efx.c 78.7 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 85
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86 87
};

88 89 90 91 92 93
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

94 95 96 97 98 99 100 101 102
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
103 104
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
105
 *
106
 * This is only used in MSI-X interrupt mode
107
 */
108 109
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
110 111
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
112 113 114 115 116 117 118

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
119 120
 * monitor.
 * On Falcon-based NICs, this will:
121 122
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
123 124
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
125
 */
S
stephen hemminger 已提交
126
static unsigned int efx_monitor_interval = 1 * HZ;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
159
 * The default (0) means to assign an interrupt to each core.
160 161 162 163 164
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

165 166
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
167 168
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

169
static unsigned irq_adapt_low_thresh = 8000;
170 171 172 173
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

174
static unsigned irq_adapt_high_thresh = 16000;
175 176 177 178
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

179 180 181 182 183 184 185
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

186 187 188 189 190
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
191

192
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
193
static void efx_soft_disable_interrupts(struct efx_nic *efx);
194
static void efx_remove_channel(struct efx_channel *channel);
195
static void efx_remove_channels(struct efx_nic *efx);
196
static const struct efx_channel_type efx_default_channel_type;
197
static void efx_remove_port(struct efx_nic *efx);
198
static void efx_init_napi_channel(struct efx_channel *channel);
199
static void efx_fini_napi(struct efx_nic *efx);
200
static void efx_fini_napi_channel(struct efx_channel *channel);
201 202 203
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
204 205 206

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
207
		if ((efx->state == STATE_READY) ||	\
208
		    (efx->state == STATE_RECOVERY) ||	\
209
		    (efx->state == STATE_DISABLED))	\
210 211 212
			ASSERT_RTNL();			\
	} while (0)

213 214
static int efx_check_disabled(struct efx_nic *efx)
{
215
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
216 217 218 219 220 221 222
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

223 224 225 226 227 228 229 230 231 232 233 234 235
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
236
static int efx_process_channel(struct efx_channel *channel, int budget)
237
{
238
	int spent;
239

240
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
241
		return 0;
242

243
	spent = efx_nic_process_eventq(channel, budget);
244 245 246 247
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

248
		efx_rx_flush_packet(channel);
249
		efx_fast_push_rx_descriptors(rx_queue);
250 251
	}

252
	return spent;
253 254 255 256 257 258 259 260 261 262 263
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
264
	struct efx_nic *efx = channel->efx;
265
	int spent;
266

267 268 269
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
270

271
	spent = efx_process_channel(channel, budget);
272

273
	if (spent < budget) {
274
		if (efx_channel_has_rx_queue(channel) &&
275 276 277 278
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
279 280
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
281
					efx->type->push_irq_moderation(channel);
282
				}
283 284
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
285 286 287
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
288
					efx->type->push_irq_moderation(channel);
289
				}
290 291 292 293 294
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

295 296
		efx_filter_rfs_expire(channel);

297
		/* There is no race here; although napi_disable() will
298
		 * only wait for napi_complete(), this isn't a problem
299
		 * since efx_nic_eventq_read_ack() will have no effect if
300 301
		 * interrupts have already been disabled.
		 */
302
		napi_complete(napi);
303
		efx_nic_eventq_read_ack(channel);
304 305
	}

306
	return spent;
307 308 309 310 311 312 313 314 315
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
316 317 318
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

319
	netif_dbg(efx, probe, efx->net_dev,
320
		  "chan %d create event queue\n", channel->channel);
321

322 323 324 325 326 327
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

328
	return efx_nic_probe_eventq(channel);
329 330 331
}

/* Prepare channel's event queue */
332
static int efx_init_eventq(struct efx_channel *channel)
333
{
334
	struct efx_nic *efx = channel->efx;
335 336 337 338
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

339
	netif_dbg(efx, drv, efx->net_dev,
340
		  "chan %d init event queue\n", channel->channel);
341

342 343
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
344
		efx->type->push_irq_moderation(channel);
345 346 347 348
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
349 350
}

351 352 353 354 355 356
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

357
	/* Make sure the NAPI handler sees the enabled flag set */
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

375 376
static void efx_fini_eventq(struct efx_channel *channel)
{
377 378 379
	if (!channel->eventq_init)
		return;

380 381
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
382

383
	efx_nic_fini_eventq(channel);
384
	channel->eventq_init = false;
385 386 387 388
}

static void efx_remove_eventq(struct efx_channel *channel)
{
389 390
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
391

392
	efx_nic_remove_eventq(channel);
393 394 395 396 397 398 399 400
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

401
/* Allocate and initialise a channel structure. */
402 403 404 405 406 407 408 409
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

410 411 412
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
413

414 415 416
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
417

418 419 420 421 422 423
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
424

425 426 427 428
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
429

430 431 432 433 434 435 436 437 438 439 440 441 442
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
443

444 445 446 447 448 449 450 451
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
452

453 454 455
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
456
			tx_queue->channel = channel;
457 458
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
459 460 461
	}

	rx_queue = &channel->rx_queue;
462 463
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
464 465 466 467 468 469
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

470 471 472 473 474 475
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

476 477
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
478

479 480 481 482
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

483 484
	rc = efx_probe_eventq(channel);
	if (rc)
485
		goto fail;
486 487 488 489

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
490
			goto fail;
491 492 493 494 495
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
496
			goto fail;
497 498 499 500 501 502
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

503 504
fail:
	efx_remove_channel(channel);
505 506 507
	return rc;
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
526

527 528 529 530
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

531 532
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
533 534
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
535 536
}

537 538 539 540 541 542 543 544
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

545 546 547 548 549 550
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

568 569 570 571
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
572
static void efx_start_datapath(struct efx_nic *efx)
573
{
574
	bool old_rx_scatter = efx->rx_scatter;
575 576 577
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
578
	size_t rx_buf_len;
579

580 581 582 583
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
584
	efx->rx_dma_len = (efx->rx_prefix_size +
585 586
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
587
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
588
		      NET_IP_ALIGN + efx->rx_dma_len);
589 590 591 592
	if (rx_buf_len <= PAGE_SIZE) {
		efx->rx_scatter = false;
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
593
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
594
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
595 596 597
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
598 599 600 601 602 603 604 605
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

606 607 608 609 610 611 612 613 614 615 616
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
617

618 619
	/* RX filters also have scatter-enabled flags */
	if (efx->rx_scatter != old_rx_scatter)
620
		efx->type->filter_update_rx_scatter(efx);
621

622 623 624 625 626 627 628 629 630 631
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

632 633
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
634 635
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
636

637
		efx_for_each_channel_rx_queue(rx_queue, channel) {
638
			efx_init_rx_queue(rx_queue);
639 640
			efx_nic_generate_fill_event(rx_queue);
		}
641

642
		WARN_ON(channel->rx_pkt_n_frags);
643 644
	}

645 646
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
647 648
}

649
static void efx_stop_datapath(struct efx_nic *efx)
650 651 652 653
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
654
	int rc;
655 656 657 658

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

659 660 661 662 663 664
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

665
	efx_for_each_channel(channel, efx) {
666 667 668 669 670 671 672 673 674 675
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
676
	}
677

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
696 697
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
698
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
699 700 701 702 703 704 705 706 707
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

708 709
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
710 711 712

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
713
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
714 715
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
716
	channel->type->post_remove(channel);
717 718
}

719 720 721 722 723 724 725 726 727 728 729 730 731
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
732
	unsigned i, next_buffer_table = 0;
733
	int rc, rc2;
734 735 736 737

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
760

761
	efx_device_detach_sync(efx);
762
	efx_stop_all(efx);
B
Ben Hutchings 已提交
763
	efx_soft_disable_interrupts(efx);
764

765
	/* Clone channels (where possible) */
766 767
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
768 769 770
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

789 790
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
791 792

	for (i = 0; i < efx->n_channels; i++) {
793 794 795 796 797 798 799
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
800
	}
801

802
out:
803 804 805 806 807 808 809 810 811
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
812

813 814 815 816 817 818 819 820 821 822
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
823 824 825 826 827 828 829 830 831 832 833 834 835 836
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

837
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
838
{
839
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
840 841
}

842 843
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
844
	.post_remove		= efx_channel_dummy_op_void,
845 846 847 848 849 850 851 852 853 854
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

855 856 857 858
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

859 860 861 862 863 864 865 866 867 868
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
869
void efx_link_status_changed(struct efx_nic *efx)
870
{
871 872
	struct efx_link_state *link_state = &efx->link_state;

873 874 875 876 877 878 879
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

880
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
881 882
		efx->n_link_state_changes++;

883
		if (link_state->up)
884 885 886 887 888 889
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
890
	if (link_state->up)
891
		netif_info(efx, link, efx->net_dev,
892
			   "link up at %uMbps %s-duplex (MTU %d)\n",
893
			   link_state->speed, link_state->fd ? "full" : "half",
894
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
895
	else
896
		netif_info(efx, link, efx->net_dev, "link down\n");
897 898
}

B
Ben Hutchings 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

912
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

927 928
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
929 930 931 932 933 934 935 936
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
937
{
B
Ben Hutchings 已提交
938 939
	enum efx_phy_mode phy_mode;
	int rc;
940

B
Ben Hutchings 已提交
941
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
942

B
Ben Hutchings 已提交
943 944
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
945 946 947 948 949
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
950
	rc = efx->type->reconfigure_port(efx);
951

B
Ben Hutchings 已提交
952 953
	if (rc)
		efx->phy_mode = phy_mode;
954

B
Ben Hutchings 已提交
955
	return rc;
956 957 958 959
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
960
int efx_reconfigure_port(struct efx_nic *efx)
961
{
B
Ben Hutchings 已提交
962 963
	int rc;

964 965 966
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
967
	rc = __efx_reconfigure_port(efx);
968
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
969 970

	return rc;
971 972
}

973 974 975
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
976 977 978 979 980
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
981
	if (efx->port_enabled)
982
		efx->type->reconfigure_mac(efx);
983 984 985
	mutex_unlock(&efx->mac_lock);
}

986 987 988 989
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

990
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
991

992 993 994
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

995 996
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
997
	if (rc)
998
		return rc;
999

1000 1001
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1002 1003 1004 1005 1006 1007 1008 1009

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1010
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1011

1012 1013
	mutex_lock(&efx->mac_lock);

1014
	rc = efx->phy_op->init(efx);
1015
	if (rc)
1016
		goto fail1;
1017

1018
	efx->port_initialized = true;
1019

B
Ben Hutchings 已提交
1020 1021
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1022
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1023 1024 1025 1026 1027 1028

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1029
	mutex_unlock(&efx->mac_lock);
1030
	return 0;
1031

1032
fail2:
1033
	efx->phy_op->fini(efx);
1034 1035
fail1:
	mutex_unlock(&efx->mac_lock);
1036
	return rc;
1037 1038 1039 1040
}

static void efx_start_port(struct efx_nic *efx)
{
1041
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1042 1043 1044
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1045
	efx->port_enabled = true;
1046 1047 1048

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1049
	efx->type->reconfigure_mac(efx);
1050

1051 1052 1053
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1054
/* Prevent efx_mac_work() and efx_monitor() from working */
1055 1056
static void efx_stop_port(struct efx_nic *efx)
{
1057
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1058 1059

	mutex_lock(&efx->mac_lock);
1060
	efx->port_enabled = false;
1061 1062 1063
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1064 1065
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1066 1067 1068 1069
}

static void efx_fini_port(struct efx_nic *efx)
{
1070
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1071 1072 1073 1074

	if (!efx->port_initialized)
		return;

1075
	efx->phy_op->fini(efx);
1076
	efx->port_initialized = false;
1077

1078
	efx->link_state.up = false;
1079 1080 1081 1082 1083
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1084
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1085

1086
	efx->type->remove_port(efx);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1100
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1101 1102
	int rc;

1103
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1104 1105 1106

	rc = pci_enable_device(pci_dev);
	if (rc) {
1107 1108
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1120 1121
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1122 1123 1124
			if (rc == 0)
				break;
		}
1125 1126 1127
		dma_mask >>= 1;
	}
	if (rc) {
1128 1129
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1130 1131
		goto fail2;
	}
1132 1133
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1134
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1135
	if (rc) {
1136 1137
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1138 1139
		 * but just in case...
		 */
1140 1141
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1142 1143 1144
		goto fail2;
	}

1145 1146
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1147
	if (rc) {
1148 1149
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1150 1151 1152
		rc = -EIO;
		goto fail3;
	}
1153
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1154
	if (!efx->membase) {
1155 1156
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1157
			  (unsigned long long)efx->membase_phys, mem_map_size);
1158 1159 1160
		rc = -ENOMEM;
		goto fail4;
	}
1161 1162
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1163 1164
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1165 1166 1167 1168

	return 0;

 fail4:
1169
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1170
 fail3:
1171
	efx->membase_phys = 0;
1172 1173 1174 1175 1176 1177 1178 1179
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1180
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1181 1182 1183 1184 1185 1186 1187

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1188
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1189
		efx->membase_phys = 0;
1190 1191 1192 1193 1194
	}

	pci_disable_device(efx->pci_dev);
}

1195
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1196
{
1197
	cpumask_var_t thread_mask;
1198
	unsigned int count;
1199
	int cpu;
1200

1201 1202 1203 1204 1205 1206 1207 1208
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1220 1221
	}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1233 1234 1235 1236 1237 1238 1239 1240
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1241
static int efx_probe_interrupts(struct efx_nic *efx)
1242
{
1243 1244
	unsigned int extra_channels = 0;
	unsigned int i, j;
1245
	int rc;
1246

1247 1248 1249 1250
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1251
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1252
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1253
		unsigned int n_channels;
1254

1255
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1256 1257
		if (separate_tx_channels)
			n_channels *= 2;
1258
		n_channels += extra_channels;
1259
		n_channels = min(n_channels, efx->max_channels);
1260

B
Ben Hutchings 已提交
1261
		for (i = 0; i < n_channels; i++)
1262
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1263
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1264
		if (rc > 0) {
1265 1266
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1267
				  " available (%d < %u).\n", rc, n_channels);
1268 1269
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1270 1271
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1272
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1273
					     n_channels);
1274 1275 1276
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1277
			efx->n_channels = n_channels;
1278 1279
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1280
			if (separate_tx_channels) {
1281 1282 1283 1284
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1285
			} else {
1286 1287
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1288
			}
1289
			for (i = 0; i < efx->n_channels; i++)
1290 1291
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1292 1293 1294
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1295 1296
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1297 1298 1299 1300 1301
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1302
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1303 1304
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1305 1306
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1307
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1308
		} else {
1309 1310
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1311 1312 1313 1314 1315 1316
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1317
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1318 1319
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1320 1321
		efx->legacy_irq = efx->pci_dev->irq;
	}
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1338
	/* RSS might be usable on VFs even if it is disabled on the PF */
1339
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1340 1341
			   efx->n_rx_channels : efx_vf_size(efx));

1342
	return 0;
1343 1344
}

1345
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1346
{
1347 1348
	struct efx_channel *channel, *end_channel;
	int rc;
1349

1350 1351
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1352 1353
	efx->irq_soft_enabled = true;
	smp_wmb();
1354 1355

	efx_for_each_channel(channel, efx) {
1356 1357 1358 1359 1360
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1361 1362 1363 1364
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1378 1379
}

B
Ben Hutchings 已提交
1380
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1381 1382 1383
{
	struct efx_channel *channel;

1384 1385 1386
	if (efx->state == STATE_DISABLED)
		return;

1387 1388
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1389 1390 1391 1392
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1393 1394 1395 1396 1397 1398 1399
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1400
		if (!channel->type->keep_eventq)
1401
			efx_fini_eventq(channel);
1402
	}
1403 1404 1405

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1406 1407
}

1408
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1409
{
1410 1411
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1412 1413 1414 1415 1416 1417 1418 1419

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1420
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1421 1422

	efx_for_each_channel(channel, efx) {
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1441
		if (channel->type->keep_eventq)
1442
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1443 1444
	}

1445 1446 1447
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1461
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1462 1463
}

1464 1465 1466 1467 1468
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1469
	efx_for_each_channel(channel, efx)
1470 1471 1472 1473 1474 1475 1476 1477
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1478
static void efx_set_channels(struct efx_nic *efx)
1479
{
1480 1481 1482
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1483
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1484
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1485

1486 1487
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1488 1489 1490
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1491 1492 1493 1494 1495
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1496 1497 1498 1499
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1500 1501 1502 1503
}

static int efx_probe_nic(struct efx_nic *efx)
{
1504
	size_t i;
1505 1506
	int rc;

1507
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1508 1509

	/* Carry out hardware-type specific initialisation */
1510
	rc = efx->type->probe(efx);
1511 1512 1513
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1514
	/* Determine the number of channels and queues by trying to hook
1515
	 * in MSI-X interrupts. */
1516 1517
	rc = efx_probe_interrupts(efx);
	if (rc)
1518
		goto fail1;
1519

1520 1521 1522
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1523

1524 1525
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1526
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1527
		efx->rx_indir_table[i] =
1528
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1529

1530
	efx_set_channels(efx);
1531 1532
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1533 1534

	/* Initialise the interrupt moderation settings */
1535 1536
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1537 1538

	return 0;
1539

1540 1541 1542
fail2:
	efx_remove_interrupts(efx);
fail1:
1543 1544
	efx->type->remove(efx);
	return rc;
1545 1546 1547 1548
}

static void efx_remove_nic(struct efx_nic *efx)
{
1549
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1550 1551

	efx_remove_interrupts(efx);
1552
	efx->type->remove(efx);
1553 1554
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1605
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1606 1607 1608 1609 1610
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1611
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1612 1613 1614
		goto fail2;
	}

1615 1616 1617 1618 1619
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1620
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1621

B
Ben Hutchings 已提交
1622 1623 1624 1625
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1626
		goto fail3;
B
Ben Hutchings 已提交
1627 1628
	}

1629 1630 1631 1632
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1633 1634
	return 0;

B
Ben Hutchings 已提交
1635
 fail4:
1636
	efx_remove_filters(efx);
1637 1638 1639 1640 1641 1642 1643 1644
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1645 1646 1647 1648 1649 1650
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1651
 */
1652 1653 1654
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1655
	BUG_ON(efx->state == STATE_DISABLED);
1656 1657 1658

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1659
	if (efx->port_enabled || !netif_running(efx->net_dev))
1660 1661 1662
		return;

	efx_start_port(efx);
1663
	efx_start_datapath(efx);
1664

1665 1666
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1667 1668
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1669 1670 1671 1672 1673

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1674 1675 1676 1677 1678
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1679

1680
	efx->type->start_stats(efx);
1681 1682 1683 1684 1685 1686 1687
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1688
	/* Make sure the hardware monitor and event self-test are stopped */
1689
	cancel_delayed_work_sync(&efx->monitor_work);
1690
	efx_selftest_async_cancel(efx);
1691
	/* Stop scheduled port reconfigurations */
1692
	cancel_work_sync(&efx->mac_work);
1693 1694
}

1695 1696 1697 1698 1699
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1700 1701 1702 1703 1704 1705 1706 1707
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1708
	efx->type->stop_stats(efx);
1709 1710
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1711
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1712 1713
	efx_flush_all(efx);

1714 1715 1716 1717 1718 1719
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1720 1721 1722
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1723 1724 1725 1726
}

static void efx_remove_all(struct efx_nic *efx)
{
1727
	efx_remove_channels(efx);
1728
	efx_remove_filters(efx);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1739
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1740
{
1741 1742
	if (usecs == 0)
		return 0;
1743
	if (usecs * 1000 < quantum_ns)
1744
		return 1; /* never round down to 0 */
1745
	return usecs * 1000 / quantum_ns;
1746 1747
}

1748
/* Set interrupt moderation parameters */
1749 1750 1751
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1752
{
1753
	struct efx_channel *channel;
1754 1755 1756 1757 1758
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1759 1760 1761

	EFX_ASSERT_RESET_SERIALISED(efx);

1762
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1763 1764
		return -EINVAL;

1765 1766 1767
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1768 1769 1770 1771 1772 1773 1774
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1775
	efx->irq_rx_adaptive = rx_adaptive;
1776
	efx->irq_rx_moderation = rx_ticks;
1777
	efx_for_each_channel(channel, efx) {
1778
		if (efx_channel_has_rx_queue(channel))
1779
			channel->irq_moderation = rx_ticks;
1780
		else if (efx_channel_has_tx_queues(channel))
1781 1782
			channel->irq_moderation = tx_ticks;
	}
1783 1784

	return 0;
1785 1786
}

1787 1788 1789
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1790 1791 1792 1793
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1794
	*rx_adaptive = efx->irq_rx_adaptive;
1795 1796 1797
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1798 1799 1800 1801 1802 1803 1804 1805

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1806
		*tx_usecs = DIV_ROUND_UP(
1807
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1808 1809
			efx->timer_quantum_ns,
			1000);
1810 1811
}

1812 1813 1814 1815 1816 1817
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1818
/* Run periodically off the general workqueue */
1819 1820 1821 1822 1823
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1824 1825 1826
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1827
	BUG_ON(efx->type->monitor == NULL);
1828 1829 1830

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1831 1832 1833 1834 1835 1836
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1853
	struct efx_nic *efx = netdev_priv(net_dev);
1854
	struct mii_ioctl_data *data = if_mii(ifr);
1855

1856 1857 1858
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1859 1860 1861 1862 1863 1864
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1865 1866 1867 1868 1869 1870 1871 1872
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1873 1874 1875 1876 1877 1878 1879 1880 1881
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1882
static void efx_init_napi(struct efx_nic *efx)
1883 1884 1885
{
	struct efx_channel *channel;

1886 1887
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1888 1889 1890 1891 1892 1893 1894
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1895 1896 1897 1898 1899 1900
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1901 1902
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1919
	struct efx_nic *efx = netdev_priv(net_dev);
1920 1921
	struct efx_channel *channel;

1922
	efx_for_each_channel(channel, efx)
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1937
	struct efx_nic *efx = netdev_priv(net_dev);
1938 1939
	int rc;

1940 1941
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1942

1943 1944 1945
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1946 1947
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1948 1949
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1950

1951 1952 1953 1954
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1955
	efx_start_all(efx);
1956
	efx_selftest_async_start(efx);
1957 1958 1959 1960 1961 1962 1963 1964 1965
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1966
	struct efx_nic *efx = netdev_priv(net_dev);
1967

1968 1969
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1970

1971 1972
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1973 1974 1975 1976

	return 0;
}

1977
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1978 1979
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1980
{
1981
	struct efx_nic *efx = netdev_priv(net_dev);
1982

1983
	spin_lock_bh(&efx->stats_lock);
1984
	efx->type->update_stats(efx, NULL, stats);
1985 1986
	spin_unlock_bh(&efx->stats_lock);

1987 1988 1989 1990 1991 1992
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1993
	struct efx_nic *efx = netdev_priv(net_dev);
1994

1995 1996 1997
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1998

1999
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2000 2001 2002 2003 2004 2005
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2006
	struct efx_nic *efx = netdev_priv(net_dev);
2007
	int rc;
2008

2009 2010 2011
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2012 2013 2014
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2015
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2016

2017 2018 2019
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2020
	mutex_lock(&efx->mac_lock);
2021
	net_dev->mtu = new_mtu;
2022
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2023 2024
	mutex_unlock(&efx->mac_lock);

2025
	efx_start_all(efx);
2026
	netif_device_attach(efx->net_dev);
2027
	return 0;
2028 2029 2030 2031
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2032
	struct efx_nic *efx = netdev_priv(net_dev);
2033 2034 2035 2036
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2037 2038 2039
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2040
		return -EADDRNOTAVAIL;
2041 2042 2043
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2044
	efx_sriov_mac_address_changed(efx);
2045 2046

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2047
	mutex_lock(&efx->mac_lock);
2048
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2049
	mutex_unlock(&efx->mac_lock);
2050 2051 2052 2053

	return 0;
}

2054
/* Context: netif_addr_lock held, BHs disabled. */
2055
static void efx_set_rx_mode(struct net_device *net_dev)
2056
{
2057
	struct efx_nic *efx = netdev_priv(net_dev);
2058

2059 2060 2061
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2062 2063
}

2064
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2075 2076 2077
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2078
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2079 2080 2081 2082 2083 2084
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2085
	.ndo_set_rx_mode	= efx_set_rx_mode,
2086
	.ndo_set_features	= efx_set_features,
2087 2088 2089 2090 2091 2092
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2093 2094 2095
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2096
	.ndo_setup_tc		= efx_setup_tc,
2097 2098 2099
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2100 2101
};

2102 2103 2104 2105 2106 2107 2108
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2109 2110 2111
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2112
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2113

2114 2115 2116
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2117 2118 2119 2120 2121 2122 2123 2124

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2125 2126 2127 2128 2129 2130
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2131
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2132

2133 2134 2135
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2136
	struct efx_channel *channel;
2137 2138 2139 2140
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2141
	net_dev->netdev_ops = &efx_netdev_ops;
2142
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2143
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2144

2145
	rtnl_lock();
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2160 2161 2162
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2163
	efx_update_name(efx);
2164

2165 2166 2167
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2168 2169 2170 2171
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2172 2173
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2174 2175
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2176 2177
	}

2178
	rtnl_unlock();
2179

B
Ben Hutchings 已提交
2180 2181
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2182 2183
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2184 2185 2186
		goto fail_registered;
	}

2187
	return 0;
B
Ben Hutchings 已提交
2188

2189 2190 2191
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2192
fail_locked:
2193
	efx->state = STATE_UNINIT;
2194
	rtnl_unlock();
2195
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2196
	return rc;
2197 2198 2199 2200 2201 2202 2203
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2204
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2205

2206 2207
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2208 2209 2210 2211 2212

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2213 2214 2215 2216 2217 2218 2219 2220
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2221 2222
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2223
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2224 2225 2226
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2227
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2228
	efx_disable_interrupts(efx);
2229 2230

	mutex_lock(&efx->mac_lock);
2231 2232
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2233
	efx->type->fini(efx);
2234 2235
}

B
Ben Hutchings 已提交
2236 2237 2238 2239 2240
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2241
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2242 2243 2244
{
	int rc;

B
Ben Hutchings 已提交
2245
	EFX_ASSERT_RESET_SERIALISED(efx);
2246

2247
	rc = efx->type->init(efx);
2248
	if (rc) {
2249
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2250
		goto fail;
2251 2252
	}

2253 2254 2255
	if (!ok)
		goto fail;

2256
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2257 2258 2259 2260
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2261 2262
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2263 2264
	}

2265 2266 2267
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
B
Ben Hutchings 已提交
2268
	efx_restore_filters(efx);
2269
	efx_sriov_reset(efx);
2270 2271 2272 2273 2274 2275 2276 2277 2278

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2279 2280 2281

	mutex_unlock(&efx->mac_lock);

2282 2283 2284
	return rc;
}

2285 2286
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2287
 *
2288
 * Caller must hold the rtnl_lock.
2289
 */
2290
int efx_reset(struct efx_nic *efx, enum reset_type method)
2291
{
2292 2293
	int rc, rc2;
	bool disabled;
2294

2295 2296
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2297

2298
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2299
	efx_reset_down(efx, method);
2300

2301
	rc = efx->type->reset(efx, method);
2302
	if (rc) {
2303
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2304
		goto out;
2305 2306
	}

2307 2308 2309 2310
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2311 2312 2313 2314 2315 2316 2317

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2318
out:
2319
	/* Leave device stopped if necessary */
2320 2321 2322
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2323 2324 2325 2326 2327
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2328 2329
	}

2330
	if (disabled) {
2331
		dev_close(efx->net_dev);
2332
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2333 2334
		efx->state = STATE_DISABLED;
	} else {
2335
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2336
		netif_device_attach(efx->net_dev);
2337
	}
2338 2339 2340
	return rc;
}

2341 2342 2343 2344 2345
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2346
int efx_try_recovery(struct efx_nic *efx)
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2367 2368 2369 2370 2371
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2372
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2383

2384
	if (!pending)
2385 2386
		return;

2387
	rtnl_lock();
2388 2389 2390 2391 2392 2393

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2394
		(void)efx_reset(efx, method);
2395

2396
	rtnl_unlock();
2397 2398 2399 2400 2401 2402
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2403 2404 2405 2406 2407 2408 2409
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2410 2411 2412
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2413
	case RESET_TYPE_RECOVER_OR_ALL:
2414 2415
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2416
	case RESET_TYPE_RECOVER_OR_DISABLE:
2417
		method = type;
2418 2419
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2420 2421
		break;
	default:
2422
		method = efx->type->map_reset_reason(type);
2423 2424 2425
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2426 2427
		break;
	}
2428

2429
	set_bit(method, &efx->reset_pending);
2430 2431 2432 2433 2434 2435 2436
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2437

2438 2439 2440 2441
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2442
	queue_work(reset_workqueue, &efx->reset_work);
2443 2444 2445 2446 2447 2448 2449 2450 2451
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2452
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2453 2454
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2455
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2456 2457
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2458
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2459
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2460
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2461
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2462
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2463 2464 2465 2466 2467
	{0}			/* end of list */
};

/**************************************************************************
 *
2468
 * Dummy PHY/MAC operations
2469
 *
2470
 * Can be used for some unimplemented operations
2471 2472 2473 2474 2475 2476 2477 2478 2479
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2480 2481

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2482 2483 2484
{
	return false;
}
2485

2486
static const struct efx_phy_operations efx_dummy_phy_operations = {
2487
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2488
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2489
	.poll		 = efx_port_dummy_op_poll,
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2502
static int efx_init_struct(struct efx_nic *efx,
2503 2504
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2505
	int i;
2506 2507 2508

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2509 2510 2511
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2512 2513
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2514
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2515
	efx->pci_dev = pci_dev;
2516
	efx->msg_enable = debug;
2517
	efx->state = STATE_UNINIT;
2518 2519 2520
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2521 2522 2523
	efx->rx_prefix_size = efx->type->rx_prefix_size;
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2524 2525 2526
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2527
	efx->mdio.dev = net_dev;
2528
	INIT_WORK(&efx->mac_work, efx_mac_work);
2529
	init_waitqueue_head(&efx->flush_wq);
2530 2531

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2532 2533 2534
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2535 2536
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2537 2538 2539 2540 2541 2542
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2543 2544 2545 2546
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2547
	if (!efx->workqueue)
2548
		goto fail;
2549

2550
	return 0;
2551 2552 2553 2554

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2555 2556 2557 2558
}

static void efx_fini_struct(struct efx_nic *efx)
{
2559 2560 2561 2562 2563
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2581 2582 2583 2584 2585 2586
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2587
	efx_disable_interrupts(efx);
2588
	efx_nic_fini_interrupt(efx);
2589
	efx_fini_port(efx);
2590
	efx->type->fini(efx);
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2609
	efx_disable_interrupts(efx);
2610 2611
	rtnl_unlock();

2612
	efx_sriov_fini(efx);
2613 2614
	efx_unregister_netdev(efx);

2615 2616
	efx_mtd_remove(efx);

2617 2618 2619
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2620
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2621 2622

	efx_fini_struct(efx);
2623
	pci_set_drvdata(pci_dev, NULL);
2624
	free_netdev(efx->net_dev);
2625 2626

	pci_disable_pcie_error_reporting(pci_dev);
2627 2628
};

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2692
	efx_init_napi(efx);
2693

2694
	rc = efx->type->init(efx);
2695
	if (rc) {
2696 2697
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2698
		goto fail3;
2699 2700 2701 2702
	}

	rc = efx_init_port(efx);
	if (rc) {
2703 2704
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2705
		goto fail4;
2706 2707
	}

2708
	rc = efx_nic_init_interrupt(efx);
2709
	if (rc)
2710
		goto fail5;
2711 2712 2713
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2714 2715 2716

	return 0;

2717 2718
 fail6:
	efx_nic_fini_interrupt(efx);
2719
 fail5:
2720 2721
	efx_fini_port(efx);
 fail4:
2722
	efx->type->fini(efx);
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2733
 * theoretically).  It sets up PCI mappings, resets the NIC,
2734 2735 2736 2737 2738
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2739
static int efx_pci_probe(struct pci_dev *pci_dev,
2740
			 const struct pci_device_id *entry)
2741 2742 2743
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2744
	int rc;
2745 2746

	/* Allocate and initialise a struct net_device and struct efx_nic */
2747 2748
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2749 2750
	if (!net_dev)
		return -ENOMEM;
2751 2752 2753
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2754
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2755
			      NETIF_F_RXCSUM);
2756
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2757
		net_dev->features |= NETIF_F_TSO6;
2758 2759
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2760 2761 2762 2763
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2764
	pci_set_drvdata(pci_dev, efx);
2765
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2766
	rc = efx_init_struct(efx, pci_dev, net_dev);
2767 2768 2769
	if (rc)
		goto fail1;

2770
	netif_info(efx, probe, efx->net_dev,
2771
		   "Solarflare NIC detected\n");
2772

2773 2774
	efx_print_product_vpd(efx);

2775 2776 2777 2778 2779
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2780 2781 2782
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2783 2784 2785

	rc = efx_register_netdev(efx);
	if (rc)
2786
		goto fail4;
2787

2788 2789 2790 2791 2792
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2793
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2794

2795
	/* Try to create MTDs, but allow this to fail */
2796
	rtnl_lock();
2797
	rc = efx_mtd_probe(efx);
2798
	rtnl_unlock();
2799 2800 2801 2802
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2803 2804 2805 2806 2807
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2808 2809 2810
	return 0;

 fail4:
2811
	efx_pci_remove_main(efx);
2812 2813 2814 2815 2816
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2817
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2818
	WARN_ON(rc > 0);
2819
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2820 2821 2822 2823
	free_netdev(net_dev);
	return rc;
}

2824 2825 2826 2827
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2828 2829
	rtnl_lock();

2830 2831
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2832

2833
		efx_device_detach_sync(efx);
2834

2835
		efx_stop_all(efx);
B
Ben Hutchings 已提交
2836
		efx_disable_interrupts(efx);
2837
	}
2838

2839 2840
	rtnl_unlock();

2841 2842 2843 2844 2845
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
2846
	int rc;
2847 2848
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2849 2850
	rtnl_lock();

2851
	if (efx->state != STATE_DISABLED) {
2852 2853 2854
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
2855

2856 2857 2858
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2859

2860
		efx_start_all(efx);
2861

2862
		netif_device_attach(efx->net_dev);
2863

2864
		efx->state = STATE_READY;
2865

2866 2867
		efx->type->resume_wol(efx);
	}
2868

2869 2870
	rtnl_unlock();

2871 2872 2873
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2874
	return 0;
2875 2876 2877 2878 2879

fail:
	rtnl_unlock();

	return rc;
2880 2881 2882 2883 2884 2885 2886 2887 2888
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2889
	efx->reset_pending = 0;
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
2916 2917
	rc = efx_pm_thaw(dev);
	return rc;
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2931
static const struct dev_pm_ops efx_pm_ops = {
2932 2933 2934 2935 2936 2937 2938 2939
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2940 2941 2942 2943
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
2944 2945
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
2962
		efx_disable_interrupts(efx);
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
2980
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3039
static struct pci_driver efx_pci_driver = {
3040
	.name		= KBUILD_MODNAME,
3041 3042 3043
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3044
	.driver.pm	= &efx_pm_ops,
3045
	.err_handler	= &efx_err_handlers,
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3068 3069 3070 3071
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3072 3073 3074 3075 3076
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3077 3078 3079 3080 3081 3082 3083 3084

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3085 3086
	destroy_workqueue(reset_workqueue);
 err_reset:
3087 3088
	efx_fini_sriov();
 err_sriov:
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3099
	destroy_workqueue(reset_workqueue);
3100
	efx_fini_sriov();
3101 3102 3103 3104 3105 3106 3107
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3108 3109
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3110 3111 3112
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);