perf_counter.c 60.0 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/fs.h>
#include <linux/cpu.h>
#include <linux/smp.h>
13
#include <linux/file.h>
T
Thomas Gleixner 已提交
14 15 16 17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
21
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
22
#include <linux/perf_counter.h>
23 24
#include <linux/mm.h>
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
25
#include <linux/rculist.h>
P
Peter Zijlstra 已提交
26
#include <linux/hardirq.h>
T
Thomas Gleixner 已提交
27

28 29
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
30 31 32 33 34
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

35
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
36 37 38 39 40 41 42 43 44 45 46
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
47
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
48
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
49
{
50
	return NULL;
T
Thomas Gleixner 已提交
51 52
}

53
u64 __weak hw_perf_save_disable(void)		{ return 0; }
54
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
55
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
56 57 58 59 60 61
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
62

63 64
void __weak perf_counter_print_debug(void)	{ }

65 66 67 68 69 70 71 72 73 74 75 76 77 78
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
	else
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
79 80

	list_add_rcu(&counter->event_entry, &ctx->event_list);
81 82 83 84 85 86 87 88
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
89
	list_del_rcu(&counter->event_entry);
90 91 92 93 94 95 96 97 98

	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

99
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
100 101 102 103
		sibling->group_leader = sibling;
	}
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
145 146 147 148 149 150
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
151
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
152 153 154 155
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
156
	unsigned long flags;
157
	u64 perf_flags;
T
Thomas Gleixner 已提交
158 159 160 161 162 163 164 165 166

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
167 168
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
169

170 171 172
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
173 174 175 176 177 178
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
179
	perf_flags = hw_perf_save_disable();
180
	list_del_counter(counter, ctx);
181
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
182 183 184 185 186 187 188 189 190 191 192

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
193 194
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
195 196 197 198 199 200
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
201
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
202 203 204 205
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
206
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
207 208 209 210 211 212 213 214 215 216
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
217
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
218 219 220 221 222
					 counter, 1);
		return;
	}

retry:
223
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
224 225 226 227 228 229
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
230
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
231 232 233 234 235 236
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
237
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
238 239
	 * succeed.
	 */
240
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
241
		ctx->nr_counters--;
242
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
243 244 245 246 247
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		counter->state = PERF_COUNTER_STATE_OFF;

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

341 342 343 344 345 346
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
347
	if (counter->state <= PERF_COUNTER_STATE_OFF)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

363 364
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
365 366
	ctx->nr_active++;

367 368 369
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

370 371 372
	return 0;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

T
Thomas Gleixner 已提交
420
/*
421
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
422 423 424 425 426 427
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
428
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
429
	int cpu = smp_processor_id();
430
	unsigned long flags;
431
	u64 perf_flags;
432
	int err;
T
Thomas Gleixner 已提交
433 434 435 436 437 438 439 440 441

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
442 443
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
444 445 446 447 448

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
449
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
450

451
	list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
452
	ctx->nr_counters++;
453
	counter->prev_state = PERF_COUNTER_STATE_OFF;
T
Thomas Gleixner 已提交
454

455 456 457 458 459 460 461 462
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

463 464 465 466 467
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
468
	if (!group_can_go_on(counter, cpuctx, 1))
469 470 471 472
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

473 474 475 476 477 478 479 480 481 482 483
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}
T
Thomas Gleixner 已提交
484

485
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
486 487
		cpuctx->max_pertask--;

488
 unlock:
489 490
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
491 492
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
493 494 495 496 497 498 499 500 501 502 503
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
504 505
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
533
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
534 535 536 537 538 539 540 541 542
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
543 544
	if (list_empty(&counter->list_entry)) {
		list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
545 546 547 548 549
		ctx->nr_counters++;
	}
	spin_unlock_irq(&ctx->lock);
}

550 551 552 553
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
554
{
555 556 557 558 559 560
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
561

562 563 564 565 566
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
567 568
		return;

569 570 571
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

572
	counter->prev_state = counter->state;
573 574 575
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
576 577

	/*
578 579
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
580
	 */
581 582
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
583

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_OFF)
		counter->state = PERF_COUNTER_STATE_INACTIVE;
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
676 677
}

678 679 680 681
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
682
	u64 flags;
683

684 685
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
686
	if (likely(!ctx->nr_counters))
687
		goto out;
688

689
	flags = hw_perf_save_disable();
690 691 692 693
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
694
	hw_perf_restore(flags);
695
 out:
696 697 698
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
699 700 701 702 703 704
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
705
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
706 707 708 709 710 711 712 713
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
714
	struct pt_regs *regs;
T
Thomas Gleixner 已提交
715 716 717 718

	if (likely(!cpuctx->task_ctx))
		return;

719 720
	regs = task_pt_regs(task);
	perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
721 722
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
723 724 725
	cpuctx->task_ctx = NULL;
}

726
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
727
{
728
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
729 730
}

I
Ingo Molnar 已提交
731
static int
732 733 734 735 736
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
737
	struct perf_counter *counter, *partial_group;
738 739 740 741 742 743 744 745
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
746

747
	group_counter->prev_state = group_counter->state;
748 749
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
750 751 752 753

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
754
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
755
		counter->prev_state = counter->state;
756 757 758 759 760 761
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

762
	return 0;
763 764 765 766 767 768 769 770 771 772

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
773
	}
774
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
775

776
	return -EAGAIN;
777 778
}

779 780 781
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
782 783
{
	struct perf_counter *counter;
784
	u64 flags;
785
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
786

787 788
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
789
	if (likely(!ctx->nr_counters))
790
		goto out;
T
Thomas Gleixner 已提交
791

792
	flags = hw_perf_save_disable();
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			counter->state = PERF_COUNTER_STATE_ERROR;
	}

816
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
817 818 819 820 821 822 823 824
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

825 826 827 828
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
829 830 831
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

832
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
833 834
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
835
		}
T
Thomas Gleixner 已提交
836
	}
837
	hw_perf_restore(flags);
838
 out:
T
Thomas Gleixner 已提交
839
	spin_unlock(&ctx->lock);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
857

858
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
859 860 861
	cpuctx->task_ctx = ctx;
}

862 863 864 865 866 867 868
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

869 870 871 872 873
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
874
	unsigned long flags;
875 876 877 878 879 880
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
881
	curr_rq_lock_irq_save(&flags);
882 883
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
884 885 886
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

887 888 889 890 891 892 893 894 895
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

896 897 898 899
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ERROR)
			counter->state = PERF_COUNTER_STATE_OFF;
	}
900

901 902 903 904
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
905
	curr_rq_unlock_irq_restore(&flags);
906 907 908 909 910 911 912 913 914

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
915
	unsigned long flags;
916 917 918 919 920 921
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
922
	curr_rq_lock_irq_save(&flags);
923 924
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
925 926 927
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

928 929
	perf_counter_task_sched_out(curr, cpu);

930 931 932 933 934 935 936 937
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
938
		if (counter->state > PERF_COUNTER_STATE_OFF)
939
			continue;
940
		counter->state = PERF_COUNTER_STATE_INACTIVE;
I
Ingo Molnar 已提交
941
		counter->hw_event.disabled = 0;
942 943 944 945 946 947 948
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
949
	curr_rq_unlock_irq_restore(&flags);
950 951 952 953

	return 0;
}

954 955 956 957
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
958 959
{
	struct perf_counter *counter;
960
	u64 perf_flags;
T
Thomas Gleixner 已提交
961

962
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
963 964 965 966
		return;

	spin_lock(&ctx->lock);
	/*
967
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
968
	 */
969
	perf_flags = hw_perf_save_disable();
970
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
971
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
972 973
		break;
	}
974
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
975 976

	spin_unlock(&ctx->lock);
977 978 979 980 981 982 983 984 985 986 987
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
988

989 990 991 992 993 994
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
995 996 997 998 999 1000
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1001
static void __read(void *info)
T
Thomas Gleixner 已提交
1002
{
I
Ingo Molnar 已提交
1003
	struct perf_counter *counter = info;
I
Ingo Molnar 已提交
1004
	unsigned long flags;
I
Ingo Molnar 已提交
1005

I
Ingo Molnar 已提交
1006
	curr_rq_lock_irq_save(&flags);
I
Ingo Molnar 已提交
1007
	counter->hw_ops->read(counter);
I
Ingo Molnar 已提交
1008
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
1009 1010
}

1011
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1012 1013 1014 1015 1016
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1017
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1018
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1019
					 __read, counter, 1);
T
Thomas Gleixner 已提交
1020 1021
	}

1022
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
}

/*
 * Cross CPU call to switch performance data pointers
 */
static void __perf_switch_irq_data(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task) {
		if (cpuctx->task_ctx != ctx)
			return;
		spin_lock(&ctx->lock);
	}

	/* Change the pointer NMI safe */
	atomic_long_set((atomic_long_t *)&counter->irqdata,
			(unsigned long) counter->usrdata);
	counter->usrdata = oldirqdata;

	if (ctx->task)
		spin_unlock(&ctx->lock);
}

static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;
	struct task_struct *task = ctx->task;

	if (!task) {
		smp_call_function_single(counter->cpu,
					 __perf_switch_irq_data,
					 counter, 1);
		return counter->usrdata;
	}

retry:
	spin_lock_irq(&ctx->lock);
1070
	if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
		counter->irqdata = counter->usrdata;
		counter->usrdata = oldirqdata;
		spin_unlock_irq(&ctx->lock);
		return oldirqdata;
	}
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_switch_irq_data, counter);
	/* Might have failed, because task was scheduled out */
	if (counter->irqdata == oldirqdata)
		goto retry;

	return counter->usrdata;
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1146 1147 1148 1149 1150 1151 1152 1153
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
	kfree(counter);
}

1154 1155
static void free_counter(struct perf_counter *counter)
{
1156 1157 1158
	if (counter->destroy)
		counter->destroy(counter);

1159 1160 1161
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1172
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1173 1174
	mutex_lock(&counter->mutex);

1175
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1176 1177

	mutex_unlock(&counter->mutex);
1178
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1179

1180
	free_page(counter->user_page);
1181
	free_counter(counter);
1182
	put_context(ctx);
T
Thomas Gleixner 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
	u64 cntval;

	if (count != sizeof(cntval))
		return -EINVAL;

1198 1199 1200 1201 1202 1203 1204 1205
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1206
	mutex_lock(&counter->mutex);
1207
	cntval = perf_counter_read(counter);
T
Thomas Gleixner 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	mutex_unlock(&counter->mutex);

	return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
}

static ssize_t
perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
{
	if (!usrdata->len)
		return 0;

	count = min(count, (size_t)usrdata->len);
	if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
		return -EFAULT;

	/* Adjust the counters */
	usrdata->len -= count;
	if (!usrdata->len)
		usrdata->rd_idx = 0;
	else
		usrdata->rd_idx += count;

	return count;
}

static ssize_t
perf_read_irq_data(struct perf_counter	*counter,
		   char __user		*buf,
		   size_t		count,
		   int			nonblocking)
{
	struct perf_data *irqdata, *usrdata;
	DECLARE_WAITQUEUE(wait, current);
1241
	ssize_t res, res2;
T
Thomas Gleixner 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

	irqdata = counter->irqdata;
	usrdata = counter->usrdata;

	if (usrdata->len + irqdata->len >= count)
		goto read_pending;

	if (nonblocking)
		return -EAGAIN;

	spin_lock_irq(&counter->waitq.lock);
	__add_wait_queue(&counter->waitq, &wait);
	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
		if (usrdata->len + irqdata->len >= count)
			break;

		if (signal_pending(current))
			break;

1262 1263 1264
		if (counter->state == PERF_COUNTER_STATE_ERROR)
			break;

T
Thomas Gleixner 已提交
1265 1266 1267 1268 1269 1270 1271 1272
		spin_unlock_irq(&counter->waitq.lock);
		schedule();
		spin_lock_irq(&counter->waitq.lock);
	}
	__remove_wait_queue(&counter->waitq, &wait);
	__set_current_state(TASK_RUNNING);
	spin_unlock_irq(&counter->waitq.lock);

1273 1274
	if (usrdata->len + irqdata->len < count &&
	    counter->state != PERF_COUNTER_STATE_ERROR)
T
Thomas Gleixner 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		return -ERESTARTSYS;
read_pending:
	mutex_lock(&counter->mutex);

	/* Drain pending data first: */
	res = perf_copy_usrdata(usrdata, buf, count);
	if (res < 0 || res == count)
		goto out;

	/* Switch irq buffer: */
	usrdata = perf_switch_irq_data(counter);
1286 1287
	res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
	if (res2 < 0) {
T
Thomas Gleixner 已提交
1288 1289 1290
		if (!res)
			res = -EFAULT;
	} else {
1291
		res += res2;
T
Thomas Gleixner 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	}
out:
	mutex_unlock(&counter->mutex);

	return res;
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

I
Ingo Molnar 已提交
1304
	switch (counter->hw_event.record_type) {
T
Thomas Gleixner 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	case PERF_RECORD_SIMPLE:
		return perf_read_hw(counter, buf, count);

	case PERF_RECORD_IRQ:
	case PERF_RECORD_GROUP:
		return perf_read_irq_data(counter, buf, count,
					  file->f_flags & O_NONBLOCK);
	}
	return -EINVAL;
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
	unsigned int events = 0;
	unsigned long flags;

	poll_wait(file, &counter->waitq, wait);

	spin_lock_irqsave(&counter->waitq.lock, flags);
	if (counter->usrdata->len || counter->irqdata->len)
		events |= POLLIN;
	spin_unlock_irqrestore(&counter->waitq.lock, flags);

	return events;
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
void perf_counter_update_userpage(struct perf_counter *counter)
{
	struct perf_counter_mmap_page *userpg;

	if (!counter->user_page)
		return;
	userpg = (struct perf_counter_mmap_page *) counter->user_page;

	++userpg->lock;
	smp_wmb();
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
	smp_wmb();
	++userpg->lock;
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	if (!counter->user_page)
		return VM_FAULT_SIGBUS;

	vmf->page = virt_to_page(counter->user_page);
	get_page(vmf->page);
	return 0;
}

static struct vm_operations_struct perf_mmap_vmops = {
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
	unsigned long userpg;

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
		return -EINVAL;

	/*
	 * For now, restrict to the case of a hardware counter
	 * on the current task.
	 */
	if (is_software_counter(counter) || counter->task != current)
		return -EINVAL;

	userpg = counter->user_page;
	if (!userpg) {
		userpg = get_zeroed_page(GFP_KERNEL);
		mutex_lock(&counter->mutex);
		if (counter->user_page) {
			free_page(userpg);
			userpg = counter->user_page;
		} else {
			counter->user_page = userpg;
		}
		mutex_unlock(&counter->mutex);
		if (!userpg)
			return -ENOMEM;
	}

	perf_counter_update_userpage(counter);

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
	return 0;
}

T
Thomas Gleixner 已提交
1424 1425 1426 1427
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1428 1429
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
1430
	.mmap			= perf_mmap,
T
Thomas Gleixner 已提交
1431 1432
};

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
/*
 * Output
 */

static void perf_counter_store_irq(struct perf_counter *counter, u64 data)
{
	struct perf_data *irqdata = counter->irqdata;

	if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
		irqdata->overrun++;
	} else {
		u64 *p = (u64 *) &irqdata->data[irqdata->len];

		*p = data;
		irqdata->len += sizeof(u64);
	}
}

static void perf_counter_handle_group(struct perf_counter *counter)
{
	struct perf_counter *leader, *sub;

	leader = counter->group_leader;
	list_for_each_entry(sub, &leader->sibling_list, list_entry) {
		if (sub != counter)
			sub->hw_ops->read(sub);
1459
		perf_counter_store_irq(counter, sub->hw_event.config);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		perf_counter_store_irq(counter, atomic64_read(&sub->count));
	}
}

void perf_counter_output(struct perf_counter *counter,
			 int nmi, struct pt_regs *regs)
{
	switch (counter->hw_event.record_type) {
	case PERF_RECORD_SIMPLE:
		return;

	case PERF_RECORD_IRQ:
		perf_counter_store_irq(counter, instruction_pointer(regs));
		break;

	case PERF_RECORD_GROUP:
		perf_counter_handle_group(counter);
		break;
	}

	if (nmi) {
		counter->wakeup_pending = 1;
		set_perf_counter_pending();
	} else
		wake_up(&counter->waitq);
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->irq_period;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
	struct perf_counter *counter;
	struct pt_regs *regs;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->hw_ops->read(counter);

	regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->hw_event.exclude_kernel || !regs) &&
			!counter->hw_event.exclude_user)
		regs = task_pt_regs(current);

	if (regs)
1547
		perf_counter_output(counter, 0, regs);
1548 1549 1550 1551 1552 1553 1554 1555 1556

	hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));

	return HRTIMER_RESTART;
}

static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct pt_regs *regs)
{
1557 1558
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
1559
	perf_counter_output(counter, nmi, regs);
1560 1561
}

1562
static int perf_swcounter_match(struct perf_counter *counter,
1563 1564
				enum perf_event_types type,
				u32 event, struct pt_regs *regs)
1565 1566 1567 1568
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

1569
	if (perf_event_raw(&counter->hw_event))
1570 1571
		return 0;

1572
	if (perf_event_type(&counter->hw_event) != type)
1573 1574
		return 0;

1575
	if (perf_event_id(&counter->hw_event) != event)
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
		return 0;

	if (counter->hw_event.exclude_user && user_mode(regs))
		return 0;

	if (counter->hw_event.exclude_kernel && !user_mode(regs))
		return 0;

	return 1;
}

1587 1588 1589 1590 1591 1592 1593 1594
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct pt_regs *regs)
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
	if (counter->hw.irq_period && !neg)
		perf_swcounter_overflow(counter, nmi, regs);
}

1595
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1596 1597
				     enum perf_event_types type, u32 event,
				     u64 nr, int nmi, struct pt_regs *regs)
1598 1599 1600
{
	struct perf_counter *counter;

1601
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1602 1603
		return;

P
Peter Zijlstra 已提交
1604 1605
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1606
		if (perf_swcounter_match(counter, type, event, regs))
1607
			perf_swcounter_add(counter, nr, nmi, regs);
1608
	}
P
Peter Zijlstra 已提交
1609
	rcu_read_unlock();
1610 1611
}

P
Peter Zijlstra 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

1626 1627
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
				   u64 nr, int nmi, struct pt_regs *regs)
1628 1629
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
1630 1631 1632 1633 1634 1635 1636
	int *recursion = perf_swcounter_recursion_context(cpuctx);

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
1637

1638 1639 1640 1641 1642
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
	if (cpuctx->task_ctx) {
		perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
				nr, nmi, regs);
	}
1643

P
Peter Zijlstra 已提交
1644 1645 1646 1647
	barrier();
	(*recursion)--;

out:
1648 1649 1650
	put_cpu_var(perf_cpu_context);
}

1651 1652 1653 1654 1655
void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
{
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

1672 1673 1674 1675 1676 1677
static const struct hw_perf_counter_ops perf_ops_generic = {
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

1678 1679 1680 1681
/*
 * Software counter: cpu wall time clock
 */

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

1694 1695 1696 1697 1698 1699
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1700 1701
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
1702 1703 1704 1705 1706 1707 1708 1709 1710
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

1711 1712
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
1713
	hrtimer_cancel(&counter->hw.hrtimer);
1714
	cpu_clock_perf_counter_update(counter);
1715 1716 1717 1718
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
1719
	cpu_clock_perf_counter_update(counter);
1720 1721 1722
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
1723 1724 1725
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
1726 1727
};

1728 1729 1730 1731
/*
 * Software counter: task time clock
 */

I
Ingo Molnar 已提交
1732 1733 1734 1735
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1736
{
I
Ingo Molnar 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
1757 1758
}

1759
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
1760
{
1761 1762 1763
	struct hw_perf_counter *hwc = &counter->hw;

	atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1764 1765
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
1766 1767 1768 1769 1770
	if (hwc->irq_period) {
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(hwc->irq_period), 0,
				HRTIMER_MODE_REL, 0);
	}
1771 1772

	return 0;
I
Ingo Molnar 已提交
1773 1774 1775
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
1776
{
1777 1778 1779 1780
	hrtimer_cancel(&counter->hw.hrtimer);
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 0));
}
I
Ingo Molnar 已提交
1781

1782 1783 1784 1785
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
	task_clock_perf_counter_update(counter,
			task_clock_perf_counter_val(counter, 1));
1786 1787 1788
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
1789 1790 1791
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
1792 1793
};

1794 1795 1796 1797
/*
 * Software counter: cpu migrations
 */

1798
static inline u64 get_cpu_migrations(struct perf_counter *counter)
1799
{
1800 1801 1802 1803 1804
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
1805 1806 1807 1808 1809 1810 1811 1812
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1813
	now = get_cpu_migrations(counter);
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

1827
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1828
{
1829 1830 1831
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
1832
	return 0;
1833 1834 1835 1836 1837 1838 1839 1840
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
1841 1842 1843
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
1844 1845
};

1846 1847 1848
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
1849 1850 1851 1852 1853 1854
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
1855 1856 1857 1858 1859 1860 1861
}

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
1862
	ftrace_profile_disable(perf_event_id(&counter->hw_event));
1863 1864 1865 1866 1867
}

static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
1868
	int event_id = perf_event_id(&counter->hw_event);
1869 1870 1871 1872 1873 1874 1875
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;
1876
	counter->hw.irq_period = counter->hw_event.irq_period;
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

	return &perf_ops_generic;
}
#else
static const struct hw_perf_counter_ops *
tp_perf_counter_init(struct perf_counter *counter)
{
	return NULL;
}
#endif

1888 1889 1890
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
1891
	struct perf_counter_hw_event *hw_event = &counter->hw_event;
1892
	const struct hw_perf_counter_ops *hw_ops = NULL;
1893
	struct hw_perf_counter *hwc = &counter->hw;
1894

1895 1896 1897 1898 1899 1900 1901
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
1902
	switch (perf_event_id(&counter->hw_event)) {
1903
	case PERF_COUNT_CPU_CLOCK:
1904 1905 1906 1907
		hw_ops = &perf_ops_cpu_clock;

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
1908
		break;
1909
	case PERF_COUNT_TASK_CLOCK:
1910 1911 1912 1913 1914 1915 1916 1917
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
1918 1919 1920

		if (hw_event->irq_period && hw_event->irq_period < 10000)
			hw_event->irq_period = 10000;
1921
		break;
1922
	case PERF_COUNT_PAGE_FAULTS:
1923 1924
	case PERF_COUNT_PAGE_FAULTS_MIN:
	case PERF_COUNT_PAGE_FAULTS_MAJ:
1925
	case PERF_COUNT_CONTEXT_SWITCHES:
1926
		hw_ops = &perf_ops_generic;
1927
		break;
1928
	case PERF_COUNT_CPU_MIGRATIONS:
1929 1930
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
1931
		break;
1932
	}
1933 1934 1935 1936

	if (hw_ops)
		hwc->irq_period = hw_event->irq_period;

1937 1938 1939
	return hw_ops;
}

T
Thomas Gleixner 已提交
1940 1941 1942 1943
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
1944 1945
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
1946
		   struct perf_counter_context *ctx,
1947 1948
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
1949
{
1950
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
1951
	struct perf_counter *counter;
T
Thomas Gleixner 已提交
1952

1953
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
1954 1955 1956
	if (!counter)
		return NULL;

1957 1958 1959 1960 1961 1962 1963
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
1964
	mutex_init(&counter->mutex);
1965
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
1966
	INIT_LIST_HEAD(&counter->event_entry);
1967
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
1968 1969
	init_waitqueue_head(&counter->waitq);

1970 1971
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
1972 1973 1974 1975 1976
	counter->irqdata		= &counter->data[0];
	counter->usrdata		= &counter->data[1];
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
	counter->wakeup_pending		= 0;
1977
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
1978
	counter->hw_ops			= NULL;
1979
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
1980

1981
	counter->state = PERF_COUNTER_STATE_INACTIVE;
1982 1983 1984
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

1985
	hw_ops = NULL;
1986

1987
	if (perf_event_raw(hw_event)) {
1988
		hw_ops = hw_perf_counter_init(counter);
1989 1990 1991 1992
		goto done;
	}

	switch (perf_event_type(hw_event)) {
1993
	case PERF_TYPE_HARDWARE:
1994
		hw_ops = hw_perf_counter_init(counter);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
		break;

	case PERF_TYPE_SOFTWARE:
		hw_ops = sw_perf_counter_init(counter);
		break;

	case PERF_TYPE_TRACEPOINT:
		hw_ops = tp_perf_counter_init(counter);
		break;
	}
2005

I
Ingo Molnar 已提交
2006 2007 2008 2009
	if (!hw_ops) {
		kfree(counter);
		return NULL;
	}
2010
done:
I
Ingo Molnar 已提交
2011
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
2012 2013 2014 2015 2016

	return counter;
}

/**
2017
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
2018 2019
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
2020
 * @pid:		target pid
I
Ingo Molnar 已提交
2021 2022
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
2023
 */
2024
SYSCALL_DEFINE5(perf_counter_open,
2025
		const struct perf_counter_hw_event __user *, hw_event_uptr,
2026
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
2027
{
2028
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
2029
	struct perf_counter_hw_event hw_event;
2030
	struct perf_counter_context *ctx;
2031
	struct file *counter_file = NULL;
2032 2033
	struct file *group_file = NULL;
	int fput_needed = 0;
2034
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
2035 2036
	int ret;

2037 2038 2039 2040
	/* for future expandability... */
	if (flags)
		return -EINVAL;

I
Ingo Molnar 已提交
2041
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2042 2043
		return -EFAULT;

2044
	/*
I
Ingo Molnar 已提交
2045 2046 2047 2048 2049 2050 2051 2052
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
2053 2054 2055 2056 2057 2058
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
2059
			goto err_put_context;
2060
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
2061
			goto err_put_context;
2062 2063 2064

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
2065 2066 2067 2068 2069 2070 2071 2072
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
2073
		 */
I
Ingo Molnar 已提交
2074 2075
		if (group_leader->ctx != ctx)
			goto err_put_context;
2076 2077 2078 2079 2080
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
2081 2082
	}

2083
	ret = -EINVAL;
2084 2085
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
T
Thomas Gleixner 已提交
2086 2087 2088 2089 2090
	if (!counter)
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
2091 2092 2093 2094 2095 2096 2097
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
2098
	mutex_lock(&ctx->mutex);
2099
	perf_install_in_context(ctx, counter, cpu);
2100
	mutex_unlock(&ctx->mutex);
2101 2102

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
2103

2104 2105 2106
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
2107 2108
	return ret;

2109
err_free_put_context:
T
Thomas Gleixner 已提交
2110 2111 2112 2113 2114
	kfree(counter);

err_put_context:
	put_context(ctx);

2115
	goto out_fput;
T
Thomas Gleixner 已提交
2116 2117
}

2118 2119 2120 2121 2122 2123 2124 2125 2126
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
2127
	mutex_init(&ctx->mutex);
2128
	INIT_LIST_HEAD(&ctx->counter_list);
P
Peter Zijlstra 已提交
2129
	INIT_LIST_HEAD(&ctx->event_list);
2130 2131 2132 2133 2134 2135
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
2136
static struct perf_counter *
2137 2138 2139 2140
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
2141
	      struct perf_counter *group_leader,
2142 2143 2144 2145
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

2146 2147 2148 2149 2150 2151 2152 2153 2154
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

2155
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
2156 2157
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
2158
	if (!child_counter)
2159
		return NULL;
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
	list_add_counter(child_counter, child_ctx);
	child_ctx->nr_counters++;

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (!leader)
		return -ENOMEM;
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
		if (!inherit_counter(sub, parent, parent_ctx,
				     child, leader, child_ctx))
			return -ENOMEM;
	}
2221 2222 2223
	return 0;
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

2251 2252 2253 2254 2255 2256
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
2257
	struct perf_counter *sub, *tmp;
2258 2259

	/*
2260 2261 2262 2263 2264 2265
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
2266
	 */
2267 2268 2269 2270
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
	} else {
2271
		struct perf_cpu_context *cpuctx;
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
2283 2284 2285

		cpuctx = &__get_cpu_var(perf_cpu_context);

2286
		group_sched_out(child_counter, cpuctx, child_ctx);
2287

2288
		list_del_init(&child_counter->list_entry);
2289

2290
		child_ctx->nr_counters--;
2291

2292 2293 2294
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
2295 2296 2297 2298 2299 2300 2301

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
2302 2303 2304 2305
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
2306
			if (sub->parent) {
2307
				sync_child_counter(sub, sub->parent);
2308
				free_counter(sub);
2309
			}
2310
		}
2311
		free_counter(child_counter);
2312
	}
2313 2314 2315
}

/*
2316
 * When a child task exits, feed back counter values to parent counters.
2317
 *
2318
 * Note: we may be running in child context, but the PID is not hashed
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2342
	struct perf_counter *counter;
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2362
	mutex_lock(&parent_ctx->mutex);
2363 2364 2365 2366 2367 2368

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2369
		if (!counter->hw_event.inherit)
2370 2371
			continue;

2372
		if (inherit_group(counter, parent,
2373 2374 2375 2376
				  parent_ctx, child, child_ctx))
			break;
	}

2377
	mutex_unlock(&parent_ctx->mutex);
2378 2379
}

2380
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2381
{
2382
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2383

2384 2385
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2386 2387

	mutex_lock(&perf_resource_mutex);
2388
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2389
	mutex_unlock(&perf_resource_mutex);
2390

2391
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2392 2393 2394
}

#ifdef CONFIG_HOTPLUG_CPU
2395
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2396 2397 2398 2399 2400
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2401 2402
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2403
}
2404
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2405
{
2406 2407 2408 2409
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2410
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2411
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2412 2413
}
#else
2414
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
2426
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
2427 2428 2429 2430
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
2431
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);