workqueue.c 106.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45 46

#include "workqueue_sched.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50 51 52 53 54 55 56 57 58 59 60 61
	/*
	 * global_cwq flags
	 *
	 * A bound gcwq is either associated or disassociated with its CPU.
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
	 * be executing on any CPU.  The gcwq behaves as an unbound one.
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62
	 * assoc_mutex of all pools on the gcwq to avoid changing binding
63 64
	 * state while create_worker() is in progress.
	 */
65 66 67 68 69
	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */

	/* pool flags */
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
70
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
71

T
Tejun Heo 已提交
72 73 74 75
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79

80
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
81
				  WORKER_CPU_INTENSIVE,
82

83
	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
84

T
Tejun Heo 已提交
85
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86

87 88 89
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

90 91 92
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
93 94 95 96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
101
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
102
};
L
Linus Torvalds 已提交
103 104

/*
T
Tejun Heo 已提交
105 106
 * Structure fields follow one of the following exclusion rules.
 *
107 108
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
109
 *
110 111 112
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
113
 * L: gcwq->lock protected.  Access with gcwq->lock held.
T
Tejun Heo 已提交
114
 *
115 116 117
 * X: During normal operation, modification requires gcwq->lock and
 *    should be done only from local cpu.  Either disabling preemption
 *    on local cpu or grabbing gcwq->lock is enough for read access.
118
 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
119
 *
120 121
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
122
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
123 124
 */

125
struct global_cwq;
126
struct worker_pool;
L
Linus Torvalds 已提交
127

128 129 130 131
/*
 * The poor guys doing the actual heavy lifting.  All on-duty workers
 * are either serving the manager role, on idle list or on busy hash.
 */
T
Tejun Heo 已提交
132
struct worker {
T
Tejun Heo 已提交
133 134 135 136 137
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};
L
Linus Torvalds 已提交
138

T
Tejun Heo 已提交
139
	struct work_struct	*current_work;	/* L: work being processed */
140
	work_func_t		current_func;	/* L: current_work's fn */
141
	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
142
	struct list_head	scheduled;	/* L: scheduled works */
T
Tejun Heo 已提交
143
	struct task_struct	*task;		/* I: worker task */
144
	struct worker_pool	*pool;		/* I: the associated pool */
145 146 147
	/* 64 bytes boundary on 64bit, 32 on 32bit */
	unsigned long		last_active;	/* L: last active timestamp */
	unsigned int		flags;		/* X: flags */
T
Tejun Heo 已提交
148
	int			id;		/* I: worker id */
149 150 151

	/* for rebinding worker to CPU */
	struct work_struct	rebind_work;	/* L: for busy worker */
T
Tejun Heo 已提交
152 153
};

154 155
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
156
	unsigned int		flags;		/* X: flags */
157 158 159

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
160 161

	/* nr_idle includes the ones off idle_list for rebinding */
162 163 164 165 166 167
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

168
	struct mutex		assoc_mutex;	/* protect GCWQ_DISASSOCIATED */
169 170 171
	struct ida		worker_ida;	/* L: for worker IDs */
};

172
/*
173 174 175
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
176 177 178 179
 */
struct global_cwq {
	spinlock_t		lock;		/* the gcwq lock */
	unsigned int		cpu;		/* I: the associated cpu */
180
	unsigned int		flags;		/* L: GCWQ_* flags */
T
Tejun Heo 已提交
181

182
	/* workers are chained either in busy_hash or pool idle_list */
183
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
T
Tejun Heo 已提交
184 185
						/* L: hash of busy workers */

186 187
	struct worker_pool	pools[NR_WORKER_POOLS];
						/* normal and highpri pools */
188 189
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
190
/*
191
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
192 193
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
194 195
 */
struct cpu_workqueue_struct {
196
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
197
	struct workqueue_struct *wq;		/* I: the owning workqueue */
198 199 200 201
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
202
	int			nr_active;	/* L: nr of active works */
203
	int			max_active;	/* L: max active works */
204
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
205
};
L
Linus Torvalds 已提交
206

207 208 209 210 211 212 213 214 215
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

216 217 218 219 220 221 222 223 224 225
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
226
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
227 228 229 230 231 232 233 234 235
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
236 237 238 239 240 241

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
242
	unsigned int		flags;		/* W: WQ_* flags */
243 244 245 246 247
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
248
	struct list_head	list;		/* W: list of all workqueues */
249 250 251 252 253 254 255 256 257

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

258
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
259 260
	struct worker		*rescuer;	/* I: rescue worker */

261
	int			nr_drainers;	/* W: drain in progress */
262
	int			saved_max_active; /* W: saved cwq max_active */
263
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
264
	struct lockdep_map	lockdep_map;
265
#endif
266
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
267 268
};

269 270
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
271
struct workqueue_struct *system_highpri_wq __read_mostly;
272
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
273
struct workqueue_struct *system_long_wq __read_mostly;
274
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
275
struct workqueue_struct *system_unbound_wq __read_mostly;
276
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
277
struct workqueue_struct *system_freezable_wq __read_mostly;
278
EXPORT_SYMBOL_GPL(system_freezable_wq);
279

280 281 282
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

283
#define for_each_worker_pool(pool, gcwq)				\
284 285
	for ((pool) = &(gcwq)->pools[0];				\
	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
286

287
#define for_each_busy_worker(worker, i, pos, gcwq)			\
288
	hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

339 340 341 342
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

343 344 345 346 347
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
383
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
419
	.debug_hint	= work_debug_hint,
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

455 456
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
457
static LIST_HEAD(workqueues);
458
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
459

460 461 462 463 464
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
465
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
466
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
467

468 469 470 471 472 473
/*
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 * workers have WORKER_UNBOUND set.
 */
static struct global_cwq unbound_global_cwq;
474 475 476
static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
};
477

T
Tejun Heo 已提交
478
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
479

480 481 482 483 484
static int worker_pool_pri(struct worker_pool *pool)
{
	return pool - pool->gcwq->pools;
}

485 486
static struct global_cwq *get_gcwq(unsigned int cpu)
{
487 488 489 490
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
491 492
}

493
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
494
{
495
	int cpu = pool->gcwq->cpu;
496
	int idx = worker_pool_pri(pool);
497

498
	if (cpu != WORK_CPU_UNBOUND)
499
		return &per_cpu(pool_nr_running, cpu)[idx];
500
	else
501
		return &unbound_pool_nr_running[idx];
502 503
}

T
Tejun Heo 已提交
504 505
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
506
{
507
	if (!(wq->flags & WQ_UNBOUND)) {
508
		if (likely(cpu < nr_cpu_ids))
509 510 511 512
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
513 514
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
530

531
/*
532 533 534
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
 * is cleared and the high bits contain OFFQ flags and CPU number.
535
 *
536 537 538 539
 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, cpu or clear
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
540
 *
541 542 543 544
 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
 * a work.  gcwq is available once the work has been queued anywhere after
 * initialization until it is sync canceled.  cwq is available only while
 * the work item is queued.
545
 *
546 547 548 549
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
550
 */
551 552
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
553
{
554
	BUG_ON(!work_pending(work));
555 556
	atomic_long_set(&work->data, data | flags | work_static(work));
}
557

558 559 560 561 562
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
563
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
564 565
}

566 567
static void set_work_cpu_and_clear_pending(struct work_struct *work,
					   unsigned int cpu)
568
{
569 570 571 572 573 574 575
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
576
	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
577
}
578

579
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
580
{
581
	smp_wmb();	/* see set_work_cpu_and_clear_pending() */
582
	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
L
Linus Torvalds 已提交
583 584
}

585
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
586
{
587
	unsigned long data = atomic_long_read(&work->data);
588

589 590 591 592
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
593 594
}

595
static struct global_cwq *get_work_gcwq(struct work_struct *work)
596
{
597
	unsigned long data = atomic_long_read(&work->data);
598 599
	unsigned int cpu;

600 601
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
602
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
603

604
	cpu = data >> WORK_OFFQ_CPU_SHIFT;
605
	if (cpu == WORK_CPU_NONE)
606 607
		return NULL;

608
	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
609
	return get_gcwq(cpu);
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
static void mark_work_canceling(struct work_struct *work)
{
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;

	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
		      WORK_STRUCT_PENDING);
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

628
/*
629 630 631
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
 * they're being called with gcwq->lock held.
632 633
 */

634
static bool __need_more_worker(struct worker_pool *pool)
635
{
636
	return !atomic_read(get_pool_nr_running(pool));
637 638
}

639
/*
640 641
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
642 643 644 645
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
646
 */
647
static bool need_more_worker(struct worker_pool *pool)
648
{
649
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
650
}
651

652
/* Can I start working?  Called from busy but !running workers. */
653
static bool may_start_working(struct worker_pool *pool)
654
{
655
	return pool->nr_idle;
656 657 658
}

/* Do I need to keep working?  Called from currently running workers. */
659
static bool keep_working(struct worker_pool *pool)
660
{
661
	atomic_t *nr_running = get_pool_nr_running(pool);
662

663
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
664 665 666
}

/* Do we need a new worker?  Called from manager. */
667
static bool need_to_create_worker(struct worker_pool *pool)
668
{
669
	return need_more_worker(pool) && !may_start_working(pool);
670
}
671

672
/* Do I need to be the manager? */
673
static bool need_to_manage_workers(struct worker_pool *pool)
674
{
675
	return need_to_create_worker(pool) ||
676
		(pool->flags & POOL_MANAGE_WORKERS);
677 678 679
}

/* Do we have too many workers and should some go away? */
680
static bool too_many_workers(struct worker_pool *pool)
681
{
682
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
683 684
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
685

686 687 688 689 690 691 692
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

693
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
694 695
}

696
/*
697 698 699
 * Wake up functions.
 */

700
/* Return the first worker.  Safe with preemption disabled */
701
static struct worker *first_worker(struct worker_pool *pool)
702
{
703
	if (unlikely(list_empty(&pool->idle_list)))
704 705
		return NULL;

706
	return list_first_entry(&pool->idle_list, struct worker, entry);
707 708 709 710
}

/**
 * wake_up_worker - wake up an idle worker
711
 * @pool: worker pool to wake worker from
712
 *
713
 * Wake up the first idle worker of @pool.
714 715 716 717
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
718
static void wake_up_worker(struct worker_pool *pool)
719
{
720
	struct worker *worker = first_worker(pool);
721 722 723 724 725

	if (likely(worker))
		wake_up_process(worker->task);
}

726
/**
727 728 729 730 731 732 733 734 735 736 737 738 739 740
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

741 742
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
		WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
743
		atomic_inc(get_pool_nr_running(worker->pool));
744
	}
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
766
	struct worker_pool *pool = worker->pool;
767
	atomic_t *nr_running = get_pool_nr_running(pool);
768

769
	if (worker->flags & WORKER_NOT_RUNNING)
770 771 772 773 774 775 776 777 778 779
		return NULL;

	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
780 781 782 783 784
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
	 * manipulating idle_list, so dereferencing idle_list without gcwq
	 * lock is safe.
785
	 */
786
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
787
		to_wakeup = first_worker(pool);
788 789 790 791 792
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
793
 * @worker: self
794 795 796
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
797 798 799
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
800
 *
801 802
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
803 804 805 806
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
807
	struct worker_pool *pool = worker->pool;
808

809 810
	WARN_ON_ONCE(worker->task != current);

811 812 813 814 815 816 817
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
818
		atomic_t *nr_running = get_pool_nr_running(pool);
819 820 821

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
822
			    !list_empty(&pool->worklist))
823
				wake_up_worker(pool);
824 825 826 827
		} else
			atomic_dec(nr_running);
	}

828 829 830 831
	worker->flags |= flags;
}

/**
832
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
833
 * @worker: self
834 835
 * @flags: flags to clear
 *
836
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
837
 *
838 839
 * CONTEXT:
 * spin_lock_irq(gcwq->lock)
840 841 842
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
843
	struct worker_pool *pool = worker->pool;
844 845
	unsigned int oflags = worker->flags;

846 847
	WARN_ON_ONCE(worker->task != current);

848
	worker->flags &= ~flags;
849

850 851 852 853 854
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
855 856
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
857
			atomic_inc(get_pool_nr_running(pool));
858 859
}

860 861 862 863 864
/**
 * find_worker_executing_work - find worker which is executing a work
 * @gcwq: gcwq of interest
 * @work: work to find worker for
 *
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
 * Find a worker which is executing @work on @gcwq by searching
 * @gcwq->busy_hash which is keyed by the address of @work.  For a worker
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
886 887 888 889 890 891 892
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
893
 */
894 895
static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
						 struct work_struct *work)
896
{
897 898 899
	struct worker *worker;
	struct hlist_node *tmp;

900 901 902 903
	hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
904 905 906
			return worker;

	return NULL;
907 908
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

950
static void cwq_activate_delayed_work(struct work_struct *work)
951
{
952
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
953 954 955 956 957 958 959

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

960 961 962 963 964 965 966 967
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

968 969 970 971 972 973 974 975 976 977 978
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
979
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
980 981 982 983 984 985 986
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

987 988 989 990 991
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1013
/**
1014
 * try_to_grab_pending - steal work item from worklist and disable irq
1015 1016
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1017
 * @flags: place to store irq state
1018 1019 1020 1021 1022 1023 1024
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1025 1026
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1027
 *
1028
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1029 1030 1031
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1032 1033 1034 1035
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1036
 * This function is safe to call from any context including IRQ handler.
1037
 */
1038 1039
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1040 1041 1042
{
	struct global_cwq *gcwq;

1043 1044
	local_irq_save(*flags);

1045 1046 1047 1048
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1049 1050 1051 1052 1053
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1054 1055 1056 1057 1058
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
	gcwq = get_work_gcwq(work);
	if (!gcwq)
1068
		goto fail;
1069

1070
	spin_lock(&gcwq->lock);
1071 1072 1073 1074 1075 1076 1077 1078 1079
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong gcwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (gcwq == get_work_gcwq(work)) {
			debug_work_deactivate(work);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

			/*
			 * A delayed work item cannot be grabbed directly
			 * because it might have linked NO_COLOR work items
			 * which, if left on the delayed_list, will confuse
			 * cwq->nr_active management later on and cause
			 * stall.  Make sure the work item is activated
			 * before grabbing.
			 */
			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
				cwq_activate_delayed_work(work);

1092 1093
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
1094
				get_work_color(work));
1095

1096
			spin_unlock(&gcwq->lock);
1097
			return 1;
1098 1099
		}
	}
1100 1101 1102 1103 1104 1105
	spin_unlock(&gcwq->lock);
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1106
	return -EAGAIN;
1107 1108
}

T
Tejun Heo 已提交
1109
/**
1110
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1111 1112 1113 1114 1115
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1116 1117
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1118 1119
 *
 * CONTEXT:
1120
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1121
 */
O
Oleg Nesterov 已提交
1122
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1123 1124
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1125
{
1126
	struct worker_pool *pool = cwq->pool;
1127

T
Tejun Heo 已提交
1128
	/* we own @work, set data and link */
1129
	set_work_cwq(work, cwq, extra_flags);
1130

1131 1132 1133 1134 1135
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1136

1137
	list_add_tail(&work->entry, head);
1138 1139 1140 1141 1142 1143 1144 1145

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1146 1147
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
		struct global_cwq *gcwq = get_gcwq(cpu);
		struct worker *worker;
		struct hlist_node *pos;
		int i;

		spin_lock_irqsave(&gcwq->lock, flags);
		for_each_busy_worker(worker, i, pos, gcwq) {
			if (worker->task != current)
				continue;
			spin_unlock_irqrestore(&gcwq->lock, flags);
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
		spin_unlock_irqrestore(&gcwq->lock, flags);
	}
	return false;
}

T
Tejun Heo 已提交
1182
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1183 1184
			 struct work_struct *work)
{
1185 1186
	struct global_cwq *gcwq;
	struct cpu_workqueue_struct *cwq;
1187
	struct list_head *worklist;
1188
	unsigned int work_flags;
1189
	unsigned int req_cpu = cpu;
1190 1191 1192 1193 1194 1195 1196 1197

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1198

1199
	debug_work_activate(work);
1200

1201
	/* if dying, only works from the same workqueue are allowed */
1202
	if (unlikely(wq->flags & WQ_DRAINING) &&
1203
	    WARN_ON_ONCE(!is_chained_work(wq)))
1204 1205
		return;

1206 1207
	/* determine gcwq to use */
	if (!(wq->flags & WQ_UNBOUND)) {
1208 1209
		struct global_cwq *last_gcwq;

1210
		if (cpu == WORK_CPU_UNBOUND)
1211 1212
			cpu = raw_smp_processor_id();

1213
		/*
1214 1215 1216 1217
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1218
		 */
1219
		gcwq = get_gcwq(cpu);
1220 1221 1222
		last_gcwq = get_work_gcwq(work);

		if (last_gcwq && last_gcwq != gcwq) {
1223 1224
			struct worker *worker;

1225
			spin_lock(&last_gcwq->lock);
1226 1227 1228 1229 1230 1231 1232

			worker = find_worker_executing_work(last_gcwq, work);

			if (worker && worker->current_cwq->wq == wq)
				gcwq = last_gcwq;
			else {
				/* meh... not running there, queue here */
1233 1234
				spin_unlock(&last_gcwq->lock);
				spin_lock(&gcwq->lock);
1235
			}
1236 1237 1238
		} else {
			spin_lock(&gcwq->lock);
		}
1239 1240
	} else {
		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1241
		spin_lock(&gcwq->lock);
1242 1243 1244 1245
	}

	/* gcwq determined, get cwq and queue */
	cwq = get_cwq(gcwq->cpu, wq);
1246
	trace_workqueue_queue_work(req_cpu, cwq, work);
1247

1248
	if (WARN_ON(!list_empty(&work->entry))) {
1249
		spin_unlock(&gcwq->lock);
1250 1251
		return;
	}
1252

1253
	cwq->nr_in_flight[cwq->work_color]++;
1254
	work_flags = work_color_to_flags(cwq->work_color);
1255 1256

	if (likely(cwq->nr_active < cwq->max_active)) {
1257
		trace_workqueue_activate_work(work);
1258
		cwq->nr_active++;
1259
		worklist = &cwq->pool->worklist;
1260 1261
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1262
		worklist = &cwq->delayed_works;
1263
	}
1264

1265
	insert_work(cwq, work, worklist, work_flags);
1266

1267
	spin_unlock(&gcwq->lock);
L
Linus Torvalds 已提交
1268 1269
}

1270
/**
1271 1272
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1273 1274 1275
 * @wq: workqueue to use
 * @work: work to queue
 *
1276
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1277
 *
1278 1279
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1280
 */
1281 1282
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1283
{
1284
	bool ret = false;
1285
	unsigned long flags;
1286

1287
	local_irq_save(flags);
1288

1289
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1290
		__queue_work(cpu, wq, work);
1291
		ret = true;
1292
	}
1293

1294
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1295 1296
	return ret;
}
1297
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1298

1299
/**
1300
 * queue_work - queue work on a workqueue
1301 1302 1303
 * @wq: workqueue to use
 * @work: work to queue
 *
1304
 * Returns %false if @work was already on a queue, %true otherwise.
1305
 *
1306 1307
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1308
 */
1309
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1310
{
1311
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1312
}
1313
EXPORT_SYMBOL_GPL(queue_work);
1314

1315
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1316
{
1317
	struct delayed_work *dwork = (struct delayed_work *)__data;
1318
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1319

1320
	/* should have been called from irqsafe timer with irq already off */
1321
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1322
}
1323
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1324

1325 1326
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1327
{
1328 1329 1330 1331 1332 1333
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1334 1335
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1348
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1349

1350 1351 1352 1353 1354 1355 1356 1357
	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
	 * work's gcwq is preserved to allow reentrance detection for
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
		struct global_cwq *gcwq = get_work_gcwq(work);

1358 1359 1360 1361 1362 1363 1364
		/*
		 * If we cannot get the last gcwq from @work directly,
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
		if (gcwq)
1365
			lcpu = gcwq->cpu;
1366
		if (lcpu == WORK_CPU_UNBOUND)
1367 1368 1369 1370 1371 1372 1373
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1374
	dwork->cpu = cpu;
1375 1376 1377 1378 1379 1380
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1381 1382
}

1383 1384 1385 1386
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1387
 * @dwork: work to queue
1388 1389
 * @delay: number of jiffies to wait before queueing
 *
1390 1391 1392
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1393
 */
1394 1395
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1396
{
1397
	struct work_struct *work = &dwork->work;
1398
	bool ret = false;
1399
	unsigned long flags;
1400

1401 1402
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1403

1404
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1405
		__queue_delayed_work(cpu, wq, dwork, delay);
1406
		ret = true;
1407
	}
1408

1409
	local_irq_restore(flags);
1410 1411
	return ret;
}
1412
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1413

1414 1415 1416 1417 1418 1419
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1420
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1421
 */
1422
bool queue_delayed_work(struct workqueue_struct *wq,
1423 1424
			struct delayed_work *dwork, unsigned long delay)
{
1425
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1426 1427
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1444
 * This function is safe to call from any context including IRQ handler.
1445 1446 1447 1448 1449 1450 1451
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1452

1453 1454 1455
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1456

1457 1458 1459
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1460
	}
1461 1462

	/* -ENOENT from try_to_grab_pending() becomes %true */
1463 1464
	return ret;
}
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1481

T
Tejun Heo 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1493
{
1494 1495
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1496 1497 1498 1499 1500

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1501 1502
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1503
	pool->nr_idle++;
1504
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1505 1506

	/* idle_list is LIFO */
1507
	list_add(&worker->entry, &pool->idle_list);
1508

1509 1510
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1511

1512
	/*
1513 1514 1515 1516
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1517
	 */
1518
	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1519
		     pool->nr_workers == pool->nr_idle &&
1520
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock).
 */
static void worker_leave_idle(struct worker *worker)
{
1534
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1535 1536

	BUG_ON(!(worker->flags & WORKER_IDLE));
1537
	worker_clr_flags(worker, WORKER_IDLE);
1538
	pool->nr_idle--;
T
Tejun Heo 已提交
1539 1540 1541
	list_del_init(&worker->entry);
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1558 1559 1560 1561 1562
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
 * binding against %GCWQ_DISASSOCIATED which is set during
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
 *
 * CONTEXT:
 * Might sleep.  Called without any lock but returns with gcwq->lock
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1573
__acquires(&gcwq->lock)
1574
{
1575
	struct global_cwq *gcwq = worker->pool->gcwq;
1576 1577 1578
	struct task_struct *task = worker->task;

	while (true) {
1579
		/*
1580 1581 1582 1583
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
		 * against GCWQ_DISASSOCIATED.
1584
		 */
1585 1586
		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

		spin_lock_irq(&gcwq->lock);
		if (gcwq->flags & GCWQ_DISASSOCIATED)
			return false;
		if (task_cpu(task) == gcwq->cpu &&
		    cpumask_equal(&current->cpus_allowed,
				  get_cpu_mask(gcwq->cpu)))
			return true;
		spin_unlock_irq(&gcwq->lock);

1597 1598 1599 1600 1601 1602
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1603
		cpu_relax();
1604
		cond_resched();
1605 1606 1607
	}
}

1608
/*
1609
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1610
 * list_empty(@worker->entry) before leaving idle and call this function.
1611 1612 1613 1614 1615
 */
static void idle_worker_rebind(struct worker *worker)
{
	struct global_cwq *gcwq = worker->pool->gcwq;

1616 1617 1618
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1619

1620 1621 1622
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
	spin_unlock_irq(&gcwq->lock);
1623 1624
}

1625
/*
1626
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1627 1628 1629
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1630
 */
1631
static void busy_worker_rebind_fn(struct work_struct *work)
1632 1633
{
	struct worker *worker = container_of(work, struct worker, rebind_work);
1634
	struct global_cwq *gcwq = worker->pool->gcwq;
1635

1636 1637
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1638 1639 1640 1641

	spin_unlock_irq(&gcwq->lock);
}

1642 1643 1644 1645 1646 1647 1648
/**
 * rebind_workers - rebind all workers of a gcwq to the associated CPU
 * @gcwq: gcwq of interest
 *
 * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
 * is different for idle and busy ones.
 *
1649 1650 1651 1652
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1653
 *
1654 1655 1656 1657
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1658
 *
1659 1660 1661 1662
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1663 1664 1665 1666
 */
static void rebind_workers(struct global_cwq *gcwq)
{
	struct worker_pool *pool;
1667
	struct worker *worker, *n;
1668 1669 1670 1671 1672 1673
	struct hlist_node *pos;
	int i;

	lockdep_assert_held(&gcwq->lock);

	for_each_worker_pool(pool, gcwq)
1674
		lockdep_assert_held(&pool->assoc_mutex);
1675

1676
	/* dequeue and kick idle ones */
1677
	for_each_worker_pool(pool, gcwq) {
1678 1679 1680 1681 1682 1683 1684
		list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
			/*
			 * idle workers should be off @pool->idle_list
			 * until rebind is complete to avoid receiving
			 * premature local wake-ups.
			 */
			list_del_init(&worker->entry);
1685

1686 1687 1688 1689
			/*
			 * worker_thread() will see the above dequeuing
			 * and call idle_worker_rebind().
			 */
1690 1691 1692 1693
			wake_up_process(worker->task);
		}
	}

1694
	/* rebind busy workers */
1695 1696
	for_each_busy_worker(worker, i, pos, gcwq) {
		struct work_struct *rebind_work = &worker->rebind_work;
1697
		struct workqueue_struct *wq;
1698 1699 1700 1701 1702 1703

		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;

		debug_work_activate(rebind_work);
1704

1705 1706 1707 1708 1709 1710 1711 1712
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;
1713

1714 1715 1716
		insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
			worker->scheduled.next,
			work_color_to_flags(WORK_NO_COLOR));
1717
	}
1718 1719
}

T
Tejun Heo 已提交
1720 1721 1722 1723 1724
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1725 1726
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1727
		INIT_LIST_HEAD(&worker->scheduled);
1728
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1729 1730
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1731
	}
T
Tejun Heo 已提交
1732 1733 1734 1735 1736
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1737
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1738
 *
1739
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1749
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1750
{
1751
	struct global_cwq *gcwq = pool->gcwq;
1752
	const char *pri = worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1753
	struct worker *worker = NULL;
1754
	int id = -1;
T
Tejun Heo 已提交
1755

1756
	spin_lock_irq(&gcwq->lock);
1757
	while (ida_get_new(&pool->worker_ida, &id)) {
1758
		spin_unlock_irq(&gcwq->lock);
1759
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1760
			goto fail;
1761
		spin_lock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1762
	}
1763
	spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1764 1765 1766 1767 1768

	worker = alloc_worker();
	if (!worker)
		goto fail;

1769
	worker->pool = pool;
T
Tejun Heo 已提交
1770 1771
	worker->id = id;

1772
	if (gcwq->cpu != WORK_CPU_UNBOUND)
1773
		worker->task = kthread_create_on_node(worker_thread,
1774 1775
					worker, cpu_to_node(gcwq->cpu),
					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1776 1777
	else
		worker->task = kthread_create(worker_thread, worker,
1778
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1779 1780 1781
	if (IS_ERR(worker->task))
		goto fail;

1782 1783 1784
	if (worker_pool_pri(pool))
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1785
	/*
1786 1787 1788 1789 1790 1791 1792
	 * Determine CPU binding of the new worker depending on
	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1793
	 */
1794
	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1795
		kthread_bind(worker->task, gcwq->cpu);
1796
	} else {
1797
		worker->task->flags |= PF_THREAD_BOUND;
1798
		worker->flags |= WORKER_UNBOUND;
1799
	}
T
Tejun Heo 已提交
1800 1801 1802 1803

	return worker;
fail:
	if (id >= 0) {
1804
		spin_lock_irq(&gcwq->lock);
1805
		ida_remove(&pool->worker_ida, id);
1806
		spin_unlock_irq(&gcwq->lock);
T
Tejun Heo 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1816
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1817 1818
 *
 * CONTEXT:
1819
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
1820 1821 1822
 */
static void start_worker(struct worker *worker)
{
1823
	worker->flags |= WORKER_STARTED;
1824
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1825
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1826 1827 1828 1829 1830 1831 1832
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1833 1834 1835 1836
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1837 1838 1839
 */
static void destroy_worker(struct worker *worker)
{
1840 1841
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
T
Tejun Heo 已提交
1842 1843 1844 1845
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1846
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1847

T
Tejun Heo 已提交
1848
	if (worker->flags & WORKER_STARTED)
1849
		pool->nr_workers--;
T
Tejun Heo 已提交
1850
	if (worker->flags & WORKER_IDLE)
1851
		pool->nr_idle--;
T
Tejun Heo 已提交
1852 1853

	list_del_init(&worker->entry);
1854
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1855 1856 1857

	spin_unlock_irq(&gcwq->lock);

T
Tejun Heo 已提交
1858 1859 1860
	kthread_stop(worker->task);
	kfree(worker);

1861
	spin_lock_irq(&gcwq->lock);
1862
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1863 1864
}

1865
static void idle_worker_timeout(unsigned long __pool)
1866
{
1867 1868
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1869 1870 1871

	spin_lock_irq(&gcwq->lock);

1872
	if (too_many_workers(pool)) {
1873 1874 1875 1876
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1877
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1878 1879 1880
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1881
			mod_timer(&pool->idle_timer, expires);
1882 1883
		else {
			/* it's been idle for too long, wake up manager */
1884
			pool->flags |= POOL_MANAGE_WORKERS;
1885
			wake_up_worker(pool);
1886
		}
1887 1888 1889 1890
	}

	spin_unlock_irq(&gcwq->lock);
}
1891

1892 1893 1894 1895
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1896
	unsigned int cpu;
1897 1898 1899 1900 1901

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1902
	cpu = cwq->pool->gcwq->cpu;
1903 1904 1905
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1906
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1907 1908 1909 1910
		wake_up_process(wq->rescuer->task);
	return true;
}

1911
static void gcwq_mayday_timeout(unsigned long __pool)
1912
{
1913 1914
	struct worker_pool *pool = (void *)__pool;
	struct global_cwq *gcwq = pool->gcwq;
1915 1916 1917 1918
	struct work_struct *work;

	spin_lock_irq(&gcwq->lock);

1919
	if (need_to_create_worker(pool)) {
1920 1921 1922 1923 1924 1925
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1926
		list_for_each_entry(work, &pool->worklist, entry)
1927
			send_mayday(work);
L
Linus Torvalds 已提交
1928
	}
1929 1930 1931

	spin_unlock_irq(&gcwq->lock);

1932
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1933 1934
}

1935 1936
/**
 * maybe_create_worker - create a new worker if necessary
1937
 * @pool: pool to create a new worker for
1938
 *
1939
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1940 1941
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1942
 * sent to all rescuers with works scheduled on @pool to resolve
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
1957
static bool maybe_create_worker(struct worker_pool *pool)
1958 1959
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
L
Linus Torvalds 已提交
1960
{
1961 1962 1963
	struct global_cwq *gcwq = pool->gcwq;

	if (!need_to_create_worker(pool))
1964 1965
		return false;
restart:
1966 1967
	spin_unlock_irq(&gcwq->lock);

1968
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1969
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1970 1971 1972 1973

	while (true) {
		struct worker *worker;

1974
		worker = create_worker(pool);
1975
		if (worker) {
1976
			del_timer_sync(&pool->mayday_timer);
1977 1978
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
1979
			BUG_ON(need_to_create_worker(pool));
1980 1981 1982
			return true;
		}

1983
		if (!need_to_create_worker(pool))
1984
			break;
L
Linus Torvalds 已提交
1985

1986 1987
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1988

1989
		if (!need_to_create_worker(pool))
1990 1991 1992
			break;
	}

1993
	del_timer_sync(&pool->mayday_timer);
1994
	spin_lock_irq(&gcwq->lock);
1995
	if (need_to_create_worker(pool))
1996 1997 1998 1999 2000 2001
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2002
 * @pool: pool to destroy workers for
2003
 *
2004
 * Destroy @pool workers which have been idle for longer than
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Called only from manager.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true
 * otherwise.
 */
2015
static bool maybe_destroy_workers(struct worker_pool *pool)
2016 2017
{
	bool ret = false;
L
Linus Torvalds 已提交
2018

2019
	while (too_many_workers(pool)) {
2020 2021
		struct worker *worker;
		unsigned long expires;
2022

2023
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2024
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2025

2026
		if (time_before(jiffies, expires)) {
2027
			mod_timer(&pool->idle_timer, expires);
2028
			break;
2029
		}
L
Linus Torvalds 已提交
2030

2031 2032
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2033
	}
2034

2035
	return ret;
2036 2037
}

2038
/**
2039 2040
 * manage_workers - manage worker pool
 * @worker: self
2041
 *
2042 2043 2044 2045 2046 2047 2048
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2049 2050
 *
 * CONTEXT:
2051 2052 2053 2054 2055 2056
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * false if no action was taken and gcwq->lock stayed locked, true if
 * some action was taken.
2057
 */
2058
static bool manage_workers(struct worker *worker)
2059
{
2060
	struct worker_pool *pool = worker->pool;
2061
	bool ret = false;
2062

2063
	if (pool->flags & POOL_MANAGING_WORKERS)
2064
		return ret;
2065

2066
	pool->flags |= POOL_MANAGING_WORKERS;
2067

2068 2069 2070 2071 2072 2073
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2074
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2075 2076
	 * manager against CPU hotplug.
	 *
2077
	 * assoc_mutex would always be free unless CPU hotplug is in
2078 2079
	 * progress.  trylock first without dropping @gcwq->lock.
	 */
2080
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2081
		spin_unlock_irq(&pool->gcwq->lock);
2082
		mutex_lock(&pool->assoc_mutex);
2083 2084
		/*
		 * CPU hotplug could have happened while we were waiting
2085
		 * for assoc_mutex.  Hotplug itself can't handle us
2086 2087 2088
		 * because manager isn't either on idle or busy list, and
		 * @gcwq's state and ours could have deviated.
		 *
2089
		 * As hotplug is now excluded via assoc_mutex, we can
2090 2091 2092 2093 2094 2095 2096 2097
		 * simply try to bind.  It will succeed or fail depending
		 * on @gcwq's current state.  Try it and adjust
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2098

2099 2100
		ret = true;
	}
2101

2102
	pool->flags &= ~POOL_MANAGE_WORKERS;
2103 2104

	/*
2105 2106
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2107
	 */
2108 2109
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2110

2111
	pool->flags &= ~POOL_MANAGING_WORKERS;
2112
	mutex_unlock(&pool->assoc_mutex);
2113
	return ret;
2114 2115
}

2116 2117
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2118
 * @worker: self
2119 2120 2121 2122 2123 2124 2125 2126 2127
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2128
 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2129
 */
T
Tejun Heo 已提交
2130
static void process_one_work(struct worker *worker, struct work_struct *work)
2131 2132
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
2133
{
2134
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2135 2136
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
2137
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2138
	int work_color;
2139
	struct worker *collision;
2140 2141 2142 2143 2144 2145 2146 2147
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2148 2149 2150
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2151
#endif
2152 2153 2154 2155 2156
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
	 * unbound or a disassociated gcwq.
	 */
2157
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2158
		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2159 2160
		     raw_smp_processor_id() != gcwq->cpu);

2161 2162 2163 2164 2165 2166
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2167
	collision = find_worker_executing_work(gcwq, work);
2168 2169 2170 2171 2172
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2173
	/* claim and dequeue */
2174
	debug_work_deactivate(work);
2175
	hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)worker);
T
Tejun Heo 已提交
2176
	worker->current_work = work;
2177
	worker->current_func = work->func;
2178
	worker->current_cwq = cwq;
2179
	work_color = get_work_color(work);
2180

2181 2182
	list_del_init(&work->entry);

2183 2184 2185 2186 2187 2188 2189
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2190 2191 2192 2193
	/*
	 * Unbound gcwq isn't concurrency managed and work items should be
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2194 2195
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2196

2197
	/*
2198 2199 2200 2201
	 * Record the last CPU and clear PENDING which should be the last
	 * update to @work.  Also, do this inside @gcwq->lock so that
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2202 2203
	 */
	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2204

2205
	spin_unlock_irq(&gcwq->lock);
2206

2207
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2208
	lock_map_acquire(&lockdep_map);
2209
	trace_workqueue_execute_start(work);
2210
	worker->current_func(work);
2211 2212 2213 2214 2215
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2216 2217 2218 2219
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2220 2221
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2222 2223
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2224 2225 2226 2227
		debug_show_held_locks(current);
		dump_stack();
	}

2228
	spin_lock_irq(&gcwq->lock);
2229

2230 2231 2232 2233
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2234
	/* we're done with it, release */
2235
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2236
	worker->current_work = NULL;
2237
	worker->current_func = NULL;
2238
	worker->current_cwq = NULL;
2239
	cwq_dec_nr_in_flight(cwq, work_color);
2240 2241
}

2242 2243 2244 2245 2246 2247 2248 2249 2250
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2251
 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2252 2253 2254
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2255
{
2256 2257
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2258
						struct work_struct, entry);
T
Tejun Heo 已提交
2259
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2260 2261 2262
	}
}

T
Tejun Heo 已提交
2263 2264
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2265
 * @__worker: self
T
Tejun Heo 已提交
2266
 *
2267 2268 2269 2270 2271
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2272
 */
T
Tejun Heo 已提交
2273
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2274
{
T
Tejun Heo 已提交
2275
	struct worker *worker = __worker;
2276 2277
	struct worker_pool *pool = worker->pool;
	struct global_cwq *gcwq = pool->gcwq;
L
Linus Torvalds 已提交
2278

2279 2280
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2281 2282
woke_up:
	spin_lock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2283

2284 2285
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
T
Tejun Heo 已提交
2286
		spin_unlock_irq(&gcwq->lock);
2287

2288
		/* if DIE is set, destruction is requested */
2289 2290 2291 2292 2293
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2294
		/* otherwise, rebind */
2295 2296
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2297
	}
2298

T
Tejun Heo 已提交
2299
	worker_leave_idle(worker);
2300
recheck:
2301
	/* no more worker necessary? */
2302
	if (!need_more_worker(pool))
2303 2304 2305
		goto sleep;

	/* do we need to manage? */
2306
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2307 2308
		goto recheck;

T
Tejun Heo 已提交
2309 2310 2311 2312 2313 2314 2315
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2316 2317 2318 2319 2320 2321 2322 2323
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2324
		struct work_struct *work =
2325
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2326 2327 2328 2329 2330 2331
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2332
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2333 2334 2335
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2336
		}
2337
	} while (keep_working(pool));
2338 2339

	worker_set_flags(worker, WORKER_PREP, false);
2340
sleep:
2341
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2342
		goto recheck;
2343

T
Tejun Heo 已提交
2344
	/*
2345 2346 2347 2348 2349
	 * gcwq->lock is held and there's no work to process and no
	 * need to manage, sleep.  Workers are woken up only while
	 * holding gcwq->lock or from local cpu, so setting the
	 * current state before releasing gcwq->lock is enough to
	 * prevent losing any event.
T
Tejun Heo 已提交
2350 2351 2352 2353 2354 2355
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
	spin_unlock_irq(&gcwq->lock);
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2356 2357
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
/**
 * rescuer_thread - the rescuer thread function
 * @__wq: the associated workqueue
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
static int rescuer_thread(void *__wq)
{
	struct workqueue_struct *wq = __wq;
	struct worker *rescuer = wq->rescuer;
	struct list_head *scheduled = &rescuer->scheduled;
2382
	bool is_unbound = wq->flags & WQ_UNBOUND;
2383 2384 2385 2386 2387 2388
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2389 2390
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2391
		return 0;
2392
	}
2393

2394 2395 2396 2397
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2398
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2399 2400
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2401 2402
		struct worker_pool *pool = cwq->pool;
		struct global_cwq *gcwq = pool->gcwq;
2403 2404 2405
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2406
		mayday_clear_cpu(cpu, wq->mayday_mask);
2407 2408

		/* migrate to the target cpu if possible */
2409
		rescuer->pool = pool;
2410 2411 2412 2413 2414 2415 2416
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2417
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2418 2419 2420 2421
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2422 2423 2424 2425 2426 2427

		/*
		 * Leave this gcwq.  If keep_working() is %true, notify a
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2428 2429
		if (keep_working(pool))
			wake_up_worker(pool);
2430

2431 2432 2433 2434 2435
		spin_unlock_irq(&gcwq->lock);
	}

	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2436 2437
}

O
Oleg Nesterov 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2449 2450 2451 2452
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2453 2454
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2455
 *
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2469 2470
 *
 * CONTEXT:
2471
 * spin_lock_irq(gcwq->lock).
T
Tejun Heo 已提交
2472
 */
2473
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2474 2475
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2476
{
2477 2478 2479
	struct list_head *head;
	unsigned int linked = 0;

2480
	/*
2481
	 * debugobject calls are safe here even with gcwq->lock locked
2482 2483 2484 2485
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2486
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2487
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2488
	init_completion(&barr->done);
2489

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2505
	debug_work_activate(&barr->work);
2506 2507
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2508 2509
}

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2543
{
2544 2545
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2546

2547 2548 2549
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2550
	}
2551

2552
	for_each_cwq_cpu(cpu, wq) {
2553
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2554
		struct global_cwq *gcwq = cwq->pool->gcwq;
O
Oleg Nesterov 已提交
2555

2556
		spin_lock_irq(&gcwq->lock);
2557

2558 2559
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2560

2561 2562 2563 2564 2565 2566
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2567

2568 2569 2570 2571
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2572

2573
		spin_unlock_irq(&gcwq->lock);
L
Linus Torvalds 已提交
2574
	}
2575

2576 2577
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2578

2579
	return wait;
L
Linus Torvalds 已提交
2580 2581
}

2582
/**
L
Linus Torvalds 已提交
2583
 * flush_workqueue - ensure that any scheduled work has run to completion.
2584
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2585 2586 2587 2588
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2589 2590
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2591
 */
2592
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2593
{
2594 2595 2596 2597 2598 2599
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2600

2601 2602
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2664 2665 2666 2667
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2735
}
2736
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2737

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2768
		bool drained;
2769

2770
		spin_lock_irq(&cwq->pool->gcwq->lock);
2771
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2772
		spin_unlock_irq(&cwq->pool->gcwq->lock);
2773 2774

		if (drained)
2775 2776 2777 2778
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2779 2780
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2791
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2792
{
2793
	struct worker *worker = NULL;
2794
	struct global_cwq *gcwq;
2795 2796 2797
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2798 2799
	gcwq = get_work_gcwq(work);
	if (!gcwq)
2800
		return false;
2801

2802
	spin_lock_irq(&gcwq->lock);
2803 2804 2805
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2806 2807
		 * If it was re-queued to a different gcwq under us, we
		 * are not going to wait.
2808 2809
		 */
		smp_rmb();
2810
		cwq = get_work_cwq(work);
2811
		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
T
Tejun Heo 已提交
2812
			goto already_gone;
2813
	} else {
2814
		worker = find_worker_executing_work(gcwq, work);
2815
		if (!worker)
T
Tejun Heo 已提交
2816
			goto already_gone;
2817
		cwq = worker->current_cwq;
2818
	}
2819

2820
	insert_wq_barrier(cwq, barr, work, worker);
2821
	spin_unlock_irq(&gcwq->lock);
2822

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2833
	lock_map_release(&cwq->wq->lockdep_map);
2834

2835
	return true;
T
Tejun Heo 已提交
2836
already_gone:
2837
	spin_unlock_irq(&gcwq->lock);
2838
	return false;
2839
}
2840 2841 2842 2843 2844

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2845 2846
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2847 2848 2849 2850 2851 2852 2853 2854 2855
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2856 2857 2858
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2859
	if (start_flush_work(work, &barr)) {
2860 2861 2862
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2863
	} else {
2864
		return false;
2865 2866
	}
}
2867
EXPORT_SYMBOL_GPL(flush_work);
2868

2869
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2870
{
2871
	unsigned long flags;
2872 2873 2874
	int ret;

	do {
2875 2876 2877 2878 2879 2880
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2881
			flush_work(work);
2882 2883
	} while (unlikely(ret < 0));

2884 2885 2886 2887
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2888
	flush_work(work);
2889
	clear_work_data(work);
2890 2891 2892
	return ret;
}

2893
/**
2894 2895
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2896
 *
2897 2898 2899 2900
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2901
 *
2902 2903
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2904
 *
2905
 * The caller must ensure that the workqueue on which @work was last
2906
 * queued can't be destroyed before this function returns.
2907 2908 2909
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2910
 */
2911
bool cancel_work_sync(struct work_struct *work)
2912
{
2913
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2914
}
2915
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2916

2917
/**
2918 2919
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2920
 *
2921 2922 2923
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2924
 *
2925 2926 2927
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2928
 */
2929 2930
bool flush_delayed_work(struct delayed_work *dwork)
{
2931
	local_irq_disable();
2932
	if (del_timer_sync(&dwork->timer))
2933
		__queue_work(dwork->cpu,
2934
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2935
	local_irq_enable();
2936 2937 2938 2939
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2940
/**
2941 2942
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2943
 *
2944 2945 2946 2947 2948
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2949
 *
2950
 * This function is safe to call from any context including IRQ handler.
2951
 */
2952
bool cancel_delayed_work(struct delayed_work *dwork)
2953
{
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
	local_irq_restore(flags);
2966
	return ret;
2967
}
2968
EXPORT_SYMBOL(cancel_delayed_work);
2969

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2980
{
2981
	return __cancel_work_timer(&dwork->work, true);
2982
}
2983
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2984

2985
/**
2986 2987 2988 2989 2990 2991
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2992
bool schedule_work_on(int cpu, struct work_struct *work)
2993
{
2994
	return queue_work_on(cpu, system_wq, work);
2995 2996 2997
}
EXPORT_SYMBOL(schedule_work_on);

2998 2999 3000 3001
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3002 3003
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3004 3005 3006 3007
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3008
 */
3009
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3010
{
3011
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3012
}
3013
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3014

3015 3016 3017
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3018
 * @dwork: job to be done
3019 3020 3021 3022 3023
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3024 3025
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3026
{
3027
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3028
}
3029
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3030

3031 3032
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3033 3034
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3035 3036 3037 3038
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3039
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3040
{
3041
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3042
}
3043
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3044

3045
/**
3046
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3047 3048
 * @func: the function to call
 *
3049 3050
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3051
 * schedule_on_each_cpu() is very slow.
3052 3053 3054
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3055
 */
3056
int schedule_on_each_cpu(work_func_t func)
3057 3058
{
	int cpu;
3059
	struct work_struct __percpu *works;
3060

3061 3062
	works = alloc_percpu(struct work_struct);
	if (!works)
3063
		return -ENOMEM;
3064

3065 3066
	get_online_cpus();

3067
	for_each_online_cpu(cpu) {
3068 3069 3070
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3071
		schedule_work_on(cpu, work);
3072
	}
3073 3074 3075 3076

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3077
	put_online_cpus();
3078
	free_percpu(works);
3079 3080 3081
	return 0;
}

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3106 3107
void flush_scheduled_work(void)
{
3108
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3109
}
3110
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3111

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3124
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3125 3126
{
	if (!in_interrupt()) {
3127
		fn(&ew->work);
3128 3129 3130
		return 0;
	}

3131
	INIT_WORK(&ew->work, fn);
3132 3133 3134 3135 3136 3137
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3138 3139
int keventd_up(void)
{
3140
	return system_wq != NULL;
L
Linus Torvalds 已提交
3141 3142
}

3143
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3144
{
3145
	/*
T
Tejun Heo 已提交
3146 3147 3148
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3149
	 */
T
Tejun Heo 已提交
3150 3151 3152
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3153

3154
	if (!(wq->flags & WQ_UNBOUND))
3155
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3156
	else {
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3169
	}
3170

3171
	/* just in case, make sure it's actually aligned */
3172 3173
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3174 3175
}

3176
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3177
{
3178
	if (!(wq->flags & WQ_UNBOUND))
3179 3180 3181
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3182
		kfree(*(void **)(wq->cpu_wq.single + 1));
3183
	}
T
Tejun Heo 已提交
3184 3185
}

3186 3187
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3188
{
3189 3190 3191
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3192 3193
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3194

3195
	return clamp_val(max_active, 1, lim);
3196 3197
}

3198
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3199 3200 3201
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3202
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3203
{
3204
	va_list args, args1;
L
Linus Torvalds 已提交
3205
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3206
	unsigned int cpu;
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3221

3222 3223 3224 3225 3226 3227 3228
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3229
	max_active = max_active ?: WQ_DFL_ACTIVE;
3230
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3231

3232
	/* init wq */
3233
	wq->flags = flags;
3234
	wq->saved_max_active = max_active;
3235 3236 3237 3238
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3239

3240
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3241
	INIT_LIST_HEAD(&wq->list);
3242

3243 3244 3245
	if (alloc_cwqs(wq) < 0)
		goto err;

3246
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3247
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3248
		struct global_cwq *gcwq = get_gcwq(cpu);
3249
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3250

T
Tejun Heo 已提交
3251
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3252
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3253
		cwq->wq = wq;
3254
		cwq->flush_color = -1;
3255 3256
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3257
	}
T
Tejun Heo 已提交
3258

3259 3260 3261
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3262
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3263 3264 3265 3266 3267 3268
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3269 3270
		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
					       wq->name);
3271 3272 3273 3274 3275
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3276 3277
	}

3278 3279 3280 3281 3282
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3283
	spin_lock(&workqueue_lock);
3284

3285
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3286
		for_each_cwq_cpu(cpu, wq)
3287 3288
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3289
	list_add(&wq->list, &workqueues);
3290

T
Tejun Heo 已提交
3291 3292
	spin_unlock(&workqueue_lock);

3293
	return wq;
T
Tejun Heo 已提交
3294 3295
err:
	if (wq) {
3296
		free_cwqs(wq);
3297
		free_mayday_mask(wq->mayday_mask);
3298
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3299 3300 3301
		kfree(wq);
	}
	return NULL;
3302
}
3303
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3304

3305 3306 3307 3308 3309 3310 3311 3312
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3313
	unsigned int cpu;
3314

3315 3316
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3317

3318 3319 3320 3321
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3322
	spin_lock(&workqueue_lock);
3323
	list_del(&wq->list);
3324
	spin_unlock(&workqueue_lock);
3325

3326
	/* sanity check */
3327
	for_each_cwq_cpu(cpu, wq) {
3328 3329 3330 3331 3332
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3333 3334
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3335
	}
3336

3337 3338
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3339
		free_mayday_mask(wq->mayday_mask);
3340
		kfree(wq->rescuer);
3341 3342
	}

3343
	free_cwqs(wq);
3344 3345 3346 3347
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
 * spin_lock_irq(gcwq->lock).
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3382
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3383 3384 3385 3386 3387

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3388
	for_each_cwq_cpu(cpu, wq) {
3389 3390 3391 3392
		struct global_cwq *gcwq = get_gcwq(cpu);

		spin_lock_irq(&gcwq->lock);

3393
		if (!(wq->flags & WQ_FREEZABLE) ||
3394
		    !(gcwq->flags & GCWQ_FREEZING))
3395
			cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
3396

3397
		spin_unlock_irq(&gcwq->lock);
3398
	}
3399

3400
	spin_unlock(&workqueue_lock);
3401
}
3402
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3403

3404
/**
3405 3406 3407
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3408
 *
3409 3410 3411
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3412
 *
3413 3414
 * RETURNS:
 * %true if congested, %false otherwise.
3415
 */
3416
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3417
{
3418 3419 3420
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3421
}
3422
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3423

3424
/**
3425 3426
 * work_cpu - return the last known associated cpu for @work
 * @work: the work of interest
3427
 *
3428
 * RETURNS:
3429
 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3430
 */
3431
unsigned int work_cpu(struct work_struct *work)
3432
{
3433
	struct global_cwq *gcwq = get_work_gcwq(work);
3434

3435
	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3436
}
3437
EXPORT_SYMBOL_GPL(work_cpu);
3438

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3453
{
3454 3455 3456
	struct global_cwq *gcwq = get_work_gcwq(work);
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3457

3458
	if (!gcwq)
3459
		return 0;
L
Linus Torvalds 已提交
3460

3461
	spin_lock_irqsave(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3462

3463 3464 3465 3466
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
	if (find_worker_executing_work(gcwq, work))
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3467

3468
	spin_unlock_irqrestore(&gcwq->lock, flags);
L
Linus Torvalds 已提交
3469

3470
	return ret;
L
Linus Torvalds 已提交
3471
}
3472
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3473

3474 3475 3476
/*
 * CPU hotplug.
 *
3477 3478 3479 3480 3481 3482 3483
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
 * gcwqs serve mix of short, long and very long running works making
 * blocked draining impractical.
 *
3484 3485 3486
 * This is solved by allowing a gcwq to be disassociated from the CPU
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3487
 */
L
Linus Torvalds 已提交
3488

3489
/* claim manager positions of all pools */
3490
static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3491 3492 3493 3494
{
	struct worker_pool *pool;

	for_each_worker_pool(pool, gcwq)
3495
		mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
T
Tejun Heo 已提交
3496
	spin_lock_irq(&gcwq->lock);
3497 3498 3499
}

/* release manager positions */
3500
static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3501 3502 3503
{
	struct worker_pool *pool;

T
Tejun Heo 已提交
3504
	spin_unlock_irq(&gcwq->lock);
3505
	for_each_worker_pool(pool, gcwq)
3506
		mutex_unlock(&pool->assoc_mutex);
3507 3508
}

3509
static void gcwq_unbind_fn(struct work_struct *work)
3510
{
3511
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3512
	struct worker_pool *pool;
3513 3514 3515
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3516

3517 3518
	BUG_ON(gcwq->cpu != smp_processor_id());

3519
	gcwq_claim_assoc_and_lock(gcwq);
3520

3521 3522 3523 3524 3525 3526
	/*
	 * We've claimed all manager positions.  Make all workers unbound
	 * and set DISASSOCIATED.  Before this, all workers except for the
	 * ones which are still executing works from before the last CPU
	 * down must be on the cpu.  After this, they may become diasporas.
	 */
3527
	for_each_worker_pool(pool, gcwq)
3528
		list_for_each_entry(worker, &pool->idle_list, entry)
3529
			worker->flags |= WORKER_UNBOUND;
3530

3531
	for_each_busy_worker(worker, i, pos, gcwq)
3532
		worker->flags |= WORKER_UNBOUND;
3533

3534 3535
	gcwq->flags |= GCWQ_DISASSOCIATED;

3536
	gcwq_release_assoc_and_unlock(gcwq);
3537

3538
	/*
3539
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3540 3541
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3542 3543
	 */
	schedule();
3544

3545
	/*
3546 3547 3548 3549 3550 3551 3552 3553 3554
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3555
	 */
3556 3557
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3558 3559
}

T
Tejun Heo 已提交
3560 3561 3562 3563
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3564
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3565 3566
					       unsigned long action,
					       void *hcpu)
3567 3568
{
	unsigned int cpu = (unsigned long)hcpu;
3569
	struct global_cwq *gcwq = get_gcwq(cpu);
3570
	struct worker_pool *pool;
3571

T
Tejun Heo 已提交
3572
	switch (action & ~CPU_TASKS_FROZEN) {
3573
	case CPU_UP_PREPARE:
3574
		for_each_worker_pool(pool, gcwq) {
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
3587
		}
T
Tejun Heo 已提交
3588
		break;
3589

3590 3591
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3592
		gcwq_claim_assoc_and_lock(gcwq);
3593
		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3594
		rebind_workers(gcwq);
3595
		gcwq_release_assoc_and_unlock(gcwq);
3596
		break;
3597
	}
3598 3599 3600 3601 3602 3603 3604
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3605
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3606 3607 3608
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3609 3610 3611
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3612 3613
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3614 3615
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3616
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3617 3618
		flush_work(&unbind_work);
		break;
3619 3620 3621 3622
	}
	return NOTIFY_OK;
}

3623
#ifdef CONFIG_SMP
3624

3625
struct work_for_cpu {
3626
	struct work_struct work;
3627 3628 3629 3630 3631
	long (*fn)(void *);
	void *arg;
	long ret;
};

3632
static void work_for_cpu_fn(struct work_struct *work)
3633
{
3634 3635
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3636 3637 3638 3639 3640 3641 3642 3643 3644
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3645 3646
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3647
 * The caller must not hold any locks which would prevent @fn from completing.
3648 3649 3650
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3651
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3652

3653 3654 3655
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3656 3657 3658 3659 3660
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3661 3662 3663 3664 3665
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3666 3667 3668
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3669 3670
 *
 * CONTEXT:
3671
 * Grabs and releases workqueue_lock and gcwq->lock's.
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3682
	for_each_gcwq_cpu(cpu) {
3683
		struct global_cwq *gcwq = get_gcwq(cpu);
3684
		struct workqueue_struct *wq;
3685 3686 3687

		spin_lock_irq(&gcwq->lock);

3688 3689 3690
		BUG_ON(gcwq->flags & GCWQ_FREEZING);
		gcwq->flags |= GCWQ_FREEZING;

3691 3692 3693
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3694
			if (cwq && wq->flags & WQ_FREEZABLE)
3695 3696
				cwq->max_active = 0;
		}
3697 3698

		spin_unlock_irq(&gcwq->lock);
3699 3700 3701 3702 3703 3704
	}

	spin_unlock(&workqueue_lock);
}

/**
3705
 * freeze_workqueues_busy - are freezable workqueues still busy?
3706 3707 3708 3709 3710 3711 3712 3713
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3714 3715
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3726
	for_each_gcwq_cpu(cpu) {
3727
		struct workqueue_struct *wq;
3728 3729 3730 3731 3732 3733 3734
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3735
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3754
 * frozen works are transferred to their respective gcwq worklists.
3755 3756
 *
 * CONTEXT:
3757
 * Grabs and releases workqueue_lock and gcwq->lock's.
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3768
	for_each_gcwq_cpu(cpu) {
3769
		struct global_cwq *gcwq = get_gcwq(cpu);
3770
		struct worker_pool *pool;
3771
		struct workqueue_struct *wq;
3772 3773 3774

		spin_lock_irq(&gcwq->lock);

3775 3776 3777
		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
		gcwq->flags &= ~GCWQ_FREEZING;

3778 3779 3780
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3781
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3782 3783 3784
				continue;

			/* restore max_active and repopulate worklist */
3785
			cwq_set_max_active(cwq, wq->saved_max_active);
3786
		}
3787

3788 3789
		for_each_worker_pool(pool, gcwq)
			wake_up_worker(pool);
3790

3791
		spin_unlock_irq(&gcwq->lock);
3792 3793 3794 3795 3796 3797 3798 3799
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3800
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3801
{
T
Tejun Heo 已提交
3802 3803
	unsigned int cpu;

3804 3805 3806 3807
	/* make sure we have enough bits for OFFQ CPU number */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
		     WORK_CPU_LAST);

3808
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3809
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3810 3811

	/* initialize gcwqs */
3812
	for_each_gcwq_cpu(cpu) {
3813
		struct global_cwq *gcwq = get_gcwq(cpu);
3814
		struct worker_pool *pool;
3815 3816 3817

		spin_lock_init(&gcwq->lock);
		gcwq->cpu = cpu;
3818
		gcwq->flags |= GCWQ_DISASSOCIATED;
3819

3820
		hash_init(gcwq->busy_hash);
T
Tejun Heo 已提交
3821

3822 3823 3824 3825
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3826

3827 3828 3829
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3830

3831 3832 3833
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3834
			mutex_init(&pool->assoc_mutex);
3835 3836
			ida_init(&pool->worker_ida);
		}
3837 3838
	}

3839
	/* create the initial worker */
3840
	for_each_online_gcwq_cpu(cpu) {
3841
		struct global_cwq *gcwq = get_gcwq(cpu);
3842
		struct worker_pool *pool;
3843

3844 3845
		if (cpu != WORK_CPU_UNBOUND)
			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3846 3847 3848 3849

		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3850
			worker = create_worker(pool);
3851 3852 3853 3854 3855
			BUG_ON(!worker);
			spin_lock_irq(&gcwq->lock);
			start_worker(worker);
			spin_unlock_irq(&gcwq->lock);
		}
3856 3857
	}

3858
	system_wq = alloc_workqueue("events", 0, 0);
3859
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3860
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3861 3862
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3863 3864
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3865
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3866
	       !system_unbound_wq || !system_freezable_wq);
3867
	return 0;
L
Linus Torvalds 已提交
3868
}
3869
early_initcall(init_workqueues);