perf_counter.c 52.6 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/fs.h>
#include <linux/cpu.h>
#include <linux/smp.h>
13
#include <linux/file.h>
T
Thomas Gleixner 已提交
14 15 16 17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
21
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
22
#include <linux/perf_counter.h>
23 24
#include <linux/mm.h>
#include <linux/vmstat.h>
T
Thomas Gleixner 已提交
25 26 27 28 29 30

/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

31
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
32 33 34 35 36 37 38 39 40 41 42
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
43
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
44
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
45
{
46
	return NULL;
T
Thomas Gleixner 已提交
47 48
}

49
u64 __weak hw_perf_save_disable(void)		{ return 0; }
50
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
51
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
52 53 54 55 56 57
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
58

59 60
void __weak perf_counter_print_debug(void)	{ }

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
	else
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);

	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

		list_del_init(&sibling->list_entry);
		list_add_tail(&sibling->list_entry, &ctx->counter_list);
		sibling->group_leader = sibling;
	}
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
139 140 141 142 143 144
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
145
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
146 147 148 149
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
150
	unsigned long flags;
151
	u64 perf_flags;
T
Thomas Gleixner 已提交
152 153 154 155 156 157 158 159 160

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
161 162
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
163

164 165 166
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
167 168 169 170 171 172
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
173
	perf_flags = hw_perf_save_disable();
174
	list_del_counter(counter, ctx);
175
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
176 177 178 179 180 181 182 183 184 185 186

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
187 188
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
189 190 191 192 193 194
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
195
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
196 197 198 199
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
200
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
201 202 203 204 205 206 207 208 209 210
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
211
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
212 213 214 215 216
					 counter, 1);
		return;
	}

retry:
217
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
218 219 220 221 222 223
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
224
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
225 226 227 228 229 230
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
231
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
232 233
	 * succeed.
	 */
234
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
235
		ctx->nr_counters--;
236
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
237 238 239 240 241
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		counter->state = PERF_COUNTER_STATE_OFF;

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

335 336 337 338 339 340
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
341
	if (counter->state <= PERF_COUNTER_STATE_OFF)
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

357 358
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
359 360
	ctx->nr_active++;

361 362 363
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

364 365 366
	return 0;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

T
Thomas Gleixner 已提交
414
/*
415
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
416 417 418 419 420 421
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
422
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
423
	int cpu = smp_processor_id();
424
	unsigned long flags;
425
	u64 perf_flags;
426
	int err;
T
Thomas Gleixner 已提交
427 428 429 430 431 432 433 434 435

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
436 437
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
438 439 440 441 442

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
443
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
444

445
	list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
446
	ctx->nr_counters++;
447
	counter->prev_state = PERF_COUNTER_STATE_OFF;
T
Thomas Gleixner 已提交
448

449 450 451 452 453 454 455 456
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

457 458 459 460 461
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
462
	if (!group_can_go_on(counter, cpuctx, 1))
463 464 465 466
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

467 468 469 470 471 472 473 474 475 476 477
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}
T
Thomas Gleixner 已提交
478

479
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
480 481
		cpuctx->max_pertask--;

482
 unlock:
483 484
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
485 486
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
487 488 489 490 491 492 493 494 495 496 497
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
498 499
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
527
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
528 529 530 531 532 533 534 535 536
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
537 538
	if (list_empty(&counter->list_entry)) {
		list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
539 540 541 542 543
		ctx->nr_counters++;
	}
	spin_unlock_irq(&ctx->lock);
}

544 545 546 547
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
548
{
549 550 551 552 553 554
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
555

556 557 558 559 560
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
561 562
		return;

563 564 565
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

566
	counter->prev_state = counter->state;
567 568 569
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
570 571

	/*
572 573
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
574
	 */
575 576
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_OFF)
		counter->state = PERF_COUNTER_STATE_INACTIVE;
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
670 671
}

672 673 674 675
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
676
	u64 flags;
677

678 679
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
680
	if (likely(!ctx->nr_counters))
681
		goto out;
682

683
	flags = hw_perf_save_disable();
684 685 686 687
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
688
	hw_perf_restore(flags);
689
 out:
690 691 692
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
693 694 695 696 697 698
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
699
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
700 701 702 703 704 705 706 707 708 709 710 711
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;

	if (likely(!cpuctx->task_ctx))
		return;

712 713
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
714 715 716
	cpuctx->task_ctx = NULL;
}

717
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
718
{
719
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
720 721
}

I
Ingo Molnar 已提交
722
static int
723 724 725 726 727
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
728
	struct perf_counter *counter, *partial_group;
729 730 731 732 733 734 735 736
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
737

738
	group_counter->prev_state = group_counter->state;
739 740
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
741 742 743 744

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
745
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
746
		counter->prev_state = counter->state;
747 748 749 750 751 752
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

753
	return 0;
754 755 756 757 758 759 760 761 762 763

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
764
	}
765
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
766

767
	return -EAGAIN;
768 769
}

770 771 772
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
773 774
{
	struct perf_counter *counter;
775
	u64 flags;
776
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
777

778 779
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
780
	if (likely(!ctx->nr_counters))
781
		goto out;
T
Thomas Gleixner 已提交
782

783
	flags = hw_perf_save_disable();
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			counter->state = PERF_COUNTER_STATE_ERROR;
	}

807
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
808 809 810 811 812 813 814 815
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

816 817 818 819
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
820 821 822
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

823
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
824 825
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
826
		}
T
Thomas Gleixner 已提交
827
	}
828
	hw_perf_restore(flags);
829
 out:
T
Thomas Gleixner 已提交
830
	spin_unlock(&ctx->lock);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
848

849
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
850 851 852
	cpuctx->task_ctx = ctx;
}

853 854 855 856 857 858 859
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

860 861 862 863 864
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
865
	unsigned long flags;
866 867 868 869 870 871
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
872
	curr_rq_lock_irq_save(&flags);
873 874
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
875 876 877
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

878 879 880 881 882 883 884 885 886
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

887 888 889 890
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ERROR)
			counter->state = PERF_COUNTER_STATE_OFF;
	}
891

892 893 894 895
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
896
	curr_rq_unlock_irq_restore(&flags);
897 898 899 900 901 902 903 904 905

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
906
	unsigned long flags;
907 908 909 910 911 912
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
913
	curr_rq_lock_irq_save(&flags);
914 915
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
916 917 918
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

919 920
	perf_counter_task_sched_out(curr, cpu);

921 922 923 924 925 926 927 928
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
929
		if (counter->state > PERF_COUNTER_STATE_OFF)
930
			continue;
931
		counter->state = PERF_COUNTER_STATE_INACTIVE;
I
Ingo Molnar 已提交
932
		counter->hw_event.disabled = 0;
933 934 935 936 937 938 939
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
940
	curr_rq_unlock_irq_restore(&flags);
941 942 943 944

	return 0;
}

945 946 947 948
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
949 950
{
	struct perf_counter *counter;
951
	u64 perf_flags;
T
Thomas Gleixner 已提交
952

953
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
954 955 956 957
		return;

	spin_lock(&ctx->lock);
	/*
958
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
959
	 */
960
	perf_flags = hw_perf_save_disable();
961 962 963
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		list_del(&counter->list_entry);
		list_add_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
964 965
		break;
	}
966
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
967 968

	spin_unlock(&ctx->lock);
969 970 971 972 973 974 975 976 977 978 979
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
980

981 982 983 984 985 986
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
987 988 989 990 991 992
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
993
static void __read(void *info)
T
Thomas Gleixner 已提交
994
{
I
Ingo Molnar 已提交
995
	struct perf_counter *counter = info;
I
Ingo Molnar 已提交
996
	unsigned long flags;
I
Ingo Molnar 已提交
997

I
Ingo Molnar 已提交
998
	curr_rq_lock_irq_save(&flags);
I
Ingo Molnar 已提交
999
	counter->hw_ops->read(counter);
I
Ingo Molnar 已提交
1000
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
1001 1002
}

1003
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1004 1005 1006 1007 1008
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1009
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1010
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1011
					 __read, counter, 1);
T
Thomas Gleixner 已提交
1012 1013
	}

1014
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
}

/*
 * Cross CPU call to switch performance data pointers
 */
static void __perf_switch_irq_data(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task) {
		if (cpuctx->task_ctx != ctx)
			return;
		spin_lock(&ctx->lock);
	}

	/* Change the pointer NMI safe */
	atomic_long_set((atomic_long_t *)&counter->irqdata,
			(unsigned long) counter->usrdata);
	counter->usrdata = oldirqdata;

	if (ctx->task)
		spin_unlock(&ctx->lock);
}

static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;
	struct task_struct *task = ctx->task;

	if (!task) {
		smp_call_function_single(counter->cpu,
					 __perf_switch_irq_data,
					 counter, 1);
		return counter->usrdata;
	}

retry:
	spin_lock_irq(&ctx->lock);
1062
	if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
		counter->irqdata = counter->usrdata;
		counter->usrdata = oldirqdata;
		spin_unlock_irq(&ctx->lock);
		return oldirqdata;
	}
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_switch_irq_data, counter);
	/* Might have failed, because task was scheduled out */
	if (counter->irqdata == oldirqdata)
		goto retry;

	return counter->usrdata;
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1148
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1149 1150
	mutex_lock(&counter->mutex);

1151
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1152 1153

	mutex_unlock(&counter->mutex);
1154
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1155 1156

	kfree(counter);
1157
	put_context(ctx);
T
Thomas Gleixner 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
	u64 cntval;

	if (count != sizeof(cntval))
		return -EINVAL;

1173 1174 1175 1176 1177 1178 1179 1180
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1181
	mutex_lock(&counter->mutex);
1182
	cntval = perf_counter_read(counter);
T
Thomas Gleixner 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	mutex_unlock(&counter->mutex);

	return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
}

static ssize_t
perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
{
	if (!usrdata->len)
		return 0;

	count = min(count, (size_t)usrdata->len);
	if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
		return -EFAULT;

	/* Adjust the counters */
	usrdata->len -= count;
	if (!usrdata->len)
		usrdata->rd_idx = 0;
	else
		usrdata->rd_idx += count;

	return count;
}

static ssize_t
perf_read_irq_data(struct perf_counter	*counter,
		   char __user		*buf,
		   size_t		count,
		   int			nonblocking)
{
	struct perf_data *irqdata, *usrdata;
	DECLARE_WAITQUEUE(wait, current);
1216
	ssize_t res, res2;
T
Thomas Gleixner 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	irqdata = counter->irqdata;
	usrdata = counter->usrdata;

	if (usrdata->len + irqdata->len >= count)
		goto read_pending;

	if (nonblocking)
		return -EAGAIN;

	spin_lock_irq(&counter->waitq.lock);
	__add_wait_queue(&counter->waitq, &wait);
	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
		if (usrdata->len + irqdata->len >= count)
			break;

		if (signal_pending(current))
			break;

1237 1238 1239
		if (counter->state == PERF_COUNTER_STATE_ERROR)
			break;

T
Thomas Gleixner 已提交
1240 1241 1242 1243 1244 1245 1246 1247
		spin_unlock_irq(&counter->waitq.lock);
		schedule();
		spin_lock_irq(&counter->waitq.lock);
	}
	__remove_wait_queue(&counter->waitq, &wait);
	__set_current_state(TASK_RUNNING);
	spin_unlock_irq(&counter->waitq.lock);

1248 1249
	if (usrdata->len + irqdata->len < count &&
	    counter->state != PERF_COUNTER_STATE_ERROR)
T
Thomas Gleixner 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		return -ERESTARTSYS;
read_pending:
	mutex_lock(&counter->mutex);

	/* Drain pending data first: */
	res = perf_copy_usrdata(usrdata, buf, count);
	if (res < 0 || res == count)
		goto out;

	/* Switch irq buffer: */
	usrdata = perf_switch_irq_data(counter);
1261 1262
	res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
	if (res2 < 0) {
T
Thomas Gleixner 已提交
1263 1264 1265
		if (!res)
			res = -EFAULT;
	} else {
1266
		res += res2;
T
Thomas Gleixner 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	}
out:
	mutex_unlock(&counter->mutex);

	return res;
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

I
Ingo Molnar 已提交
1279
	switch (counter->hw_event.record_type) {
T
Thomas Gleixner 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	case PERF_RECORD_SIMPLE:
		return perf_read_hw(counter, buf, count);

	case PERF_RECORD_IRQ:
	case PERF_RECORD_GROUP:
		return perf_read_irq_data(counter, buf, count,
					  file->f_flags & O_NONBLOCK);
	}
	return -EINVAL;
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
	unsigned int events = 0;
	unsigned long flags;

	poll_wait(file, &counter->waitq, wait);

	spin_lock_irqsave(&counter->waitq.lock, flags);
	if (counter->usrdata->len || counter->irqdata->len)
		events |= POLLIN;
	spin_unlock_irqrestore(&counter->waitq.lock, flags);

	return events;
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

T
Thomas Gleixner 已提交
1325 1326 1327 1328
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1329 1330
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
T
Thomas Gleixner 已提交
1331 1332
};

1333
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1334
{
1335 1336 1337
	int cpu = raw_smp_processor_id();

	atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
1338
	return 0;
1339 1340
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

1353 1354
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
1355
	cpu_clock_perf_counter_update(counter);
1356 1357 1358 1359
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
1360
	cpu_clock_perf_counter_update(counter);
1361 1362 1363
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
1364 1365 1366
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
1367 1368
};

I
Ingo Molnar 已提交
1369 1370 1371 1372
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1373
{
I
Ingo Molnar 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
1394 1395
}

I
Ingo Molnar 已提交
1396
static void task_clock_perf_counter_read(struct perf_counter *counter)
1397
{
I
Ingo Molnar 已提交
1398 1399 1400
	u64 now = task_clock_perf_counter_val(counter, 1);

	task_clock_perf_counter_update(counter, now);
1401 1402
}

1403
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
1404
{
1405 1406 1407
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     task_clock_perf_counter_val(counter, 0));
1408 1409

	return 0;
I
Ingo Molnar 已提交
1410 1411 1412
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
1413
{
I
Ingo Molnar 已提交
1414 1415 1416
	u64 now = task_clock_perf_counter_val(counter, 0);

	task_clock_perf_counter_update(counter, now);
1417 1418 1419
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
1420 1421 1422
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
1423 1424
};

1425 1426 1427 1428 1429 1430 1431
#ifdef CONFIG_VM_EVENT_COUNTERS
#define cpu_page_faults()	__get_cpu_var(vm_event_states).event[PGFAULT]
#else
#define cpu_page_faults()	0
#endif

static u64 get_page_faults(struct perf_counter *counter)
1432
{
1433
	struct task_struct *curr = counter->ctx->task;
1434

1435 1436 1437
	if (curr)
		return curr->maj_flt + curr->min_flt;
	return cpu_page_faults();
1438 1439 1440 1441 1442 1443 1444 1445
}

static void page_faults_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1446
	now = get_page_faults(counter);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void page_faults_perf_counter_read(struct perf_counter *counter)
{
	page_faults_perf_counter_update(counter);
}

1460
static int page_faults_perf_counter_enable(struct perf_counter *counter)
1461
{
1462 1463
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count, get_page_faults(counter));
1464
	return 0;
1465 1466 1467 1468 1469 1470 1471 1472
}

static void page_faults_perf_counter_disable(struct perf_counter *counter)
{
	page_faults_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_page_faults = {
I
Ingo Molnar 已提交
1473 1474 1475
	.enable		= page_faults_perf_counter_enable,
	.disable	= page_faults_perf_counter_disable,
	.read		= page_faults_perf_counter_read,
1476 1477
};

1478
static u64 get_context_switches(struct perf_counter *counter)
1479
{
1480
	struct task_struct *curr = counter->ctx->task;
1481

1482 1483 1484
	if (curr)
		return curr->nvcsw + curr->nivcsw;
	return cpu_nr_switches(smp_processor_id());
1485 1486 1487 1488 1489 1490 1491 1492
}

static void context_switches_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1493
	now = get_context_switches(counter);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void context_switches_perf_counter_read(struct perf_counter *counter)
{
	context_switches_perf_counter_update(counter);
}

1507
static int context_switches_perf_counter_enable(struct perf_counter *counter)
1508
{
1509 1510 1511
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_context_switches(counter));
1512
	return 0;
1513 1514 1515 1516 1517 1518 1519 1520
}

static void context_switches_perf_counter_disable(struct perf_counter *counter)
{
	context_switches_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_context_switches = {
I
Ingo Molnar 已提交
1521 1522 1523
	.enable		= context_switches_perf_counter_enable,
	.disable	= context_switches_perf_counter_disable,
	.read		= context_switches_perf_counter_read,
1524 1525
};

1526
static inline u64 get_cpu_migrations(struct perf_counter *counter)
1527
{
1528 1529 1530 1531 1532
	struct task_struct *curr = counter->ctx->task;

	if (curr)
		return curr->se.nr_migrations;
	return cpu_nr_migrations(smp_processor_id());
1533 1534 1535 1536 1537 1538 1539 1540
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
1541
	now = get_cpu_migrations(counter);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

1555
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1556
{
1557 1558 1559
	if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
		atomic64_set(&counter->hw.prev_count,
			     get_cpu_migrations(counter));
1560
	return 0;
1561 1562 1563 1564 1565 1566 1567 1568
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
1569 1570 1571
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
1572 1573
};

1574 1575 1576 1577 1578
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
	const struct hw_perf_counter_ops *hw_ops = NULL;

1579 1580 1581 1582 1583 1584 1585
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
1586 1587
	switch (counter->hw_event.type) {
	case PERF_COUNT_CPU_CLOCK:
1588 1589 1590 1591
		if (!(counter->hw_event.exclude_user ||
		      counter->hw_event.exclude_kernel ||
		      counter->hw_event.exclude_hv))
			hw_ops = &perf_ops_cpu_clock;
1592
		break;
1593
	case PERF_COUNT_TASK_CLOCK:
1594 1595 1596 1597
		if (counter->hw_event.exclude_user ||
		    counter->hw_event.exclude_kernel ||
		    counter->hw_event.exclude_hv)
			break;
1598 1599 1600 1601 1602 1603 1604 1605
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
			hw_ops = &perf_ops_task_clock;
		else
			hw_ops = &perf_ops_cpu_clock;
1606
		break;
1607
	case PERF_COUNT_PAGE_FAULTS:
1608 1609 1610
		if (!(counter->hw_event.exclude_user ||
		      counter->hw_event.exclude_kernel))
			hw_ops = &perf_ops_page_faults;
1611
		break;
1612
	case PERF_COUNT_CONTEXT_SWITCHES:
1613 1614
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_context_switches;
1615
		break;
1616
	case PERF_COUNT_CPU_MIGRATIONS:
1617 1618
		if (!counter->hw_event.exclude_kernel)
			hw_ops = &perf_ops_cpu_migrations;
1619
		break;
1620 1621 1622 1623 1624 1625
	default:
		break;
	}
	return hw_ops;
}

T
Thomas Gleixner 已提交
1626 1627 1628 1629
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
1630 1631
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
1632
		   struct perf_counter_context *ctx,
1633 1634
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
1635
{
1636
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
1637
	struct perf_counter *counter;
T
Thomas Gleixner 已提交
1638

1639
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
1640 1641 1642
	if (!counter)
		return NULL;

1643 1644 1645 1646 1647 1648 1649
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
1650
	mutex_init(&counter->mutex);
1651 1652
	INIT_LIST_HEAD(&counter->list_entry);
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
1653 1654
	init_waitqueue_head(&counter->waitq);

1655 1656
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
1657 1658 1659 1660 1661
	counter->irqdata		= &counter->data[0];
	counter->usrdata		= &counter->data[1];
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
	counter->wakeup_pending		= 0;
1662
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
1663
	counter->hw_ops			= NULL;
1664
	counter->ctx			= ctx;
I
Ingo Molnar 已提交
1665

1666
	counter->state = PERF_COUNTER_STATE_INACTIVE;
1667 1668 1669
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

1670 1671 1672
	hw_ops = NULL;
	if (!hw_event->raw && hw_event->type < 0)
		hw_ops = sw_perf_counter_init(counter);
1673
	else
1674 1675
		hw_ops = hw_perf_counter_init(counter);

I
Ingo Molnar 已提交
1676 1677 1678 1679 1680
	if (!hw_ops) {
		kfree(counter);
		return NULL;
	}
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
1681 1682 1683 1684 1685

	return counter;
}

/**
I
Ingo Molnar 已提交
1686 1687 1688
 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
1689
 * @pid:		target pid
I
Ingo Molnar 已提交
1690 1691
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
1692
 */
1693 1694 1695
SYSCALL_DEFINE4(perf_counter_open,
		const struct perf_counter_hw_event __user *, hw_event_uptr,
		pid_t, pid, int, cpu, int, group_fd)
T
Thomas Gleixner 已提交
1696
{
1697
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
1698
	struct perf_counter_hw_event hw_event;
1699
	struct perf_counter_context *ctx;
1700
	struct file *counter_file = NULL;
1701 1702
	struct file *group_file = NULL;
	int fput_needed = 0;
1703
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
1704 1705
	int ret;

I
Ingo Molnar 已提交
1706
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1707 1708
		return -EFAULT;

1709
	/*
I
Ingo Molnar 已提交
1710 1711 1712 1713 1714 1715 1716 1717
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
1718 1719 1720 1721 1722 1723
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
1724
			goto err_put_context;
1725
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
1726
			goto err_put_context;
1727 1728 1729

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
1730 1731 1732 1733 1734 1735 1736 1737
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
1738
		 */
I
Ingo Molnar 已提交
1739 1740
		if (group_leader->ctx != ctx)
			goto err_put_context;
1741 1742 1743 1744 1745
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
1746 1747
	}

1748
	ret = -EINVAL;
1749 1750
	counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
				     GFP_KERNEL);
T
Thomas Gleixner 已提交
1751 1752 1753 1754 1755
	if (!counter)
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
1756 1757 1758 1759 1760 1761 1762
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
1763
	mutex_lock(&ctx->mutex);
1764
	perf_install_in_context(ctx, counter, cpu);
1765
	mutex_unlock(&ctx->mutex);
1766 1767

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
1768

1769 1770 1771
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
1772 1773
	return ret;

1774
err_free_put_context:
T
Thomas Gleixner 已提交
1775 1776 1777 1778 1779
	kfree(counter);

err_put_context:
	put_context(ctx);

1780
	goto out_fput;
T
Thomas Gleixner 已提交
1781 1782
}

1783 1784 1785 1786 1787 1788 1789 1790 1791
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
1792
	mutex_init(&ctx->mutex);
1793 1794 1795 1796 1797 1798 1799
	INIT_LIST_HEAD(&ctx->counter_list);
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
1800
static struct perf_counter *
1801 1802 1803 1804
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
1805
	      struct perf_counter *group_leader,
1806 1807 1808 1809
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

1810 1811 1812 1813 1814 1815 1816 1817 1818
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

1819
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
1820 1821
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
1822
	if (!child_counter)
1823
		return NULL;
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

	/*
	 * Link it up in the child's context:
	 */
	child_counter->task = child;
	list_add_counter(child_counter, child_ctx);
	child_ctx->nr_counters++;

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (!leader)
		return -ENOMEM;
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
		if (!inherit_counter(sub, parent, parent_ctx,
				     child, leader, child_ctx))
			return -ENOMEM;
	}
1885 1886 1887
	return 0;
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

1915 1916 1917 1918 1919 1920
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
1921
	struct perf_counter *sub, *tmp;
1922 1923

	/*
1924 1925 1926 1927 1928 1929
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
1930
	 */
1931 1932 1933 1934
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
	} else {
1935
		struct perf_cpu_context *cpuctx;
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
1947 1948 1949

		cpuctx = &__get_cpu_var(perf_cpu_context);

1950
		group_sched_out(child_counter, cpuctx, child_ctx);
1951

1952
		list_del_init(&child_counter->list_entry);
1953

1954
		child_ctx->nr_counters--;
1955

1956 1957 1958
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
1959 1960 1961 1962 1963 1964 1965

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
1966 1967 1968 1969
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
1970
			if (sub->parent) {
1971
				sync_child_counter(sub, sub->parent);
1972 1973
				kfree(sub);
			}
1974
		}
1975
		kfree(child_counter);
1976
	}
1977 1978 1979
}

/*
1980
 * When a child task exits, feed back counter values to parent counters.
1981
 *
1982
 * Note: we may be running in child context, but the PID is not hashed
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
2006
	struct perf_counter *counter;
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
2026
	mutex_lock(&parent_ctx->mutex);
2027 2028 2029 2030 2031 2032

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2033
		if (!counter->hw_event.inherit)
2034 2035
			continue;

2036
		if (inherit_group(counter, parent,
2037 2038 2039 2040
				  parent_ctx, child, child_ctx))
			break;
	}

2041
	mutex_unlock(&parent_ctx->mutex);
2042 2043
}

2044
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2045
{
2046
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2047

2048 2049
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2050 2051

	mutex_lock(&perf_resource_mutex);
2052
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2053
	mutex_unlock(&perf_resource_mutex);
2054

2055
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2056 2057 2058
}

#ifdef CONFIG_HOTPLUG_CPU
2059
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2060 2061 2062 2063 2064
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2065 2066
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2067
}
2068
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2069
{
2070 2071 2072 2073
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2074
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2075
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2076 2077
}
#else
2078
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
2090
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
2091 2092 2093 2094
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
2095
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);