sched_fair.c 26.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
 */

/*
 * Preemption granularity:
22
 * (default: 10 msec, units: nanoseconds)
23 24 25 26 27 28 29 30 31 32 33
 *
 * NOTE: this granularity value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS will typically be somewhat
 * larger than this value. (to see the precise effective timeslice
 * length of your workload, run vmstat and monitor the context-switches
 * field)
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
 */
34
unsigned int sysctl_sched_granularity __read_mostly = 10000000UL;
35 36 37

/*
 * SCHED_BATCH wake-up granularity.
38
 * (default: 25 msec, units: nanoseconds)
39 40 41 42 43
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
44
unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly = 25000000UL;
45 46 47 48 49 50 51 52 53

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
54
unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000UL;
55 56 57 58

unsigned int sysctl_sched_stat_granularity __read_mostly;

/*
59
 * Initialized in sched_init_granularity() [to 5 times the base granularity]:
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
 */
unsigned int sysctl_sched_runtime_limit __read_mostly;

/*
 * Debugging: various feature bits
 */
enum {
	SCHED_FEAT_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_SLEEPER_AVG		= 2,
	SCHED_FEAT_SLEEPER_LOAD_AVG	= 4,
	SCHED_FEAT_PRECISE_CPU_LOAD	= 8,
	SCHED_FEAT_START_DEBIT		= 16,
	SCHED_FEAT_SKIP_INITIAL		= 32,
};

unsigned int sysctl_sched_features __read_mostly =
		SCHED_FEAT_FAIR_SLEEPERS	*1 |
I
Ingo Molnar 已提交
77
		SCHED_FEAT_SLEEPER_AVG		*0 |
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
		SCHED_FEAT_SLEEPER_LOAD_AVG	*1 |
		SCHED_FEAT_PRECISE_CPU_LOAD	*1 |
		SCHED_FEAT_START_DEBIT		*1 |
		SCHED_FEAT_SKIP_INITIAL		*0;

extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* cpu runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rq;
}

/* currently running entity (if any) on this cfs_rq */
static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
{
	return cfs_rq->curr;
}

/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)

static inline void
set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->curr = se;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
}

static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);

	if (unlikely(rq->curr->sched_class != &fair_sched_class))
		return NULL;

	return &rq->curr->se;
}

#define entity_is_task(se)	1

static inline void
set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

/*
 * Enqueue an entity into the rb-tree:
 */
static inline void
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	s64 key = se->fair_key;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
		if (key - entry->fair_key < 0) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
		cfs_rq->rb_leftmost = &se->run_node;

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static inline void
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

/**************************************************************
 * Scheduling class statistics methods:
 */

/*
 * We rescale the rescheduling granularity of tasks according to their
 * nice level, but only linearly, not exponentially:
 */
static long
niced_granularity(struct sched_entity *curr, unsigned long granularity)
{
	u64 tmp;

224 225
	if (likely(curr->load.weight == NICE_0_LOAD))
		return granularity;
226
	/*
227
	 * Positive nice levels get the same granularity as nice-0:
228
	 */
229 230 231 232
	if (likely(curr->load.weight < NICE_0_LOAD)) {
		tmp = curr->load.weight * (u64)granularity;
		return (long) (tmp >> NICE_0_SHIFT);
	}
233
	/*
234
	 * Negative nice level tasks get linearly finer
235 236
	 * granularity:
	 */
237
	tmp = curr->load.inv_weight * (u64)granularity;
238 239 240 241

	/*
	 * It will always fit into 'long':
	 */
242
	return (long) (tmp >> WMULT_SHIFT);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
}

static inline void
limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	long limit = sysctl_sched_runtime_limit;

	/*
	 * Niced tasks have the same history dynamic range as
	 * non-niced tasks:
	 */
	if (unlikely(se->wait_runtime > limit)) {
		se->wait_runtime = limit;
		schedstat_inc(se, wait_runtime_overruns);
		schedstat_inc(cfs_rq, wait_runtime_overruns);
	}
	if (unlikely(se->wait_runtime < -limit)) {
		se->wait_runtime = -limit;
		schedstat_inc(se, wait_runtime_underruns);
		schedstat_inc(cfs_rq, wait_runtime_underruns);
	}
}

static inline void
__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	se->wait_runtime += delta;
	schedstat_add(se, sum_wait_runtime, delta);
	limit_wait_runtime(cfs_rq, se);
}

static void
add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
	__add_wait_runtime(cfs_rq, se, delta);
	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
}

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
287
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
288
{
I
Ingo Molnar 已提交
289
	unsigned long delta, delta_exec, delta_fair, delta_mine;
290 291 292 293
	struct load_weight *lw = &cfs_rq->load;
	unsigned long load = lw->weight;

	delta_exec = curr->delta_exec;
294
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
295 296 297 298

	curr->sum_exec_runtime += delta_exec;
	cfs_rq->exec_clock += delta_exec;

I
Ingo Molnar 已提交
299 300 301
	if (unlikely(!load))
		return;

302 303 304
	delta_fair = calc_delta_fair(delta_exec, lw);
	delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);

I
Ingo Molnar 已提交
305
	if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
I
Ingo Molnar 已提交
306 307 308
		delta = min(cfs_rq->sleeper_bonus, (u64)delta_exec);
		delta = calc_delta_mine(delta, curr->load.weight, lw);
		delta = min((u64)delta, cfs_rq->sleeper_bonus);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
		cfs_rq->sleeper_bonus -= delta;
		delta_mine -= delta;
	}

	cfs_rq->fair_clock += delta_fair;
	/*
	 * We executed delta_exec amount of time on the CPU,
	 * but we were only entitled to delta_mine amount of
	 * time during that period (if nr_running == 1 then
	 * the two values are equal)
	 * [Note: delta_mine - delta_exec is negative]:
	 */
	add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
}

324
static void update_curr(struct cfs_rq *cfs_rq)
325 326 327 328 329 330 331 332 333 334 335 336
{
	struct sched_entity *curr = cfs_rq_curr(cfs_rq);
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
337
	delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
338 339 340 341

	curr->delta_exec += delta_exec;

	if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
342
		__update_curr(cfs_rq, curr);
343 344
		curr->delta_exec = 0;
	}
345
	curr->exec_start = rq_of(cfs_rq)->clock;
346 347 348
}

static inline void
349
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 351
{
	se->wait_start_fair = cfs_rq->fair_clock;
352
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
}

/*
 * We calculate fair deltas here, so protect against the random effects
 * of a multiplication overflow by capping it to the runtime limit:
 */
#if BITS_PER_LONG == 32
static inline unsigned long
calc_weighted(unsigned long delta, unsigned long weight, int shift)
{
	u64 tmp = (u64)delta * weight >> shift;

	if (unlikely(tmp > sysctl_sched_runtime_limit*2))
		return sysctl_sched_runtime_limit*2;
	return tmp;
}
#else
static inline unsigned long
calc_weighted(unsigned long delta, unsigned long weight, int shift)
{
	return delta * weight >> shift;
}
#endif

/*
 * Task is being enqueued - update stats:
 */
380
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
381 382 383 384 385 386 387 388
{
	s64 key;

	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
	if (se != cfs_rq_curr(cfs_rq))
389
		update_stats_wait_start(cfs_rq, se);
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	/*
	 * Update the key:
	 */
	key = cfs_rq->fair_clock;

	/*
	 * Optimize the common nice 0 case:
	 */
	if (likely(se->load.weight == NICE_0_LOAD)) {
		key -= se->wait_runtime;
	} else {
		u64 tmp;

		if (se->wait_runtime < 0) {
			tmp = -se->wait_runtime;
			key += (tmp * se->load.inv_weight) >>
					(WMULT_SHIFT - NICE_0_SHIFT);
		} else {
			tmp = se->wait_runtime;
409 410
			key -= (tmp * se->load.inv_weight) >>
					(WMULT_SHIFT - NICE_0_SHIFT);
411 412 413 414 415 416 417 418 419 420
		}
	}

	se->fair_key = key;
}

/*
 * Note: must be called with a freshly updated rq->fair_clock.
 */
static inline void
421
__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
422 423 424
{
	unsigned long delta_fair = se->delta_fair_run;

425 426
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
427 428 429 430 431 432 433 434 435

	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta_fair = calc_weighted(delta_fair, se->load.weight,
							NICE_0_SHIFT);

	add_wait_runtime(cfs_rq, se, delta_fair);
}

static void
436
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
437 438 439 440 441 442 443 444 445
{
	unsigned long delta_fair;

	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
			(u64)(cfs_rq->fair_clock - se->wait_start_fair));

	se->delta_fair_run += delta_fair;
	if (unlikely(abs(se->delta_fair_run) >=
				sysctl_sched_stat_granularity)) {
446
		__update_stats_wait_end(cfs_rq, se);
447 448 449 450
		se->delta_fair_run = 0;
	}

	se->wait_start_fair = 0;
I
Ingo Molnar 已提交
451
	schedstat_set(se->wait_start, 0);
452 453 454
}

static inline void
455
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
456
{
457
	update_curr(cfs_rq);
458 459 460 461 462
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
	if (se != cfs_rq_curr(cfs_rq))
463
		update_stats_wait_end(cfs_rq, se);
464 465 466 467 468 469
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
470
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
471 472 473 474
{
	/*
	 * We are starting a new run period:
	 */
475
	se->exec_start = rq_of(cfs_rq)->clock;
476 477 478 479 480 481
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
482
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
483 484 485 486 487 488 489 490
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

491
static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
{
	unsigned long load = cfs_rq->load.weight, delta_fair;
	long prev_runtime;

	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
		load = rq_of(cfs_rq)->cpu_load[2];

	delta_fair = se->delta_fair_sleep;

	/*
	 * Fix up delta_fair with the effect of us running
	 * during the whole sleep period:
	 */
	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
		delta_fair = div64_likely32((u64)delta_fair * load,
						load + se->load.weight);

	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta_fair = calc_weighted(delta_fair, se->load.weight,
							NICE_0_SHIFT);

	prev_runtime = se->wait_runtime;
	__add_wait_runtime(cfs_rq, se, delta_fair);
	delta_fair = se->wait_runtime - prev_runtime;

	/*
	 * Track the amount of bonus we've given to sleepers:
	 */
	cfs_rq->sleeper_bonus += delta_fair;
I
Ingo Molnar 已提交
521 522
	if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
		cfs_rq->sleeper_bonus = sysctl_sched_runtime_limit;
523 524 525 526

	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
}

527
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 529 530 531 532 533 534 535 536 537 538 539 540 541
{
	struct task_struct *tsk = task_of(se);
	unsigned long delta_fair;

	if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
			 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
		return;

	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
		(u64)(cfs_rq->fair_clock - se->sleep_start_fair));

	se->delta_fair_sleep += delta_fair;
	if (unlikely(abs(se->delta_fair_sleep) >=
				sysctl_sched_stat_granularity)) {
542
		__enqueue_sleeper(cfs_rq, se);
543 544 545 546 547 548 549
		se->delta_fair_sleep = 0;
	}

	se->sleep_start_fair = 0;

#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
550
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
551 552 553 554 555 556 557 558 559 560 561

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
562
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
563 564 565 566 567 568 569 570 571 572 573 574 575 576

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
	}
#endif
}

static void
577
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
578 579 580 581
{
	/*
	 * Update the fair clock.
	 */
582
	update_curr(cfs_rq);
583 584

	if (wakeup)
585
		enqueue_sleeper(cfs_rq, se);
586

587
	update_stats_enqueue(cfs_rq, se);
588 589 590 591
	__enqueue_entity(cfs_rq, se);
}

static void
592
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
593
{
594
	update_stats_dequeue(cfs_rq, se);
595 596 597 598 599 600 601
	if (sleep) {
		se->sleep_start_fair = cfs_rq->fair_clock;
#ifdef CONFIG_SCHEDSTATS
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
602
				se->sleep_start = rq_of(cfs_rq)->clock;
603
			if (tsk->state & TASK_UNINTERRUPTIBLE)
604
				se->block_start = rq_of(cfs_rq)->clock;
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
		}
		cfs_rq->wait_runtime -= se->wait_runtime;
#endif
	}
	__dequeue_entity(cfs_rq, se);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void
__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
			  struct sched_entity *curr, unsigned long granularity)
{
	s64 __delta = curr->fair_key - se->fair_key;

	/*
	 * Take scheduling granularity into account - do not
	 * preempt the current task unless the best task has
	 * a larger than sched_granularity fairness advantage:
	 */
	if (__delta > niced_granularity(curr, granularity))
		resched_task(rq_of(cfs_rq)->curr);
}

static inline void
631
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
632 633 634 635 636 637 638 639
{
	/*
	 * Any task has to be enqueued before it get to execute on
	 * a CPU. So account for the time it spent waiting on the
	 * runqueue. (note, here we rely on pick_next_task() having
	 * done a put_prev_task_fair() shortly before this, which
	 * updated rq->fair_clock - used by update_stats_wait_end())
	 */
640
	update_stats_wait_end(cfs_rq, se);
641
	update_stats_curr_start(cfs_rq, se);
642 643 644
	set_cfs_rq_curr(cfs_rq, se);
}

645
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
646 647 648
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

649
	set_next_entity(cfs_rq, se);
650 651 652 653

	return se;
}

654
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
655 656 657 658 659 660
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
661
		update_curr(cfs_rq);
662

663
	update_stats_curr_end(cfs_rq, prev);
664 665

	if (prev->on_rq)
666
		update_stats_wait_start(cfs_rq, prev);
667 668 669 670 671 672
	set_cfs_rq_curr(cfs_rq, NULL);
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	struct sched_entity *next;
I
Ingo Molnar 已提交
673

674 675 676 677
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
678
	dequeue_entity(cfs_rq, curr, 0);
679
	enqueue_entity(cfs_rq, curr, 0);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	/*
	 * Reschedule if another task tops the current one.
	 */
	next = __pick_next_entity(cfs_rq);
	if (next == curr)
		return;

	__check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	/* A later patch will take group into account */
	return &cpu_rq(this_cpu)->cfs;
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
784
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
785 786 787 788 789 790 791 792
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
793
		enqueue_entity(cfs_rq, se, wakeup);
794 795 796 797 798 799 800 801
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
802
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
803 804 805 806 807 808
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
809
		dequeue_entity(cfs_rq, se, sleep);
810 811 812 813 814 815 816 817 818 819 820 821 822
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
 * sched_yield() support is very simple - we dequeue and enqueue
 */
static void yield_task_fair(struct rq *rq, struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

I
Ingo Molnar 已提交
823
	__update_rq_clock(rq);
824 825 826 827
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
828
	dequeue_entity(cfs_rq, &p->se, 0);
829
	enqueue_entity(cfs_rq, &p->se, 0);
830 831 832 833 834 835 836 837 838 839 840 841
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	unsigned long gran;

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
842
		update_rq_clock(rq);
843
		update_curr(cfs_rq);
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
		resched_task(curr);
		return;
	}

	gran = sysctl_sched_wakeup_granularity;
	/*
	 * Batch tasks prefer throughput over latency:
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		gran = sysctl_sched_batch_wakeup_granularity;

	if (is_same_group(curr, p))
		__check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
}

859
static struct task_struct *pick_next_task_fair(struct rq *rq)
860 861 862 863 864 865 866 867
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
868
		se = pick_next_entity(cfs_rq);
869 870 871 872 873 874 875 876 877
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
878
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
879 880 881 882 883 884
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
885
		put_prev_entity(cfs_rq, se);
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

928
#ifdef CONFIG_FAIR_GROUP_SCHED
929 930 931 932 933 934 935 936 937 938 939 940 941
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

	curr = __pick_next_entity(cfs_rq);
	p = task_of(curr);

	return p->prio;
}
942
#endif
943

P
Peter Williams 已提交
944
static unsigned long
945
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
946 947 948
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
949 950 951 952 953 954 955 956 957 958
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
959
#ifdef CONFIG_FAIR_GROUP_SCHED
960
		struct cfs_rq *this_cfs_rq;
961
		long imbalance;
962 963 964 965
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

966
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
967 968 969 970 971 972 973 974
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

975 976
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
977
# define maxload rem_load_move
978
#endif
979 980 981 982 983 984
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
985
				&load_moved, this_best_prio, &cfs_rq_iterator);
986 987 988 989 990 991 992 993 994

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
995
	return max_load_move - rem_load_move;
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1019
static void task_new_fair(struct rq *rq, struct task_struct *p)
1020 1021 1022 1023 1024 1025
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
	struct sched_entity *se = &p->se;

	sched_info_queued(p);

1026
	update_stats_enqueue(cfs_rq, se);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	/*
	 * Child runs first: we let it run before the parent
	 * until it reschedules once. We set up the key so that
	 * it will preempt the parent:
	 */
	p->se.fair_key = current->se.fair_key -
		niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
	/*
	 * The first wait is dominated by the child-runs-first logic,
	 * so do not credit it with that waiting time yet:
	 */
	if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
		p->se.wait_start_fair = 0;

	/*
	 * The statistical average of wait_runtime is about
	 * -granularity/2, so initialize the task with that:
	 */
	if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
		p->se.wait_runtime = -(sysctl_sched_granularity / 2);

	__enqueue_entity(cfs_rq, se);
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
1059
	struct sched_entity *se = &rq->curr->se;
I
Ingo Molnar 已提交
1060

1061 1062
	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
}
#else
static void set_curr_task_fair(struct rq *rq)
{
}
#endif

/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

	.check_preempt_curr	= check_preempt_curr_fair,

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1091
static void print_cfs_stats(struct seq_file *m, int cpu)
1092 1093 1094
{
	struct cfs_rq *cfs_rq;

1095
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1096
		print_cfs_rq(m, cpu, cfs_rq);
1097 1098
}
#endif