perf_counter.c 51.0 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Performance counter core code
 *
 *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
 *
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/fs.h>
#include <linux/cpu.h>
#include <linux/smp.h>
13
#include <linux/file.h>
T
Thomas Gleixner 已提交
14 15 16 17 18 19 20
#include <linux/poll.h>
#include <linux/sysfs.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
21
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
22 23 24 25 26 27 28
#include <linux/perf_counter.h>

/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

29
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
30 31 32 33 34 35 36 37 38 39 40
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

/*
 * Mutex for (sysadmin-configurable) counter reservations:
 */
static DEFINE_MUTEX(perf_resource_mutex);

/*
 * Architecture provided APIs - weak aliases:
 */
41
extern __weak const struct hw_perf_counter_ops *
I
Ingo Molnar 已提交
42
hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
43
{
44
	return NULL;
T
Thomas Gleixner 已提交
45 46
}

47
u64 __weak hw_perf_save_disable(void)		{ return 0; }
48
void __weak hw_perf_restore(u64 ctrl)		{ barrier(); }
49
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
50 51 52 53 54 55
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
56

57 58
void __weak perf_counter_print_debug(void)	{ }

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
	if (counter->group_leader == counter)
		list_add_tail(&counter->list_entry, &ctx->counter_list);
	else
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
}

static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

	list_del_init(&counter->list_entry);

	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

		list_del_init(&sibling->list_entry);
		list_add_tail(&sibling->list_entry, &ctx->counter_list);
		sibling->group_leader = sibling;
	}
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
	counter->hw_ops->disable(counter);
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
	if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
		cpuctx->exclusive = 0;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

	if (group_counter->hw_event.exclusive)
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
137 138 139 140 141 142
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
143
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
144 145 146 147
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
148
	unsigned long flags;
149
	u64 perf_flags;
T
Thomas Gleixner 已提交
150 151 152 153 154 155 156 157 158

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
159 160
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
161

162 163 164
	counter_sched_out(counter, cpuctx, ctx);

	counter->task = NULL;
T
Thomas Gleixner 已提交
165 166 167 168 169 170
	ctx->nr_counters--;

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
171
	perf_flags = hw_perf_save_disable();
172
	list_del_counter(counter, ctx);
173
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
174 175 176 177 178 179 180 181 182 183 184

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

I
Ingo Molnar 已提交
185 186
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
187 188 189 190 191 192
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
193
 * Must be called with counter->mutex and ctx->mutex held.
T
Thomas Gleixner 已提交
194 195 196 197
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
 */
198
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
199 200 201 202 203 204 205 206 207 208
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
209
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
210 211 212 213 214
					 counter, 1);
		return;
	}

retry:
215
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
216 217 218 219 220 221
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
222
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
223 224 225 226 227 228
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
229
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
230 231
	 * succeed.
	 */
232
	if (!list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
233
		ctx->nr_counters--;
234
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
235 236 237 238 239
		counter->task = NULL;
	}
	spin_unlock_irq(&ctx->lock);
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long flags;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Disable a counter.
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		counter->state = PERF_COUNTER_STATE_OFF;

	spin_unlock_irq(&ctx->lock);
}

/*
 * Disable a counter and all its children.
 */
static void perf_counter_disable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_disable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_disable(child);
	mutex_unlock(&counter->mutex);
}

333 334 335 336 337 338
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
339
	if (counter->state <= PERF_COUNTER_STATE_OFF)
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

	if (counter->hw_ops->enable(counter)) {
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

355 356
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
357 358
	ctx->nr_active++;

359 360 361
	if (counter->hw_event.exclusive)
		cpuctx->exclusive = 1;

362 363 364
	return 0;
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
	if (counter->hw_event.exclusive && cpuctx->active_oncpu)
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

T
Thomas Gleixner 已提交
412
/*
413
 * Cross CPU call to install and enable a performance counter
T
Thomas Gleixner 已提交
414 415 416 417 418 419
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
420
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
421
	int cpu = smp_processor_id();
422
	unsigned long flags;
423
	u64 perf_flags;
424
	int err;
T
Thomas Gleixner 已提交
425 426 427 428 429 430 431 432 433

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

I
Ingo Molnar 已提交
434 435
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
436 437 438 439 440

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
441
	perf_flags = hw_perf_save_disable();
T
Thomas Gleixner 已提交
442

443
	list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
444 445
	ctx->nr_counters++;

446 447 448 449 450 451 452 453
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

454 455 456 457 458
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
459
	if (!group_can_go_on(counter, cpuctx, 1))
460 461 462 463
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

464 465 466 467 468 469 470 471 472 473 474
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}
T
Thomas Gleixner 已提交
475

476
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
477 478
		cpuctx->max_pertask--;

479
 unlock:
480 481
	hw_perf_restore(perf_flags);

I
Ingo Molnar 已提交
482 483
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
484 485 486 487 488 489 490 491 492 493 494
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
495 496
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	counter->ctx = ctx;
	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

	counter->task = task;
retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
525
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
526 527 528 529 530 531 532 533 534
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
535 536
	if (list_empty(&counter->list_entry)) {
		list_add_counter(counter, ctx);
T
Thomas Gleixner 已提交
537 538 539 540 541
		ctx->nr_counters++;
	}
	spin_unlock_irq(&ctx->lock);
}

542 543 544 545
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
546
{
547 548 549 550 551 552
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	unsigned long flags;
	int err;
553

554 555 556 557 558
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
559 560
		return;

561 562 563 564 565 566
	curr_rq_lock_irq_save(&flags);
	spin_lock(&ctx->lock);

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
567 568

	/*
569 570
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
571
	 */
572 573
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	if (!group_can_go_on(counter, cpuctx, 1))
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx,
				       smp_processor_id());

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
		if (leader->hw_event.pinned)
			leader->state = PERF_COUNTER_STATE_ERROR;
	}

 unlock:
	spin_unlock(&ctx->lock);
	curr_rq_unlock_irq_restore(&flags);
}

/*
 * Enable a counter.
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (counter->state == PERF_COUNTER_STATE_OFF)
		counter->state = PERF_COUNTER_STATE_INACTIVE;
 out:
	spin_unlock_irq(&ctx->lock);
}

/*
 * Enable a counter and all its children.
 */
static void perf_counter_enable_family(struct perf_counter *counter)
{
	struct perf_counter *child;

	perf_counter_enable(counter);

	/*
	 * Lock the mutex to protect the list of children
	 */
	mutex_lock(&counter->mutex);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_enable(child);
	mutex_unlock(&counter->mutex);
667 668
}

669 670 671 672
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;
673
	u64 flags;
674

675 676
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
677
	if (likely(!ctx->nr_counters))
678
		goto out;
679

680
	flags = hw_perf_save_disable();
681 682 683 684
	if (ctx->nr_active) {
		list_for_each_entry(counter, &ctx->counter_list, list_entry)
			group_sched_out(counter, cpuctx, ctx);
	}
685
	hw_perf_restore(flags);
686
 out:
687 688 689
	spin_unlock(&ctx->lock);
}

T
Thomas Gleixner 已提交
690 691 692 693 694 695
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
696
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
697 698 699 700 701 702 703 704 705 706 707 708
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;

	if (likely(!cpuctx->task_ctx))
		return;

709 710
	__perf_counter_sched_out(ctx, cpuctx);

T
Thomas Gleixner 已提交
711 712 713
	cpuctx->task_ctx = NULL;
}

714
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
715
{
716
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
717 718
}

I
Ingo Molnar 已提交
719
static int
720 721 722 723 724
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
725
	struct perf_counter *counter, *partial_group;
726 727 728 729 730 731 732 733
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;
734

735 736
	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;
737 738 739 740

	/*
	 * Schedule in siblings as one group (if any):
	 */
I
Ingo Molnar 已提交
741
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
742 743 744 745 746 747
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

748
	return 0;
749 750 751 752 753 754 755 756 757 758

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
I
Ingo Molnar 已提交
759
	}
760
	counter_sched_out(group_counter, cpuctx, ctx);
I
Ingo Molnar 已提交
761

762
	return -EAGAIN;
763 764
}

765 766 767
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
768 769
{
	struct perf_counter *counter;
770
	u64 flags;
771
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
772

773 774
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
775
	if (likely(!ctx->nr_counters))
776
		goto out;
T
Thomas Gleixner 已提交
777

778
	flags = hw_perf_save_disable();
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    !counter->hw_event.pinned)
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

		if (group_can_go_on(counter, cpuctx, 1))
			group_sched_in(counter, cpuctx, ctx, cpu);

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
		if (counter->state == PERF_COUNTER_STATE_INACTIVE)
			counter->state = PERF_COUNTER_STATE_ERROR;
	}

802
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
803 804 805 806 807 808 809 810
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
		    counter->hw_event.pinned)
			continue;

811 812 813 814
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
815 816 817
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

818
		if (group_can_go_on(counter, cpuctx, can_add_hw)) {
819 820
			if (group_sched_in(counter, cpuctx, ctx, cpu))
				can_add_hw = 0;
821
		}
T
Thomas Gleixner 已提交
822
	}
823
	hw_perf_restore(flags);
824
 out:
T
Thomas Gleixner 已提交
825
	spin_unlock(&ctx->lock);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &task->perf_counter_ctx;
843

844
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
845 846 847
	cpuctx->task_ctx = ctx;
}

848 849 850 851 852 853 854
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

855 856 857 858 859
int perf_counter_task_disable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
860
	unsigned long flags;
861 862 863 864 865 866
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
867
	curr_rq_lock_irq_save(&flags);
868 869
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
870 871 872
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

873 874 875 876 877 878 879 880 881
	perf_counter_task_sched_out(curr, cpu);

	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

882 883 884 885
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ERROR)
			counter->state = PERF_COUNTER_STATE_OFF;
	}
886

887 888 889 890
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

I
Ingo Molnar 已提交
891
	curr_rq_unlock_irq_restore(&flags);
892 893 894 895 896 897 898 899 900

	return 0;
}

int perf_counter_task_enable(void)
{
	struct task_struct *curr = current;
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	struct perf_counter *counter;
I
Ingo Molnar 已提交
901
	unsigned long flags;
902 903 904 905 906 907
	u64 perf_flags;
	int cpu;

	if (likely(!ctx->nr_counters))
		return 0;

I
Ingo Molnar 已提交
908
	curr_rq_lock_irq_save(&flags);
909 910
	cpu = smp_processor_id();

I
Ingo Molnar 已提交
911 912 913
	/* force the update of the task clock: */
	__task_delta_exec(curr, 1);

914 915
	perf_counter_task_sched_out(curr, cpu);

916 917 918 919 920 921 922 923
	spin_lock(&ctx->lock);

	/*
	 * Disable all the counters:
	 */
	perf_flags = hw_perf_save_disable();

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
924
		if (counter->state > PERF_COUNTER_STATE_OFF)
925
			continue;
926
		counter->state = PERF_COUNTER_STATE_INACTIVE;
I
Ingo Molnar 已提交
927
		counter->hw_event.disabled = 0;
928 929 930 931 932 933 934
	}
	hw_perf_restore(perf_flags);

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(curr, cpu);

I
Ingo Molnar 已提交
935
	curr_rq_unlock_irq_restore(&flags);
936 937 938 939

	return 0;
}

940 941 942 943
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
944 945
{
	struct perf_counter *counter;
946
	u64 perf_flags;
T
Thomas Gleixner 已提交
947

948
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
949 950 951 952
		return;

	spin_lock(&ctx->lock);
	/*
953
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
954
	 */
955
	perf_flags = hw_perf_save_disable();
956 957 958
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		list_del(&counter->list_entry);
		list_add_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
959 960
		break;
	}
961
	hw_perf_restore(perf_flags);
T
Thomas Gleixner 已提交
962 963

	spin_unlock(&ctx->lock);
964 965 966 967 968 969 970 971 972 973 974
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &curr->perf_counter_ctx;
	const int rotate_percpu = 0;

	if (rotate_percpu)
		perf_counter_cpu_sched_out(cpuctx);
	perf_counter_task_sched_out(curr, cpu);
T
Thomas Gleixner 已提交
975

976 977 978 979 980 981
	if (rotate_percpu)
		rotate_ctx(&cpuctx->ctx);
	rotate_ctx(ctx);

	if (rotate_percpu)
		perf_counter_cpu_sched_in(cpuctx, cpu);
T
Thomas Gleixner 已提交
982 983 984 985 986 987
	perf_counter_task_sched_in(curr, cpu);
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
988
static void __read(void *info)
T
Thomas Gleixner 已提交
989
{
I
Ingo Molnar 已提交
990
	struct perf_counter *counter = info;
I
Ingo Molnar 已提交
991
	unsigned long flags;
I
Ingo Molnar 已提交
992

I
Ingo Molnar 已提交
993
	curr_rq_lock_irq_save(&flags);
I
Ingo Molnar 已提交
994
	counter->hw_ops->read(counter);
I
Ingo Molnar 已提交
995
	curr_rq_unlock_irq_restore(&flags);
T
Thomas Gleixner 已提交
996 997
}

998
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
999 1000 1001 1002 1003
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1004
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1005
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1006
					 __read, counter, 1);
T
Thomas Gleixner 已提交
1007 1008
	}

1009
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
}

/*
 * Cross CPU call to switch performance data pointers
 */
static void __perf_switch_irq_data(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
	if (ctx->task) {
		if (cpuctx->task_ctx != ctx)
			return;
		spin_lock(&ctx->lock);
	}

	/* Change the pointer NMI safe */
	atomic_long_set((atomic_long_t *)&counter->irqdata,
			(unsigned long) counter->usrdata);
	counter->usrdata = oldirqdata;

	if (ctx->task)
		spin_unlock(&ctx->lock);
}

static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_data *oldirqdata = counter->irqdata;
	struct task_struct *task = ctx->task;

	if (!task) {
		smp_call_function_single(counter->cpu,
					 __perf_switch_irq_data,
					 counter, 1);
		return counter->usrdata;
	}

retry:
	spin_lock_irq(&ctx->lock);
1057
	if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
		counter->irqdata = counter->usrdata;
		counter->usrdata = oldirqdata;
		spin_unlock_irq(&ctx->lock);
		return oldirqdata;
	}
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_switch_irq_data, counter);
	/* Might have failed, because task was scheduled out */
	if (counter->irqdata == oldirqdata)
		goto retry;

	return counter->usrdata;
}

static void put_context(struct perf_counter_context *ctx)
{
	if (ctx->task)
		put_task_struct(ctx->task);
}

static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;
	struct task_struct *task;

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
		if (!capable(CAP_SYS_ADMIN))
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	ctx = &task->perf_counter_ctx;
	ctx->task = task;

	/* Reuse ptrace permission checks for now. */
	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
		put_context(ctx);
		return ERR_PTR(-EACCES);
	}

	return ctx;
}

/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1143
	mutex_lock(&ctx->mutex);
T
Thomas Gleixner 已提交
1144 1145
	mutex_lock(&counter->mutex);

1146
	perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
1147 1148 1149
	put_context(ctx);

	mutex_unlock(&counter->mutex);
1150
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

	kfree(counter);

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
	u64 cntval;

	if (count != sizeof(cntval))
		return -EINVAL;

1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1176
	mutex_lock(&counter->mutex);
1177
	cntval = perf_counter_read(counter);
T
Thomas Gleixner 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	mutex_unlock(&counter->mutex);

	return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
}

static ssize_t
perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
{
	if (!usrdata->len)
		return 0;

	count = min(count, (size_t)usrdata->len);
	if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
		return -EFAULT;

	/* Adjust the counters */
	usrdata->len -= count;
	if (!usrdata->len)
		usrdata->rd_idx = 0;
	else
		usrdata->rd_idx += count;

	return count;
}

static ssize_t
perf_read_irq_data(struct perf_counter	*counter,
		   char __user		*buf,
		   size_t		count,
		   int			nonblocking)
{
	struct perf_data *irqdata, *usrdata;
	DECLARE_WAITQUEUE(wait, current);
1211
	ssize_t res, res2;
T
Thomas Gleixner 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

	irqdata = counter->irqdata;
	usrdata = counter->usrdata;

	if (usrdata->len + irqdata->len >= count)
		goto read_pending;

	if (nonblocking)
		return -EAGAIN;

	spin_lock_irq(&counter->waitq.lock);
	__add_wait_queue(&counter->waitq, &wait);
	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
		if (usrdata->len + irqdata->len >= count)
			break;

		if (signal_pending(current))
			break;

1232 1233 1234
		if (counter->state == PERF_COUNTER_STATE_ERROR)
			break;

T
Thomas Gleixner 已提交
1235 1236 1237 1238 1239 1240 1241 1242
		spin_unlock_irq(&counter->waitq.lock);
		schedule();
		spin_lock_irq(&counter->waitq.lock);
	}
	__remove_wait_queue(&counter->waitq, &wait);
	__set_current_state(TASK_RUNNING);
	spin_unlock_irq(&counter->waitq.lock);

1243 1244
	if (usrdata->len + irqdata->len < count &&
	    counter->state != PERF_COUNTER_STATE_ERROR)
T
Thomas Gleixner 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		return -ERESTARTSYS;
read_pending:
	mutex_lock(&counter->mutex);

	/* Drain pending data first: */
	res = perf_copy_usrdata(usrdata, buf, count);
	if (res < 0 || res == count)
		goto out;

	/* Switch irq buffer: */
	usrdata = perf_switch_irq_data(counter);
1256 1257
	res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
	if (res2 < 0) {
T
Thomas Gleixner 已提交
1258 1259 1260
		if (!res)
			res = -EFAULT;
	} else {
1261
		res += res2;
T
Thomas Gleixner 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	}
out:
	mutex_unlock(&counter->mutex);

	return res;
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

I
Ingo Molnar 已提交
1274
	switch (counter->hw_event.record_type) {
T
Thomas Gleixner 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	case PERF_RECORD_SIMPLE:
		return perf_read_hw(counter, buf, count);

	case PERF_RECORD_IRQ:
	case PERF_RECORD_GROUP:
		return perf_read_irq_data(counter, buf, count,
					  file->f_flags & O_NONBLOCK);
	}
	return -EINVAL;
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
	unsigned int events = 0;
	unsigned long flags;

	poll_wait(file, &counter->waitq, wait);

	spin_lock_irqsave(&counter->waitq.lock, flags);
	if (counter->usrdata->len || counter->irqdata->len)
		events |= POLLIN;
	spin_unlock_irqrestore(&counter->waitq.lock, flags);

	return events;
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
	int err = 0;

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
		perf_counter_enable_family(counter);
		break;
	case PERF_COUNTER_IOC_DISABLE:
		perf_counter_disable_family(counter);
		break;
	default:
		err = -ENOTTY;
	}
	return err;
}

T
Thomas Gleixner 已提交
1320 1321 1322 1323
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
1324 1325
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
T
Thomas Gleixner 已提交
1326 1327
};

1328
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1329
{
1330 1331 1332
	int cpu = raw_smp_processor_id();

	atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
1333
	return 0;
1334 1335
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

1348 1349
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
1350
	cpu_clock_perf_counter_update(counter);
1351 1352 1353 1354
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
1355
	cpu_clock_perf_counter_update(counter);
1356 1357 1358
}

static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
1359 1360 1361
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
1362 1363
};

I
Ingo Molnar 已提交
1364 1365 1366 1367
/*
 * Called from within the scheduler:
 */
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1368
{
I
Ingo Molnar 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	struct task_struct *curr = counter->task;
	u64 delta;

	delta = __task_delta_exec(curr, update);

	return curr->se.sum_exec_runtime + delta;
}

static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
{
	u64 prev;
I
Ingo Molnar 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
1389 1390
}

I
Ingo Molnar 已提交
1391
static void task_clock_perf_counter_read(struct perf_counter *counter)
1392
{
I
Ingo Molnar 已提交
1393 1394 1395
	u64 now = task_clock_perf_counter_val(counter, 1);

	task_clock_perf_counter_update(counter, now);
1396 1397
}

1398
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
1399
{
I
Ingo Molnar 已提交
1400 1401 1402
	u64 now = task_clock_perf_counter_val(counter, 0);

	atomic64_set(&counter->hw.prev_count, now);
1403 1404

	return 0;
I
Ingo Molnar 已提交
1405 1406 1407
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
1408
{
I
Ingo Molnar 已提交
1409 1410 1411
	u64 now = task_clock_perf_counter_val(counter, 0);

	task_clock_perf_counter_update(counter, now);
1412 1413 1414
}

static const struct hw_perf_counter_ops perf_ops_task_clock = {
I
Ingo Molnar 已提交
1415 1416 1417
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
1418 1419
};

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
static u64 get_page_faults(void)
{
	struct task_struct *curr = current;

	return curr->maj_flt + curr->min_flt;
}

static void page_faults_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
	now = get_page_faults();

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void page_faults_perf_counter_read(struct perf_counter *counter)
{
	page_faults_perf_counter_update(counter);
}

1447
static int page_faults_perf_counter_enable(struct perf_counter *counter)
1448 1449 1450 1451 1452
{
	/*
	 * page-faults is a per-task value already,
	 * so we dont have to clear it on switch-in.
	 */
1453 1454

	return 0;
1455 1456 1457 1458 1459 1460 1461 1462
}

static void page_faults_perf_counter_disable(struct perf_counter *counter)
{
	page_faults_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_page_faults = {
I
Ingo Molnar 已提交
1463 1464 1465
	.enable		= page_faults_perf_counter_enable,
	.disable	= page_faults_perf_counter_disable,
	.read		= page_faults_perf_counter_read,
1466 1467
};

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
static u64 get_context_switches(void)
{
	struct task_struct *curr = current;

	return curr->nvcsw + curr->nivcsw;
}

static void context_switches_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
	now = get_context_switches();

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void context_switches_perf_counter_read(struct perf_counter *counter)
{
	context_switches_perf_counter_update(counter);
}

1495
static int context_switches_perf_counter_enable(struct perf_counter *counter)
1496 1497 1498 1499 1500
{
	/*
	 * ->nvcsw + curr->nivcsw is a per-task value already,
	 * so we dont have to clear it on switch-in.
	 */
1501 1502

	return 0;
1503 1504 1505 1506 1507 1508 1509 1510
}

static void context_switches_perf_counter_disable(struct perf_counter *counter)
{
	context_switches_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_context_switches = {
I
Ingo Molnar 已提交
1511 1512 1513
	.enable		= context_switches_perf_counter_enable,
	.disable	= context_switches_perf_counter_disable,
	.read		= context_switches_perf_counter_read,
1514 1515
};

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static inline u64 get_cpu_migrations(void)
{
	return current->se.nr_migrations;
}

static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
{
	u64 prev, now;
	s64 delta;

	prev = atomic64_read(&counter->hw.prev_count);
	now = get_cpu_migrations();

	atomic64_set(&counter->hw.prev_count, now);

	delta = now - prev;

	atomic64_add(delta, &counter->count);
}

static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

1541
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1542 1543 1544 1545 1546
{
	/*
	 * se.nr_migrations is a per-task value already,
	 * so we dont have to clear it on switch-in.
	 */
1547 1548

	return 0;
1549 1550 1551 1552 1553 1554 1555 1556
}

static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
{
	cpu_migrations_perf_counter_update(counter);
}

static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
I
Ingo Molnar 已提交
1557 1558 1559
	.enable		= cpu_migrations_perf_counter_enable,
	.disable	= cpu_migrations_perf_counter_disable,
	.read		= cpu_migrations_perf_counter_read,
1560 1561
};

1562 1563 1564 1565 1566 1567 1568 1569 1570
static const struct hw_perf_counter_ops *
sw_perf_counter_init(struct perf_counter *counter)
{
	const struct hw_perf_counter_ops *hw_ops = NULL;

	switch (counter->hw_event.type) {
	case PERF_COUNT_CPU_CLOCK:
		hw_ops = &perf_ops_cpu_clock;
		break;
1571 1572 1573
	case PERF_COUNT_TASK_CLOCK:
		hw_ops = &perf_ops_task_clock;
		break;
1574 1575 1576
	case PERF_COUNT_PAGE_FAULTS:
		hw_ops = &perf_ops_page_faults;
		break;
1577 1578 1579
	case PERF_COUNT_CONTEXT_SWITCHES:
		hw_ops = &perf_ops_context_switches;
		break;
1580 1581 1582
	case PERF_COUNT_CPU_MIGRATIONS:
		hw_ops = &perf_ops_cpu_migrations;
		break;
1583 1584 1585 1586 1587 1588
	default:
		break;
	}
	return hw_ops;
}

T
Thomas Gleixner 已提交
1589 1590 1591 1592
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
1593 1594
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
		   int cpu,
1595 1596
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
1597
{
1598
	const struct hw_perf_counter_ops *hw_ops;
I
Ingo Molnar 已提交
1599
	struct perf_counter *counter;
T
Thomas Gleixner 已提交
1600

1601
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
1602 1603 1604
	if (!counter)
		return NULL;

1605 1606 1607 1608 1609 1610 1611
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

T
Thomas Gleixner 已提交
1612
	mutex_init(&counter->mutex);
1613 1614
	INIT_LIST_HEAD(&counter->list_entry);
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
1615 1616
	init_waitqueue_head(&counter->waitq);

1617 1618
	INIT_LIST_HEAD(&counter->child_list);

I
Ingo Molnar 已提交
1619 1620 1621 1622 1623
	counter->irqdata		= &counter->data[0];
	counter->usrdata		= &counter->data[1];
	counter->cpu			= cpu;
	counter->hw_event		= *hw_event;
	counter->wakeup_pending		= 0;
1624
	counter->group_leader		= group_leader;
I
Ingo Molnar 已提交
1625 1626
	counter->hw_ops			= NULL;

1627
	counter->state = PERF_COUNTER_STATE_INACTIVE;
1628 1629 1630
	if (hw_event->disabled)
		counter->state = PERF_COUNTER_STATE_OFF;

1631 1632 1633
	hw_ops = NULL;
	if (!hw_event->raw && hw_event->type < 0)
		hw_ops = sw_perf_counter_init(counter);
1634
	if (!hw_ops)
1635 1636
		hw_ops = hw_perf_counter_init(counter);

I
Ingo Molnar 已提交
1637 1638 1639 1640 1641
	if (!hw_ops) {
		kfree(counter);
		return NULL;
	}
	counter->hw_ops = hw_ops;
T
Thomas Gleixner 已提交
1642 1643 1644 1645 1646

	return counter;
}

/**
I
Ingo Molnar 已提交
1647 1648 1649
 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
 *
 * @hw_event_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
1650
 * @pid:		target pid
I
Ingo Molnar 已提交
1651 1652
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
1653
 */
1654 1655 1656
asmlinkage int
sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
		      pid_t pid, int cpu, int group_fd)
T
Thomas Gleixner 已提交
1657
{
1658
	struct perf_counter *counter, *group_leader;
I
Ingo Molnar 已提交
1659
	struct perf_counter_hw_event hw_event;
1660
	struct perf_counter_context *ctx;
1661
	struct file *counter_file = NULL;
1662 1663
	struct file *group_file = NULL;
	int fput_needed = 0;
1664
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
1665 1666
	int ret;

I
Ingo Molnar 已提交
1667
	if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1668 1669
		return -EFAULT;

1670
	/*
I
Ingo Molnar 已提交
1671 1672 1673 1674 1675 1676 1677 1678
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
1679 1680 1681 1682 1683 1684
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
1685
			goto err_put_context;
1686
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
1687
			goto err_put_context;
1688 1689 1690

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
1691 1692 1693 1694 1695 1696 1697 1698
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
1699
		 */
I
Ingo Molnar 已提交
1700 1701
		if (group_leader->ctx != ctx)
			goto err_put_context;
1702 1703 1704 1705 1706
		/*
		 * Only a group leader can be exclusive or pinned
		 */
		if (hw_event.exclusive || hw_event.pinned)
			goto err_put_context;
1707 1708
	}

1709
	ret = -EINVAL;
1710
	counter = perf_counter_alloc(&hw_event, cpu, group_leader, GFP_KERNEL);
T
Thomas Gleixner 已提交
1711 1712 1713 1714 1715
	if (!counter)
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
1716 1717 1718 1719 1720 1721 1722
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
1723
	mutex_lock(&ctx->mutex);
1724
	perf_install_in_context(ctx, counter, cpu);
1725
	mutex_unlock(&ctx->mutex);
1726 1727

	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
1728

1729 1730 1731
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
1732 1733
	return ret;

1734
err_free_put_context:
T
Thomas Gleixner 已提交
1735 1736 1737 1738 1739
	kfree(counter);

err_put_context:
	put_context(ctx);

1740
	goto out_fput;
T
Thomas Gleixner 已提交
1741 1742
}

1743 1744 1745 1746 1747 1748 1749 1750 1751
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
1752
	mutex_init(&ctx->mutex);
1753 1754 1755 1756 1757 1758 1759
	INIT_LIST_HEAD(&ctx->counter_list);
	ctx->task = task;
}

/*
 * inherit a counter from parent task to child task:
 */
1760
static struct perf_counter *
1761 1762 1763 1764
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
1765
	      struct perf_counter *group_leader,
1766 1767 1768 1769
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

1770 1771 1772 1773 1774 1775 1776 1777 1778
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

1779
	child_counter = perf_counter_alloc(&parent_counter->hw_event,
1780 1781
					    parent_counter->cpu, group_leader,
					    GFP_KERNEL);
1782
	if (!child_counter)
1783
		return NULL;
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

	/*
	 * Link it up in the child's context:
	 */
	child_counter->ctx = child_ctx;
	child_counter->task = child;
	list_add_counter(child_counter, child_ctx);
	child_ctx->nr_counters++;

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
	child_counter->hw_event.inherit = 1;

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	/*
	 * Link this into the parent counter's child list
	 */
	mutex_lock(&parent_counter->mutex);
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);

	/*
	 * Make the child state follow the state of the parent counter,
	 * not its hw_event.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_counter_{en,dis}able_family.
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

	mutex_unlock(&parent_counter->mutex);

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (!leader)
		return -ENOMEM;
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
		if (!inherit_counter(sub, parent, parent_ctx,
				     child, leader, child_ctx))
			return -ENOMEM;
	}
1846 1847 1848
	return 0;
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
	u64 parent_val, child_val;

	parent_val = atomic64_read(&parent_counter->count);
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);

	/*
	 * Remove this counter from the parent's list
	 */
	mutex_lock(&parent_counter->mutex);
	list_del_init(&child_counter->child_list);
	mutex_unlock(&parent_counter->mutex);

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

1876 1877 1878 1879 1880 1881
static void
__perf_counter_exit_task(struct task_struct *child,
			 struct perf_counter *child_counter,
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;
1882
	struct perf_counter *sub, *tmp;
1883 1884

	/*
1885 1886 1887 1888 1889 1890
	 * If we do not self-reap then we have to wait for the
	 * child task to unschedule (it will happen for sure),
	 * so that its counter is at its final count. (This
	 * condition triggers rarely - child tasks usually get
	 * off their CPU before the parent has a chance to
	 * get this far into the reaping action)
1891
	 */
1892 1893 1894 1895
	if (child != current) {
		wait_task_inactive(child, 0);
		list_del_init(&child_counter->list_entry);
	} else {
1896
		struct perf_cpu_context *cpuctx;
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
		unsigned long flags;
		u64 perf_flags;

		/*
		 * Disable and unlink this counter.
		 *
		 * Be careful about zapping the list - IRQ/NMI context
		 * could still be processing it:
		 */
		curr_rq_lock_irq_save(&flags);
		perf_flags = hw_perf_save_disable();
1908 1909 1910

		cpuctx = &__get_cpu_var(perf_cpu_context);

1911
		group_sched_out(child_counter, cpuctx, child_ctx);
1912

1913
		list_del_init(&child_counter->list_entry);
1914

1915
		child_ctx->nr_counters--;
1916

1917 1918 1919
		hw_perf_restore(perf_flags);
		curr_rq_unlock_irq_restore(&flags);
	}
1920 1921 1922 1923 1924 1925 1926

	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
1927 1928 1929 1930 1931 1932 1933 1934 1935
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
		list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
					 list_entry) {
			if (sub->parent)
				sync_child_counter(sub, sub->parent);
			kfree(sub);
		}
	}
1936

1937 1938
	if (!child_counter->filp || !atomic_long_read(&child_counter->filp->f_count))
		kfree(child_counter);
1939 1940 1941
}

/*
1942
 * When a child task exits, feed back counter values to parent counters.
1943
 *
1944
 * Note: we may be running in child context, but the PID is not hashed
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
 * anymore so new counters will not be added.
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;

	child_ctx = &child->perf_counter_ctx;

	if (likely(!child_ctx->nr_counters))
		return;

	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
		__perf_counter_exit_task(child, child_counter, child_ctx);
}

/*
 * Initialize the perf_counter context in task_struct
 */
void perf_counter_init_task(struct task_struct *child)
{
	struct perf_counter_context *child_ctx, *parent_ctx;
1968
	struct perf_counter *counter;
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	struct task_struct *parent = current;

	child_ctx  =  &child->perf_counter_ctx;
	parent_ctx = &parent->perf_counter_ctx;

	__perf_counter_init_context(child_ctx, child);

	/*
	 * This is executed from the parent task context, so inherit
	 * counters that have been marked for cloning:
	 */

	if (likely(!parent_ctx->nr_counters))
		return;

	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
1988
	mutex_lock(&parent_ctx->mutex);
1989 1990 1991 1992 1993 1994

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
	list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
1995
		if (!counter->hw_event.inherit)
1996 1997
			continue;

1998
		if (inherit_group(counter, parent,
1999 2000 2001 2002
				  parent_ctx, child, child_ctx))
			break;
	}

2003
	mutex_unlock(&parent_ctx->mutex);
2004 2005
}

2006
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
2007
{
2008
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2009

2010 2011
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
2012 2013

	mutex_lock(&perf_resource_mutex);
2014
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
T
Thomas Gleixner 已提交
2015
	mutex_unlock(&perf_resource_mutex);
2016

2017
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
2018 2019 2020
}

#ifdef CONFIG_HOTPLUG_CPU
2021
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
2022 2023 2024 2025 2026
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

2027 2028
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
2029
}
2030
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
2031
{
2032 2033 2034 2035
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
2036
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2037
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2038 2039
}
#else
2040
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
2052
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
2053 2054 2055 2056
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
2057
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
};

static int __init perf_counter_init(void)
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);

	return 0;
}
early_initcall(perf_counter_init);

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

	mutex_lock(&perf_resource_mutex);
	perf_overcommit = val;
	mutex_unlock(&perf_resource_mutex);

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);