->port_initialized)
		return;

1062
	efx->phy_op->fini(efx);
1063
	efx->port_initialized = false;
1064

1065
	efx->link_state.up = false;
1066 1067 1068 1069 1070
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1071
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1072

1073
	efx->type->remove_port(efx);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1087
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1088 1089
	int rc;

1090
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1091 1092 1093

	rc = pci_enable_device(pci_dev);
	if (rc) {
1094 1095
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1107 1108
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1109 1110 1111
			if (rc == 0)
				break;
		}
1112 1113 1114
		dma_mask >>= 1;
	}
	if (rc) {
1115 1116
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1117 1118
		goto fail2;
	}
1119 1120
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1121
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1122
	if (rc) {
1123 1124
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1125 1126
		 * but just in case...
		 */
1127 1128
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1129 1130 1131
		goto fail2;
	}

1132 1133
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1134
	if (rc) {
1135 1136
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1137 1138 1139
		rc = -EIO;
		goto fail3;
	}
1140
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1141
	if (!efx->membase) {
1142 1143
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1144
			  (unsigned long long)efx->membase_phys, mem_map_size);
1145 1146 1147
		rc = -ENOMEM;
		goto fail4;
	}
1148 1149
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1150 1151
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1152 1153 1154 1155

	return 0;

 fail4:
1156
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1157
 fail3:
1158
	efx->membase_phys = 0;
1159 1160 1161 1162 1163 1164 1165 1166
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1167
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1168 1169 1170 1171 1172 1173 1174

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1175
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1176
		efx->membase_phys = 0;
1177 1178 1179 1180 1181
	}

	pci_disable_device(efx->pci_dev);
}

1182
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1183
{
1184
	cpumask_var_t thread_mask;
1185
	unsigned int count;
1186
	int cpu;
1187

1188 1189 1190 1191 1192 1193 1194 1195
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1207 1208
	}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1220 1221 1222 1223 1224 1225 1226 1227
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1228
static int efx_probe_interrupts(struct efx_nic *efx)
1229
{
1230 1231
	unsigned int extra_channels = 0;
	unsigned int i, j;
1232
	int rc;
1233

1234 1235 1236 1237
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1238
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1239
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1240
		unsigned int n_channels;
1241

1242
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1243 1244
		if (separate_tx_channels)
			n_channels *= 2;
1245
		n_channels += extra_channels;
1246
		n_channels = min(n_channels, efx->max_channels);
1247

B
Ben Hutchings 已提交
1248
		for (i = 0; i < n_channels; i++)
1249
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1250
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1251
		if (rc > 0) {
1252 1253
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1254
				  " available (%d < %u).\n", rc, n_channels);
1255 1256
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1257 1258
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1259
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1260
					     n_channels);
1261 1262 1263
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1264
			efx->n_channels = n_channels;
1265 1266
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1267
			if (separate_tx_channels) {
1268 1269 1270 1271
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1272
			} else {
1273 1274
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1275
			}
1276
			for (i = 0; i < efx->n_channels; i++)
1277 1278
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1279 1280 1281
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1282 1283
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1284 1285 1286 1287 1288
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1289
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1290 1291
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1292 1293
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1294
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1295
		} else {
1296 1297
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1298 1299 1300 1301 1302 1303
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1304
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1305 1306
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1307 1308
		efx->legacy_irq = efx->pci_dev->irq;
	}
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1325
	/* RSS might be usable on VFs even if it is disabled on the PF */
1326
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1327 1328
			   efx->n_rx_channels : efx_vf_size(efx));

1329
	return 0;
1330 1331
}

B
Ben Hutchings 已提交
1332
static void efx_soft_enable_interrupts(struct efx_nic *efx)
1333 1334 1335
{
	struct efx_channel *channel;

1336 1337
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1338 1339
	efx->irq_soft_enabled = true;
	smp_wmb();
1340 1341

	efx_for_each_channel(channel, efx) {
B
Ben Hutchings 已提交
1342
		if (!channel->type->keep_eventq)
1343
			efx_init_eventq(channel);
1344 1345 1346 1347 1348 1349
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

B
Ben Hutchings 已提交
1350
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1351 1352 1353
{
	struct efx_channel *channel;

1354 1355 1356
	if (efx->state == STATE_DISABLED)
		return;

1357 1358
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1359 1360 1361 1362
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1363 1364 1365 1366 1367 1368 1369
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1370
		if (!channel->type->keep_eventq)
1371
			efx_fini_eventq(channel);
1372 1373 1374
	}
}

B
Ben Hutchings 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static void efx_enable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1386
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_init_eventq(channel);
	}

	efx_soft_enable_interrupts(efx);
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1407
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1408 1409
}

1410 1411 1412 1413 1414
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1415
	efx_for_each_channel(channel, efx)
1416 1417 1418 1419 1420 1421 1422 1423
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1424
static void efx_set_channels(struct efx_nic *efx)
1425
{
1426 1427 1428
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1429
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1430
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1431

1432 1433
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1434 1435 1436
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1437 1438 1439 1440 1441
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1442 1443 1444 1445
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1446 1447 1448 1449
}

static int efx_probe_nic(struct efx_nic *efx)
{
1450
	size_t i;
1451 1452
	int rc;

1453
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1454 1455

	/* Carry out hardware-type specific initialisation */
1456
	rc = efx->type->probe(efx);
1457 1458 1459
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1460
	/* Determine the number of channels and queues by trying to hook
1461
	 * in MSI-X interrupts. */
1462 1463 1464
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1465

1466 1467
	efx->type->dimension_resources(efx);

1468 1469
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1470
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1471
		efx->rx_indir_table[i] =
1472
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1473

1474
	efx_set_channels(efx);
1475 1476
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1477 1478

	/* Initialise the interrupt moderation settings */
1479 1480
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1481 1482

	return 0;
1483 1484 1485 1486

fail:
	efx->type->remove(efx);
	return rc;
1487 1488 1489 1490
}

static void efx_remove_nic(struct efx_nic *efx)
{
1491
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1492 1493

	efx_remove_interrupts(efx);
1494
	efx->type->remove(efx);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1509
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1510 1511 1512 1513 1514
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1515
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1516 1517 1518
		goto fail2;
	}

1519 1520 1521 1522 1523
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1524
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1525

B
Ben Hutchings 已提交
1526 1527 1528 1529
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1530
		goto fail3;
B
Ben Hutchings 已提交
1531 1532
	}

1533 1534 1535 1536
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1537 1538
	return 0;

B
Ben Hutchings 已提交
1539
 fail4:
1540
	efx_remove_filters(efx);
1541 1542 1543 1544 1545 1546 1547 1548
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1549 1550 1551 1552 1553 1554
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1555
 */
1556 1557 1558
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1559
	BUG_ON(efx->state == STATE_DISABLED);
1560 1561 1562

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1563
	if (efx->port_enabled || !netif_running(efx->net_dev))
1564 1565 1566
		return;

	efx_start_port(efx);
1567
	efx_start_datapath(efx);
1568

1569 1570
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1571 1572
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1573 1574 1575 1576 1577

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1578 1579 1580 1581 1582
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1583

1584
	efx->type->start_stats(efx);
1585 1586 1587 1588 1589 1590 1591
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1592
	/* Make sure the hardware monitor and event self-test are stopped */
1593
	cancel_delayed_work_sync(&efx->monitor_work);
1594
	efx_selftest_async_cancel(efx);
1595
	/* Stop scheduled port reconfigurations */
1596
	cancel_work_sync(&efx->mac_work);
1597 1598
}

1599 1600 1601 1602 1603
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1604 1605 1606 1607 1608 1609 1610 1611
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1612
	efx->type->stop_stats(efx);
1613 1614
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1615
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1616 1617
	efx_flush_all(efx);

1618 1619 1620 1621 1622 1623
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1624 1625 1626
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1627 1628 1629 1630
}

static void efx_remove_all(struct efx_nic *efx)
{
1631
	efx_remove_channels(efx);
1632
	efx_remove_filters(efx);
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1643
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1644
{
1645 1646
	if (usecs == 0)
		return 0;
1647
	if (usecs * 1000 < quantum_ns)
1648
		return 1; /* never round down to 0 */
1649
	return usecs * 1000 / quantum_ns;
1650 1651
}

1652
/* Set interrupt moderation parameters */
1653 1654 1655
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1656
{
1657
	struct efx_channel *channel;
1658 1659 1660 1661 1662
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1663 1664 1665

	EFX_ASSERT_RESET_SERIALISED(efx);

1666
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1667 1668
		return -EINVAL;

1669 1670 1671
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1672 1673 1674 1675 1676 1677 1678
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1679
	efx->irq_rx_adaptive = rx_adaptive;
1680
	efx->irq_rx_moderation = rx_ticks;
1681
	efx_for_each_channel(channel, efx) {
1682
		if (efx_channel_has_rx_queue(channel))
1683
			channel->irq_moderation = rx_ticks;
1684
		else if (efx_channel_has_tx_queues(channel))
1685 1686
			channel->irq_moderation = tx_ticks;
	}
1687 1688

	return 0;
1689 1690
}

1691 1692 1693
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1694 1695 1696 1697
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1698
	*rx_adaptive = efx->irq_rx_adaptive;
1699 1700 1701
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1702 1703 1704 1705 1706 1707 1708 1709

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1710
		*tx_usecs = DIV_ROUND_UP(
1711
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1712 1713
			efx->timer_quantum_ns,
			1000);
1714 1715
}

1716 1717 1718 1719 1720 1721
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1722
/* Run periodically off the general workqueue */
1723 1724 1725 1726 1727
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1728 1729 1730
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1731
	BUG_ON(efx->type->monitor == NULL);
1732 1733 1734

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1735 1736 1737 1738 1739 1740
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1757
	struct efx_nic *efx = netdev_priv(net_dev);
1758
	struct mii_ioctl_data *data = if_mii(ifr);
1759

1760 1761 1762
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1763 1764 1765 1766 1767 1768
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1769 1770 1771 1772 1773 1774 1775 1776
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1777 1778 1779 1780 1781 1782 1783 1784 1785
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1786
static void efx_init_napi(struct efx_nic *efx)
1787 1788 1789
{
	struct efx_channel *channel;

1790 1791
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1792 1793 1794 1795 1796 1797 1798
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1799 1800 1801 1802 1803 1804
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1805 1806
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1823
	struct efx_nic *efx = netdev_priv(net_dev);
1824 1825
	struct efx_channel *channel;

1826
	efx_for_each_channel(channel, efx)
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1841
	struct efx_nic *efx = netdev_priv(net_dev);
1842 1843
	int rc;

1844 1845
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1846

1847 1848 1849
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1850 1851
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1852 1853
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1854

1855 1856 1857 1858
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1859
	efx_start_all(efx);
1860
	efx_selftest_async_start(efx);
1861 1862 1863 1864 1865 1866 1867 1868 1869
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1870
	struct efx_nic *efx = netdev_priv(net_dev);
1871

1872 1873
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1874

1875 1876
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1877 1878 1879 1880

	return 0;
}

1881
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1882 1883
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1884
{
1885
	struct efx_nic *efx = netdev_priv(net_dev);
1886 1887
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1888
	spin_lock_bh(&efx->stats_lock);
1889

1890
	efx->type->update_stats(efx);
1891 1892 1893 1894 1895

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1896
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1914 1915
	spin_unlock_bh(&efx->stats_lock);

1916 1917 1918 1919 1920 1921
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1922
	struct efx_nic *efx = netdev_priv(net_dev);
1923

1924 1925 1926
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1927

1928
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1929 1930 1931 1932 1933 1934
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1935
	struct efx_nic *efx = netdev_priv(net_dev);
1936
	int rc;
1937

1938 1939 1940
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1941 1942 1943
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

1944
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1945

1946 1947 1948
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
1949
	mutex_lock(&efx->mac_lock);
1950
	net_dev->mtu = new_mtu;
1951
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1952 1953
	mutex_unlock(&efx->mac_lock);

1954
	efx_start_all(efx);
1955
	netif_device_attach(efx->net_dev);
1956
	return 0;
1957 1958 1959 1960
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1961
	struct efx_nic *efx = netdev_priv(net_dev);
1962 1963 1964 1965
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
1966 1967 1968
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1969
		return -EADDRNOTAVAIL;
1970 1971 1972
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1973
	efx_sriov_mac_address_changed(efx);
1974 1975

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1976
	mutex_lock(&efx->mac_lock);
1977
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1978
	mutex_unlock(&efx->mac_lock);
1979 1980 1981 1982

	return 0;
}

1983
/* Context: netif_addr_lock held, BHs disabled. */
1984
static void efx_set_rx_mode(struct net_device *net_dev)
1985
{
1986
	struct efx_nic *efx = netdev_priv(net_dev);
1987
	struct netdev_hw_addr *ha;
1988 1989 1990 1991
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1992
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1993 1994

	/* Build multicast hash table */
1995
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1996 1997 1998
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1999 2000
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
2001
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2002
			__set_bit_le(bit, mc_hash);
2003 2004
		}

2005 2006 2007 2008
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
2009
		__set_bit_le(0xff, mc_hash);
2010
	}
2011

2012 2013 2014
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2015 2016
}

2017
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2028 2029 2030
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2031
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2032 2033 2034 2035 2036 2037
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2038
	.ndo_set_rx_mode	= efx_set_rx_mode,
2039
	.ndo_set_features	= efx_set_features,
2040 2041 2042 2043 2044 2045
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2046 2047 2048
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2049
	.ndo_setup_tc		= efx_setup_tc,
2050 2051 2052
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2053 2054
};

2055 2056 2057 2058 2059 2060 2061
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2062 2063 2064
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2065
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2066

2067 2068 2069
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2070 2071 2072 2073 2074 2075 2076 2077

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2078 2079 2080 2081 2082 2083
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2084
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2085

2086 2087 2088
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2089
	struct efx_channel *channel;
2090 2091 2092 2093
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2094
	net_dev->netdev_ops = &efx_netdev_ops;
2095
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2096
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2097

2098
	rtnl_lock();
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2113 2114 2115
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2116
	efx_update_name(efx);
2117

2118 2119 2120
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2121 2122 2123 2124
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2125 2126
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2127 2128
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2129 2130
	}

2131
	rtnl_unlock();
2132

B
Ben Hutchings 已提交
2133 2134
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2135 2136
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2137 2138 2139
		goto fail_registered;
	}

2140
	return 0;
B
Ben Hutchings 已提交
2141

2142 2143 2144
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2145
fail_locked:
2146
	efx->state = STATE_UNINIT;
2147
	rtnl_unlock();
2148
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2149
	return rc;
2150 2151 2152 2153 2154 2155 2156
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2157
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2158

2159 2160
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2161 2162 2163 2164 2165

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2166 2167 2168 2169 2170 2171 2172 2173
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2174 2175
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2176
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2177 2178 2179
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2180
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2181
	efx_disable_interrupts(efx);
2182 2183

	mutex_lock(&efx->mac_lock);
2184 2185
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2186
	efx->type->fini(efx);
2187 2188
}

B
Ben Hutchings 已提交
2189 2190 2191 2192 2193
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2194
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2195 2196 2197
{
	int rc;

B
Ben Hutchings 已提交
2198
	EFX_ASSERT_RESET_SERIALISED(efx);
2199

2200
	rc = efx->type->init(efx);
2201
	if (rc) {
2202
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2203
		goto fail;
2204 2205
	}

2206 2207 2208
	if (!ok)
		goto fail;

2209
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2210 2211 2212 2213
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2214 2215
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2216 2217
	}

2218
	efx->type->reconfigure_mac(efx);
2219

B
Ben Hutchings 已提交
2220
	efx_enable_interrupts(efx);
B
Ben Hutchings 已提交
2221
	efx_restore_filters(efx);
2222
	efx_sriov_reset(efx);
2223 2224 2225 2226 2227 2228 2229 2230 2231

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2232 2233 2234

	mutex_unlock(&efx->mac_lock);

2235 2236 2237
	return rc;
}

2238 2239
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2240
 *
2241
 * Caller must hold the rtnl_lock.
2242
 */
2243
int efx_reset(struct efx_nic *efx, enum reset_type method)
2244
{
2245 2246
	int rc, rc2;
	bool disabled;
2247

2248 2249
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2250

2251
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2252
	efx_reset_down(efx, method);
2253

2254
	rc = efx->type->reset(efx, method);
2255
	if (rc) {
2256
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2257
		goto out;
2258 2259
	}

2260 2261 2262 2263
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2264 2265 2266 2267 2268 2269 2270

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2271
out:
2272
	/* Leave device stopped if necessary */
2273 2274 2275
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2276 2277 2278 2279 2280
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2281 2282
	}

2283
	if (disabled) {
2284
		dev_close(efx->net_dev);
2285
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2286 2287
		efx->state = STATE_DISABLED;
	} else {
2288
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2289
		netif_device_attach(efx->net_dev);
2290
	}
2291 2292 2293
	return rc;
}

2294 2295 2296 2297 2298
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2299
int efx_try_recovery(struct efx_nic *efx)
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2320 2321 2322 2323 2324
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2325
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2336

2337
	if (!pending)
2338 2339
		return;

2340
	rtnl_lock();
2341 2342 2343 2344 2345 2346

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2347
		(void)efx_reset(efx, method);
2348

2349
	rtnl_unlock();
2350 2351 2352 2353 2354 2355
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2356 2357 2358 2359 2360 2361 2362
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2363 2364 2365
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2366
	case RESET_TYPE_RECOVER_OR_ALL:
2367 2368
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2369
	case RESET_TYPE_RECOVER_OR_DISABLE:
2370
		method = type;
2371 2372
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2373 2374
		break;
	default:
2375
		method = efx->type->map_reset_reason(type);
2376 2377 2378
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2379 2380
		break;
	}
2381

2382
	set_bit(method, &efx->reset_pending);
2383 2384 2385 2386 2387 2388 2389
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2390

2391 2392 2393 2394
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2395
	queue_work(reset_workqueue, &efx->reset_work);
2396 2397 2398 2399 2400 2401 2402 2403 2404
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2405
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2406 2407
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2408
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2409 2410
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2411
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2412
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2413
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2414
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2415
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2416 2417 2418 2419 2420
	{0}			/* end of list */
};

/**************************************************************************
 *
2421
 * Dummy PHY/MAC operations
2422
 *
2423
 * Can be used for some unimplemented operations
2424 2425 2426 2427 2428 2429 2430 2431 2432
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2433 2434

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2435 2436 2437
{
	return false;
}
2438

2439
static const struct efx_phy_operations efx_dummy_phy_operations = {
2440
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2441
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2442
	.poll		 = efx_port_dummy_op_poll,
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2455
static int efx_init_struct(struct efx_nic *efx,
2456 2457
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2458
	int i;
2459 2460 2461

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2462 2463 2464
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2465 2466
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2467
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2468
	efx->pci_dev = pci_dev;
2469
	efx->msg_enable = debug;
2470
	efx->state = STATE_UNINIT;
2471 2472 2473 2474 2475 2476
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2477
	efx->mdio.dev = net_dev;
2478
	INIT_WORK(&efx->mac_work, efx_mac_work);
2479
	init_waitqueue_head(&efx->flush_wq);
2480 2481

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2482 2483 2484
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2485 2486
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2487 2488 2489 2490 2491 2492
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2493 2494 2495 2496
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2497
	if (!efx->workqueue)
2498
		goto fail;
2499

2500
	return 0;
2501 2502 2503 2504

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2505 2506 2507 2508
}

static void efx_fini_struct(struct efx_nic *efx)
{
2509 2510 2511 2512 2513
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2531 2532 2533 2534 2535 2536
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2537
	efx_disable_interrupts(efx);
2538
	efx_nic_fini_interrupt(efx);
2539
	efx_fini_port(efx);
2540
	efx->type->fini(efx);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2559
	efx_disable_interrupts(efx);
2560 2561
	rtnl_unlock();

2562
	efx_sriov_fini(efx);
2563 2564
	efx_unregister_netdev(efx);

2565 2566
	efx_mtd_remove(efx);

2567 2568 2569
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2570
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2571 2572

	efx_fini_struct(efx);
2573
	pci_set_drvdata(pci_dev, NULL);
2574
	free_netdev(efx->net_dev);
2575 2576

	pci_disable_pcie_error_reporting(pci_dev);
2577 2578
};

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2642
	efx_init_napi(efx);
2643

2644
	rc = efx->type->init(efx);
2645
	if (rc) {
2646 2647
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2648
		goto fail3;
2649 2650 2651 2652
	}

	rc = efx_init_port(efx);
	if (rc) {
2653 2654
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2655
		goto fail4;
2656 2657
	}

2658
	rc = efx_nic_init_interrupt(efx);
2659
	if (rc)
2660
		goto fail5;
B
Ben Hutchings 已提交
2661
	efx_enable_interrupts(efx);
2662 2663 2664

	return 0;

2665
 fail5:
2666 2667
	efx_fini_port(efx);
 fail4:
2668
	efx->type->fini(efx);
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2679
 * theoretically).  It sets up PCI mappings, resets the NIC,
2680 2681 2682 2683 2684
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2685
static int efx_pci_probe(struct pci_dev *pci_dev,
2686
			 const struct pci_device_id *entry)
2687 2688 2689
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2690
	int rc;
2691 2692

	/* Allocate and initialise a struct net_device and struct efx_nic */
2693 2694
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2695 2696
	if (!net_dev)
		return -ENOMEM;
2697 2698 2699
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2700
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2701
			      NETIF_F_RXCSUM);
2702
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2703
		net_dev->features |= NETIF_F_TSO6;
2704 2705
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2706 2707 2708 2709
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2710
	pci_set_drvdata(pci_dev, efx);
2711
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2712
	rc = efx_init_struct(efx, pci_dev, net_dev);
2713 2714 2715
	if (rc)
		goto fail1;

2716
	netif_info(efx, probe, efx->net_dev,
2717
		   "Solarflare NIC detected\n");
2718

2719 2720
	efx_print_product_vpd(efx);

2721 2722 2723 2724 2725
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2726 2727 2728
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2729 2730 2731

	rc = efx_register_netdev(efx);
	if (rc)
2732
		goto fail4;
2733

2734 2735 2736 2737 2738
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2739
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2740

2741
	/* Try to create MTDs, but allow this to fail */
2742
	rtnl_lock();
2743
	rc = efx_mtd_probe(efx);
2744
	rtnl_unlock();
2745 2746 2747 2748
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2749 2750 2751 2752 2753
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2754 2755 2756
	return 0;

 fail4:
2757
	efx_pci_remove_main(efx);
2758 2759 2760 2761 2762
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2763
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2764
	WARN_ON(rc > 0);
2765
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2766 2767 2768 2769
	free_netdev(net_dev);
	return rc;
}

2770 2771 2772 2773
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2774 2775
	rtnl_lock();

2776 2777
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2778

2779
		efx_device_detach_sync(efx);
2780

2781
		efx_stop_all(efx);
B
Ben Hutchings 已提交
2782
		efx_disable_interrupts(efx);
2783
	}
2784

2785 2786
	rtnl_unlock();

2787 2788 2789 2790 2791 2792 2793
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2794 2795
	rtnl_lock();

2796
	if (efx->state != STATE_DISABLED) {
B
Ben Hutchings 已提交
2797
		efx_enable_interrupts(efx);
2798

2799 2800 2801
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2802

2803
		efx_start_all(efx);
2804

2805
		netif_device_attach(efx->net_dev);
2806

2807
		efx->state = STATE_READY;
2808

2809 2810
		efx->type->resume_wol(efx);
	}
2811

2812 2813
	rtnl_unlock();

2814 2815 2816
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2827
	efx->reset_pending = 0;
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2869
static const struct dev_pm_ops efx_pm_ops = {
2870 2871 2872 2873 2874 2875 2876 2877
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2878 2879 2880 2881
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
2882 2883
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
2900
		efx_disable_interrupts(efx);
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
2918
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

2977
static struct pci_driver efx_pci_driver = {
2978
	.name		= KBUILD_MODNAME,
2979 2980 2981
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2982
	.driver.pm	= &efx_pm_ops,
2983
	.err_handler	= &efx_err_handlers,
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3006 3007 3008 3009
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3010 3011 3012 3013 3014
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3015 3016 3017 3018 3019 3020 3021 3022

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3023 3024
	destroy_workqueue(reset_workqueue);
 err_reset:
3025 3026
	efx_fini_sriov();
 err_sriov:
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3037
	destroy_workqueue(reset_workqueue);
3038
	efx_fini_sriov();
3039 3040 3041 3042 3043 3044 3045
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3046 3047
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3048 3049 3050
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);