amd64_edac.c 69.7 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27
/*
28 29
 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
 * later.
30
 */
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
static int ddr2_dbam_revCG[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2]		= 128,
			   [3]		= 256,
			   [4]		= 512,
			   [5]		= 1024,
			   [6]		= 2048,
};

static int ddr2_dbam_revD[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2 ... 3]	= 128,
			   [4]		= 256,
			   [5]		= 512,
			   [6]		= 256,
			   [7]		= 512,
			   [8 ... 9]	= 1024,
			   [10]		= 2048,
};

static int ddr2_dbam[] = { [0]		= 128,
			   [1]		= 256,
			   [2 ... 4]	= 512,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
			   [11]		= 8192,
};

static int ddr3_dbam[] = { [0]		= -1,
			   [1]		= 256,
			   [2]		= 512,
			   [3 ... 4]	= -1,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
69
			   [11]		= 8192,
70 71 72 73 74 75 76 77 78 79
};

/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */

80 81 82 83 84

struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
				      u32 *val, const char *func)
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u32 reg = 0;
	u8 dct  = 0;

	if (addr >= 0x140 && addr <= 0x1a0) {
		dct   = 1;
		addr -= 0x100;
	}

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= 0xfffffffe;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
201
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
217
		if (scrubrates[i].scrubval < min_rate)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;

	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);

234 235 236
	if (scrubval)
		return scrubrates[i].bandwidth;

237 238 239
	return 0;
}

240
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
241 242 243
{
	struct amd64_pvt *pvt = mci->pvt_info;

244
	return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
245 246
}

247
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
248 249 250
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
251
	int i, retval = -EINVAL;
252

253
	amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
254 255 256

	scrubval = scrubval & 0x001F;

257
	amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
258

259
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
260
		if (scrubrates[i].scrubval == scrubval) {
261
			retval = scrubrates[i].bandwidth;
262 263 264
			break;
		}
	}
265
	return retval;
266 267
}

268
/*
269 270
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
271
 */
272
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
273
{
274
	u64 addr;
275 276 277 278 279 280 281 282 283

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

284 285
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
	int node_id;
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
312
	intlv_en = dram_intlv_en(pvt, 0);
313 314

	if (intlv_en == 0) {
315
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
316
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
317
				goto found;
318
		}
319
		goto err_no_match;
320 321
	}

322 323 324
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
325
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
326 327 328 329 330 331
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
332
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
333 334
			break;	/* intlv_sel field matches */

335
		if (++node_id >= DRAM_RANGES)
336 337 338 339 340
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
341 342 343
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
344 345 346 347 348 349 350 351 352 353 354 355
		return NULL;
	}

found:
	return edac_mc_find(node_id);

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
356 357

/*
358 359
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
360
 */
361 362
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
363
{
364 365
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
366

367 368 369 370 371 372 373 374 375 376
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
		addr_shift	= 4;
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
377

378 379 380 381 382
		if (boot_cpu_data.x86 == 0x15)
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
		else
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
	}
383

384
	*base  = (csbase & base_bits) << addr_shift;
385

386 387 388 389 390
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
391 392
}

393 394 395 396 397 398
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

399 400 401 402 403 404 405 406 407 408 409 410
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

411 412
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
413 414
			continue;

415 416 417
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}
	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
456
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
457 458 459 460 461
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

462
	/* valid for Fam10h and above */
463
	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
464 465 466 467
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

468
	if (!dhar_valid(pvt)) {
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

492
	base = dhar_base(pvt);
493 494 495 496 497

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
498
		*hole_offset = f10_dhar_offset(pvt);
499
	else
500
		*hole_offset = k8_dhar_offset(pvt);
501 502 503 504 505 506 507 508 509

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
541
	struct amd64_pvt *pvt = mci->pvt_info;
542 543 544
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

545
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
573
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
609
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
610 611
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
		      (dram_addr & 0xfff);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int node_id, intlv_shift;
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
	BUG_ON((node_id < 0) || (node_id > 7));

661
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
662 663 664 665 666 667 668 669

	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

670 671
	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
		(input_addr & 0xfff);
672

673
	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
690
	u64 hole_base, hole_offset, hole_size, base, sys_addr;
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

708
	base     = get_dram_base(pvt, pvt->mc_node_id);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
753
	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
754

755
	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
756 757

	*input_addr_min = base & ~mask;
758
	*input_addr_max = base | mask;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
784 785
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
786 787
	return csrow;
}
788

789
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
790

791 792 793 794 795
static u16 extract_syndrome(struct err_regs *err)
{
	return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
}

796 797 798 799 800 801
/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
802
	u8 bit;
803
	enum dev_type edac_cap = EDAC_FLAG_NONE;
804

805
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
806 807 808
		? 19
		: 17;

809
	if (pvt->dclr0 & BIT(bit))
810 811 812 813 814 815
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}


816
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
817

818 819 820 821 822 823 824 825 826 827 828
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

829 830 831
	if (boot_cpu_data.x86 == 0x10)
		debugf1("  DCT 128bit mode width: %s\n",
			(dclr & BIT(11)) ?  "128b" : "64b");
832 833 834 835 836 837 838 839

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

840
/* Display and decode various NB registers for debug purposes. */
841
static void dump_misc_regs(struct amd64_pvt *pvt)
842
{
843 844 845 846
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
847

848 849 850 851 852
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
		(pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
853

854
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
855

856 857
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
858 859 860
			pvt->dhar, dhar_base(pvt),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
						   : f10_dhar_offset(pvt));
861

862
	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
863

864 865
	amd64_debug_display_dimm_sizes(0, pvt);

866
	/* everything below this point is Fam10h and above */
867
	if (boot_cpu_data.x86 == 0xf)
868
		return;
869 870

	amd64_debug_display_dimm_sizes(1, pvt);
871

872
	amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
873

874
	/* Only if NOT ganged does dclr1 have valid info */
875 876
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
877 878
}

879
/*
880
 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
881
 */
882
static void prep_chip_selects(struct amd64_pvt *pvt)
883
{
884
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
885 886
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
887
	} else {
888 889
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
890 891 892 893
	}
}

/*
894
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
895
 */
896
static void read_dct_base_mask(struct amd64_pvt *pvt)
897
{
898
	int cs;
899

900
	prep_chip_selects(pvt);
901

902 903 904 905 906
	for_each_chip_select(cs, 0, pvt) {
		u32 reg0   = DCSB0 + (cs * 4);
		u32 reg1   = DCSB1 + (cs * 4);
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
907

908
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
909
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
910
				cs, *base0, reg0);
911

912 913
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
914

915 916 917
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
				cs, *base1, reg1);
918 919
	}

920 921 922 923 924
	for_each_chip_select_mask(cs, 0, pvt) {
		u32 reg0   = DCSM0 + (cs * 4);
		u32 reg1   = DCSM1 + (cs * 4);
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
925

926
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
927
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
928
				cs, *mask0, reg0);
929

930 931
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
932

933 934 935
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
				cs, *mask1, reg1);
936 937 938
	}
}

939
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
940 941 942
{
	enum mem_type type;

943 944 945 946
	/* F15h supports only DDR3 */
	if (boot_cpu_data.x86 >= 0x15)
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
947 948 949 950
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
951 952 953 954
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

955
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
956 957 958 959

	return type;
}

960
/* Get the number of DCT channels the memory controller is using. */
961 962
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
963
	int flag;
964

965
	if (pvt->ext_model >= K8_REV_F)
966 967
		/* RevF (NPT) and later */
		flag = pvt->dclr0 & F10_WIDTH_128;
968
	else
969 970 971 972 973 974 975 976 977
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

978
/* Extract the ERROR ADDRESS for the K8 CPUs */
979
static u64 k8_get_error_address(struct mem_ctl_info *mci,
980
				struct err_regs *info)
981 982 983 984 985
{
	return (((u64) (info->nbeah & 0xff)) << 32) +
			(info->nbeal & ~0x03);
}

986
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
987
{
988
	u32 off = range << 3;
989

990 991
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
992

993 994
	if (boot_cpu_data.x86 == 0xf)
		return;
995

996 997
	if (!dram_rw(pvt, range))
		return;
998

999 1000
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1001 1002 1003
}

static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1004
				    struct err_regs *err_info, u64 sys_addr)
1005 1006 1007 1008
{
	struct mem_ctl_info *src_mci;
	int channel, csrow;
	u32 page, offset;
1009
	u16 syndrome;
1010

1011
	syndrome = extract_syndrome(err_info);
1012 1013

	/* CHIPKILL enabled */
1014
	if (err_info->nbcfg & NBCFG_CHIPKILL) {
1015
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1016 1017 1018 1019 1020 1021
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1022 1023
			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
					   "error reporting race\n", syndrome);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1036
		channel = ((sys_addr & BIT(3)) != 0);
1037 1038 1039 1040 1041 1042
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1043
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1044
	if (!src_mci) {
1045
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1046
			     (unsigned long)sys_addr);
1047 1048 1049 1050
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1051 1052
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1053 1054 1055
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1056
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1057 1058 1059 1060 1061 1062

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1063
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1064
{
1065
	int *dbam_map;
1066

1067 1068 1069 1070 1071 1072
	if (pvt->ext_model >= K8_REV_F)
		dbam_map = ddr2_dbam;
	else if (pvt->ext_model >= K8_REV_D)
		dbam_map = ddr2_dbam_revD;
	else
		dbam_map = ddr2_dbam_revCG;
1073

1074
	return dbam_map[cs_mode];
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
static int f10_early_channel_count(struct amd64_pvt *pvt)
{
1087
	int i, j, channels = 0;
1088 1089 1090 1091 1092 1093 1094 1095

	/* If we are in 128 bit mode, then we are using 2 channels */
	if (pvt->dclr0 & F10_WIDTH_128) {
		channels = 2;
		return channels;
	}

	/*
1096 1097 1098
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1099 1100 1101 1102
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1103
	debugf0("Data width is not 128 bits - need more decoding\n");
1104

1105 1106 1107 1108 1109
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1110 1111
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1112

1113 1114 1115 1116 1117 1118
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1119 1120
	}

1121 1122 1123
	if (channels > 2)
		channels = 2;

1124
	amd64_info("MCT channel count: %d\n", channels);
1125 1126 1127 1128

	return channels;
}

1129
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1130
{
1131 1132 1133 1134 1135 1136 1137 1138
	int *dbam_map;

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
		dbam_map = ddr3_dbam;
	else
		dbam_map = ddr2_dbam;

	return dbam_map[cs_mode];
1139 1140 1141
}

static u64 f10_get_error_address(struct mem_ctl_info *mci,
1142
			struct err_regs *info)
1143 1144 1145 1146 1147
{
	return (((u64) (info->nbeah & 0xffff)) << 32) +
			(info->nbeal & ~0x01);
}

1148 1149 1150
static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
{

1151 1152 1153
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1154

1155
		debugf0("  mode: %s, All DCTs on: %s\n",
1156 1157 1158 1159 1160 1161 1162
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
			(dct_dram_enabled(pvt) ? "yes"   : "no"));

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

1163
		debugf0("  data interleave for ECC: %s, "
1164 1165 1166 1167
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

1168 1169
		debugf0("  channel interleave: %s, "
			"interleave bits selector: 0x%x\n",
1170
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1171 1172 1173
			dct_sel_interleave_addr(pvt));
	}

1174
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1175 1176
}

1177
/*
1178
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1179 1180
 * Interleaving Modes.
 */
1181
static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1182
				bool hi_range_sel, u8 intlv_en)
1183
{
1184
	u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1185 1186

	if (dct_ganging_enabled(pvt))
1187
		return 0;
1188

1189 1190
	if (hi_range_sel)
		return dct_sel_high;
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1214 1215 1216 1217

	return 0;
}

1218 1219 1220 1221
/* Convert the sys_addr to the normalized DCT address */
static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1222 1223
{
	u64 chan_off;
1224 1225 1226 1227
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u32 hole_valid		= dhar_valid(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
		    hole_valid &&
		    (sys_addr >= BIT_64(32)))
1245
			chan_off = hole_off;
1246 1247 1248
		else
			chan_off = dct_sel_base_off;
	} else {
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
		if (hole_valid && (sys_addr >= BIT_64(32)))
1259
			chan_off = hole_off;
1260
		else
1261
			chan_off = dram_base;
1262 1263
	}

1264
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
}

/* Hack for the time being - Can we get this from BIOS?? */
#define	CH0SPARE_RANK	0
#define	CH1SPARE_RANK	1

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1275
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1276 1277 1278 1279 1280
{
	u32 swap_done;
	u32 bad_dram_cs;

	/* Depending on channel, isolate respective SPARING info */
1281
	if (dct) {
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH1SPARE_RANK;
	} else {
		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH0SPARE_RANK;
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1303
static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1304 1305 1306
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1307
	u64 cs_base, cs_mask;
1308 1309 1310
	int cs_found = -EINVAL;
	int csrow;

1311
	mci = mcis[nid];
1312 1313 1314 1315 1316
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1317
	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1318

1319 1320
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1321 1322
			continue;

1323
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1324

1325 1326
		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			csrow, cs_base, cs_mask);
1327

1328
		cs_mask = ~cs_mask;
1329

1330 1331 1332
		debugf1("    (InputAddr & ~CSMask)=0x%llx "
			"(CSBase & ~CSMask)=0x%llx\n",
			(in_addr & cs_mask), (cs_base & cs_mask));
1333

1334 1335
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1336 1337 1338 1339 1340 1341 1342 1343

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1344
/* For a given @dram_range, check if @sys_addr falls within it. */
1345
static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
1346 1347
				  u64 sys_addr, int *nid, int *chan_sel)
{
1348
	int cs_found = -EINVAL;
1349 1350
	u64 chan_addr;
	u32 tmp, dct_sel_base;
1351
	u8 channel;
1352
	bool high_range = false;
1353

1354
	u8 node_id    = dram_dst_node(pvt, range);
1355
	u8 intlv_en   = dram_intlv_en(pvt, range);
1356
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1357

1358 1359
	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		range, sys_addr, get_dram_limit(pvt, range));
1360

1361
	if (intlv_en &&
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
		return -EINVAL;

	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1374
		high_range = true;
1375 1376 1377

	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);

1378 1379
	chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr,
					  high_range, dct_sel_base);
1380

1381
	/* remove Node ID (in case of node interleaving) */
1382 1383
	tmp = chan_addr & 0xFC0;

1384
	chan_addr = ((chan_addr >> hweight8(intlv_en)) & GENMASK(12, 47)) | tmp;
1385 1386 1387 1388 1389 1390

	/* remove channel interleave and hash */
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
		if (dct_sel_interleave_addr(pvt) != 1)
1391
			chan_addr = (chan_addr >> 1) & GENMASK(6, 63);
1392 1393
		else {
			tmp = chan_addr & 0xFC0;
1394
			chan_addr = ((chan_addr & GENMASK(14, 63)) >> 1) | tmp;
1395 1396 1397
		}
	}

1398
	debugf1("   (ChannelAddrLong=0x%llx)\n", chan_addr);
1399

1400
	cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
				       int *node, int *chan_sel)
{
1412
	int range, cs_found = -EINVAL;
1413

1414
	for (range = 0; range < DRAM_RANGES; range++) {
1415

1416
		if (!dram_rw(pvt, range))
1417 1418
			continue;

1419 1420
		if ((get_dram_base(pvt, range)  <= sys_addr) &&
		    (get_dram_limit(pvt, range) >= sys_addr)) {
1421

1422
			cs_found = f10_match_to_this_node(pvt, range,
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1433 1434
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1435
 *
1436 1437
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1438 1439
 */
static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1440
				     struct err_regs *err_info,
1441 1442 1443 1444 1445
				     u64 sys_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;
1446
	u16 syndrome;
1447 1448 1449

	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);

1450 1451 1452 1453 1454 1455
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1456

1457
	syndrome = extract_syndrome(err_info);
1458 1459 1460 1461 1462 1463

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1464
	if (dct_ganging_enabled(pvt))
1465
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1466

1467 1468 1469 1470
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1471
		/*
1472
		 * Channel unknown, report all channels on this CSROW as failed.
1473
		 */
1474
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1475
			edac_mc_handle_ce(mci, page, offset, syndrome,
1476
					  csrow, chan, EDAC_MOD_STR);
1477 1478 1479
}

/*
1480
 * debug routine to display the memory sizes of all logical DIMMs and its
1481
 * CSROWs
1482
 */
1483
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1484
{
1485
	int dimm, size0, size1, factor = 0;
1486 1487
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1488

1489
	if (boot_cpu_data.x86 == 0xf) {
1490 1491 1492
		if (pvt->dclr0 & F10_WIDTH_128)
			factor = 1;

1493
		/* K8 families < revF not supported yet */
1494
	       if (pvt->ext_model < K8_REV_F)
1495 1496 1497 1498 1499
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1500
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1501 1502
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1503

1504
	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1505

1506 1507
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1508 1509 1510 1511
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1512
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1513
			size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1514 1515

		size1 = 0;
1516
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1517
			size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1518

1519 1520 1521
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1522 1523 1524
	}
}

1525 1526
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1527
		.ctl_name = "K8",
1528 1529
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1530
		.ops = {
1531 1532 1533 1534
			.early_channel_count	= k8_early_channel_count,
			.get_error_address	= k8_get_error_address,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1535
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1536 1537 1538
		}
	},
	[F10_CPUS] = {
1539
		.ctl_name = "F10h",
1540 1541
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1542
		.ops = {
1543 1544 1545 1546 1547
			.early_channel_count	= f10_early_channel_count,
			.get_error_address	= f10_get_error_address,
			.read_dram_ctl_register	= f10_read_dram_ctl_register,
			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
			.dbam_to_cs		= f10_dbam_to_chip_select,
1548 1549 1550 1551 1552 1553 1554
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
		.ops = {
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1576
/*
1577 1578 1579
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1580
 *
1581
 * Algorithm courtesy of Ross LaFetra from AMD.
1582
 */
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1620 1621
};

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1645
			   int v_dim)
1646
{
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
		int v_idx =  err_sym * v_dim;
		int v_end = (err_sym + 1) * v_dim;

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1665

1666 1667 1668
					if (!s)
						return err_sym;
				}
1669

1670 1671 1672 1673
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1674 1675 1676 1677 1678
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	int err_sym = -1;

	if (pvt->syn_type == 8)
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
					  pvt->syn_type);
	else if (pvt->syn_type == 4)
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
					  pvt->syn_type);
	else {
1733
		amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
1734
		return err_sym;
1735
	}
1736 1737

	return map_err_sym_to_channel(err_sym, pvt->syn_type);
1738 1739
}

1740 1741 1742 1743 1744
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
static void amd64_handle_ce(struct mem_ctl_info *mci,
1745
			    struct err_regs *info)
1746 1747
{
	struct amd64_pvt *pvt = mci->pvt_info;
1748
	u64 sys_addr;
1749 1750

	/* Ensure that the Error Address is VALID */
1751 1752
	if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1753 1754 1755 1756
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1757
	sys_addr = pvt->ops->get_error_address(mci, info);
1758

1759
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1760

1761
	pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
1762 1763 1764 1765
}

/* Handle any Un-correctable Errors (UEs) */
static void amd64_handle_ue(struct mem_ctl_info *mci,
1766
			    struct err_regs *info)
1767
{
1768 1769
	struct amd64_pvt *pvt = mci->pvt_info;
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1770
	int csrow;
1771
	u64 sys_addr;
1772 1773 1774 1775
	u32 page, offset;

	log_mci = mci;

1776 1777
	if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1778 1779 1780 1781
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

1782
	sys_addr = pvt->ops->get_error_address(mci, info);
1783 1784 1785 1786 1787

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1788
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1789
	if (!src_mci) {
1790 1791
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1792 1793 1794 1795 1796 1797
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

1798
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1799
	if (csrow < 0) {
1800 1801
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1802 1803
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
1804
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1805 1806 1807 1808
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

1809
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1810
					    struct err_regs *info)
1811
{
1812 1813
	u16 ec = EC(info->nbsl);
	u8 xec = XEC(info->nbsl, 0x1f);
B
Borislav Petkov 已提交
1814
	int ecc_type = (info->nbsh >> 13) & 0x3;
1815

1816 1817 1818
	/* Bail early out if this was an 'observed' error */
	if (PP(ec) == K8_NBSL_PP_OBS)
		return;
1819

1820 1821
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1822 1823
		return;

1824
	if (ecc_type == 2)
1825
		amd64_handle_ce(mci, info);
1826
	else if (ecc_type == 1)
1827 1828 1829
		amd64_handle_ue(mci, info);
}

1830
void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1831
{
1832
	struct mem_ctl_info *mci = mcis[node_id];
1833
	struct err_regs regs;
1834

1835 1836 1837 1838 1839 1840 1841
	regs.nbsl  = (u32) m->status;
	regs.nbsh  = (u32)(m->status >> 32);
	regs.nbeal = (u32) m->addr;
	regs.nbeah = (u32)(m->addr >> 32);
	regs.nbcfg = nbcfg;

	__amd64_decode_bus_error(mci, &regs);
1842 1843 1844 1845 1846

	/*
	 * Check the UE bit of the NB status high register, if set generate some
	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
	 * If it was a GART error, skip that process.
1847 1848
	 *
	 * FIXME: this should go somewhere else, if at all.
1849
	 */
1850
	if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
1851
		edac_mc_handle_ue_no_info(mci, "UE bit is set");
1852

1853 1854
}

1855
/*
1856
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1857
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1858
 */
1859
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1860 1861
{
	/* Reserve the ADDRESS MAP Device */
1862 1863
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
1864 1865 1866
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
1867
		return -ENODEV;
1868 1869 1870
	}

	/* Reserve the MISC Device */
1871 1872 1873 1874
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
1875

1876 1877 1878
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
1879

1880
		return -ENODEV;
1881
	}
1882 1883 1884
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
1885 1886 1887 1888

	return 0;
}

1889
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1890
{
1891 1892
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
1893 1894 1895 1896 1897 1898
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
1899
static void read_mc_regs(struct amd64_pvt *pvt)
1900 1901
{
	u64 msr_val;
1902
	u32 tmp;
1903
	int range;
1904 1905 1906 1907 1908

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
1909 1910
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
1911 1912 1913 1914

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
1915 1916
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1917 1918 1919
	} else
		debugf0("  TOP_MEM2 disabled.\n");

1920
	amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
1921 1922 1923 1924

	if (pvt->ops->read_dram_ctl_register)
		pvt->ops->read_dram_ctl_register(pvt);

1925 1926
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
1927

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			range,
			get_dram_base(pvt, range),
			get_dram_limit(pvt, range));

		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			(rw & 0x1) ? "R" : "-",
			(rw & 0x2) ? "W" : "-",
			dram_intlv_sel(pvt, range),
			dram_dst_node(pvt, range));
1946 1947
	}

1948
	read_dct_base_mask(pvt);
1949

1950
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1951
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1952

1953
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1954

1955 1956
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1957

1958
	if (!dct_ganging_enabled(pvt)) {
1959 1960
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
1961
	}
1962

1963
	if (boot_cpu_data.x86 >= 0x10) {
1964
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
1965 1966
		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
	}
1967

1968 1969 1970 1971 1972 1973 1974 1975
	if (boot_cpu_data.x86 == 0x10 &&
	    boot_cpu_data.x86_model > 7 &&
	    /* F3x180[EccSymbolSize]=1 => x8 symbols */
	    tmp & BIT(25))
		pvt->syn_type = 8;
	else
		pvt->syn_type = 4;

1976
	dump_misc_regs(pvt);
1977 1978 1979 1980 1981 1982
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
1983
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
{
2015
	u32 cs_mode, nr_pages;
2016 2017 2018 2019 2020 2021 2022 2023

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2024
	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2025

2026
	nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2027 2028 2029 2030 2031 2032 2033

	/*
	 * If dual channel then double the memory size of single channel.
	 * Channel count is 1 or 2
	 */
	nr_pages <<= (pvt->channel_count - 1);

2034
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2045
static int init_csrows(struct mem_ctl_info *mci)
2046 2047
{
	struct csrow_info *csrow;
2048
	struct amd64_pvt *pvt = mci->pvt_info;
2049
	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2050
	u32 val;
2051
	int i, empty = 1;
2052

2053
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2054

2055
	pvt->nbcfg = val;
2056

2057 2058
	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		pvt->mc_node_id, val,
2059
		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2060

2061
	for_each_chip_select(i, 0, pvt) {
2062 2063
		csrow = &mci->csrows[i];

2064
		if (!csrow_enabled(i, 0, pvt)) {
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2080 2081 2082

		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
		csrow->page_mask = ~mask;
2083 2084
		/* 8 bytes of resolution */

2085
		csrow->mtype = amd64_determine_memory_type(pvt, i);
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2101
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2102
			csrow->edac_mode =
2103
			    (pvt->nbcfg & NBCFG_CHIPKILL) ?
2104 2105 2106 2107 2108 2109 2110
			    EDAC_S4ECD4ED : EDAC_SECDED;
		else
			csrow->edac_mode = EDAC_NONE;
	}

	return empty;
}
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
/* get all cores on this DCT */
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
static bool amd64_nb_mce_bank_enabled_on_node(int nid)
{
	cpumask_var_t mask;
2126
	int cpu, nbe;
2127 2128 2129
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2130
		amd64_warn("%s: Error allocating mask\n", __func__);
2131 2132 2133 2134 2135 2136 2137 2138
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2139 2140
		struct msr *reg = per_cpu_ptr(msrs, cpu);
		nbe = reg->l & K8_MSR_MCGCTL_NBE;
2141 2142

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2143
			cpu, reg->q,
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2156
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2157 2158
{
	cpumask_var_t cmask;
2159
	int cpu;
2160 2161

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2162
		amd64_warn("%s: error allocating mask\n", __func__);
2163 2164 2165
		return false;
	}

2166
	get_cpus_on_this_dct_cpumask(cmask, nid);
2167 2168 2169 2170 2171

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2172 2173
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2174
		if (on) {
2175
			if (reg->l & K8_MSR_MCGCTL_NBE)
2176
				s->flags.nb_mce_enable = 1;
2177

2178
			reg->l |= K8_MSR_MCGCTL_NBE;
2179 2180
		} else {
			/*
2181
			 * Turn off NB MCE reporting only when it was off before
2182
			 */
2183
			if (!s->flags.nb_mce_enable)
2184
				reg->l &= ~K8_MSR_MCGCTL_NBE;
2185 2186 2187 2188 2189 2190 2191 2192 2193
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2194 2195
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2196
{
2197
	bool ret = true;
B
Borislav Petkov 已提交
2198
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2199

2200 2201 2202 2203 2204
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2205
	amd64_read_pci_cfg(F3, NBCTL, &value);
2206

2207 2208
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2209 2210

	value |= mask;
B
Borislav Petkov 已提交
2211
	amd64_write_pci_cfg(F3, NBCTL, value);
2212

2213
	amd64_read_pci_cfg(F3, NBCFG, &value);
2214

2215 2216
	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2217

2218
	if (!(value & NBCFG_ECC_ENABLE)) {
2219
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2220

2221
		s->flags.nb_ecc_prev = 0;
2222

2223
		/* Attempt to turn on DRAM ECC Enable */
2224 2225
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2226

2227
		amd64_read_pci_cfg(F3, NBCFG, &value);
2228

2229
		if (!(value & NBCFG_ECC_ENABLE)) {
2230 2231
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2232
			ret = false;
2233
		} else {
2234
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2235
		}
2236
	} else {
2237
		s->flags.nb_ecc_prev = 1;
2238
	}
2239

2240 2241
	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2242

2243
	return ret;
2244 2245
}

2246 2247
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2248
{
B
Borislav Petkov 已提交
2249 2250
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2251

2252
	if (!s->nbctl_valid)
2253 2254
		return;

B
Borislav Petkov 已提交
2255
	amd64_read_pci_cfg(F3, NBCTL, &value);
2256
	value &= ~mask;
2257
	value |= s->old_nbctl;
2258

B
Borislav Petkov 已提交
2259
	amd64_write_pci_cfg(F3, NBCTL, value);
2260

2261 2262
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2263 2264 2265
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2266 2267 2268
	}

	/* restore the NB Enable MCGCTL bit */
2269
	if (toggle_ecc_err_reporting(s, nid, OFF))
2270
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2271 2272 2273
}

/*
2274 2275 2276 2277
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2278
 */
2279 2280 2281 2282 2283
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2284

2285
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2286 2287
{
	u32 value;
2288
	u8 ecc_en = 0;
2289
	bool nb_mce_en = false;
2290

2291
	amd64_read_pci_cfg(F3, NBCFG, &value);
2292

2293
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2294
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2295

2296
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2297
	if (!nb_mce_en)
2298 2299 2300
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2301

2302 2303 2304 2305 2306
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2307 2308
}

2309 2310 2311 2312 2313 2314
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

2315
static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2316 2317 2318 2319 2320 2321
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

2322 2323 2324
	if (boot_cpu_data.x86 >= 0x10)
		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
			sysfs_attrs[i] = amd64_inj_attrs[j];
2325 2326 2327 2328 2329 2330

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

2331
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

	if (pvt->nbcap & K8_NBCAP_SECDED)
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2347
	mci->ctl_name		= pvt->ctl_name;
2348
	mci->dev_name		= pci_name(pvt->F2);
2349 2350 2351 2352 2353 2354 2355
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2356 2357 2358 2359
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2360
{
2361 2362 2363 2364
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2365
	case 0xf:
2366
		fam_type		= &amd64_family_types[K8_CPUS];
2367
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2368 2369
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= K8_MIN_SCRUB_RATE_BITS;
2370 2371
		break;
	case 0x10:
2372
		fam_type		= &amd64_family_types[F10_CPUS];
2373
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2374 2375
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= F10_MIN_SCRUB_RATE_BITS;
2376 2377 2378
		break;

	default:
2379
		amd64_err("Unsupported family!\n");
2380
		return NULL;
2381
	}
2382

2383 2384
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2385
	amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2386
		     (fam == 0xf ?
2387 2388 2389
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2390
	return fam_type;
2391 2392
}

2393
static int amd64_init_one_instance(struct pci_dev *F2)
2394 2395
{
	struct amd64_pvt *pvt = NULL;
2396
	struct amd64_family_type *fam_type = NULL;
2397
	struct mem_ctl_info *mci = NULL;
2398
	int err = 0, ret;
2399
	u8 nid = get_node_id(F2);
2400 2401 2402 2403

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2404
		goto err_ret;
2405

2406
	pvt->mc_node_id	= nid;
2407
	pvt->F2 = F2;
2408

2409
	ret = -EINVAL;
2410 2411
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2412 2413
		goto err_free;

2414
	ret = -ENODEV;
2415
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2416 2417 2418
	if (err)
		goto err_free;

2419
	read_mc_regs(pvt);
2420 2421 2422 2423

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2424
	 * tables in the 'mci' structure.
2425
	 */
2426
	ret = -EINVAL;
2427 2428
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2429
		goto err_siblings;
2430 2431

	ret = -ENOMEM;
2432
	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2433
	if (!mci)
2434
		goto err_siblings;
2435 2436

	mci->pvt_info = pvt;
2437
	mci->dev = &pvt->F2->dev;
2438

2439 2440 2441
	setup_mci_misc_attrs(mci);

	if (init_csrows(mci))
2442 2443
		mci->edac_cap = EDAC_FLAG_NONE;

2444
	set_mc_sysfs_attrs(mci);
2445 2446 2447 2448 2449 2450 2451

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

2452 2453 2454 2455 2456 2457
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2458 2459 2460 2461
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2462 2463 2464 2465 2466
	return 0;

err_add_mc:
	edac_mc_free(mci);

2467 2468
err_siblings:
	free_mc_sibling_devs(pvt);
2469

2470 2471
err_free:
	kfree(pvt);
2472

2473
err_ret:
2474 2475 2476
	return ret;
}

2477
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2478
					     const struct pci_device_id *mc_type)
2479
{
2480
	u8 nid = get_node_id(pdev);
2481
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2482
	struct ecc_settings *s;
2483
	int ret = 0;
2484 2485

	ret = pci_enable_device(pdev);
2486 2487 2488 2489
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2490

2491 2492 2493
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2494
		goto err_out;
2495 2496 2497

	ecc_stngs[nid] = s;

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2511
	if (ret < 0) {
2512
		amd64_err("Error probing instance: %d\n", nid);
2513 2514
		restore_ecc_error_reporting(s, nid, F3);
	}
2515 2516

	return ret;
2517 2518 2519 2520 2521 2522 2523

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2524 2525 2526 2527 2528 2529
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2530 2531 2532
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2533 2534 2535 2536 2537 2538 2539 2540

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2541
	restore_ecc_error_reporting(s, nid, F3);
2542

2543
	free_mc_sibling_devs(pvt);
2544

2545 2546 2547 2548
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2549 2550
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2551

2552
	/* Free the EDAC CORE resources */
2553
	mci->pvt_info = NULL;
2554
	mcis[nid] = NULL;
2555 2556

	kfree(pvt);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2588
	.probe		= amd64_probe_one_instance,
2589 2590 2591 2592
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2593
static void setup_pci_device(void)
2594 2595 2596 2597 2598 2599 2600
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2601
	mci = mcis[0];
2602 2603 2604 2605
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2606
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2620
	int err = -ENODEV;
2621 2622 2623 2624 2625

	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");

	opstate_init();

2626
	if (amd_cache_northbridges() < 0)
2627
		goto err_ret;
2628

2629
	err = -ENOMEM;
2630 2631
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2632
	if (!(mcis && ecc_stngs))
2633 2634
		goto err_ret;

2635
	msrs = msrs_alloc();
2636
	if (!msrs)
2637
		goto err_free;
2638

2639 2640
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2641
		goto err_pci;
2642

2643
	err = -ENODEV;
2644 2645
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2646

2647 2648
	setup_pci_device();
	return 0;
2649

2650
err_no_instances:
2651
	pci_unregister_driver(&amd64_pci_driver);
2652

2653 2654 2655
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2656

2657 2658 2659 2660 2661 2662 2663
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2664
err_ret:
2665 2666 2667 2668 2669 2670 2671 2672 2673
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2674

2675 2676 2677
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2678 2679 2680
	kfree(mcis);
	mcis = NULL;

2681 2682
	msrs_free(msrs);
	msrs = NULL;
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");