sched_fair.c 26.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
 */

/*
 * Preemption granularity:
 * (default: 2 msec, units: nanoseconds)
 *
 * NOTE: this granularity value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS will typically be somewhat
 * larger than this value. (to see the precise effective timeslice
 * length of your workload, run vmstat and monitor the context-switches
 * field)
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
 */
unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;

/*
 * SCHED_BATCH wake-up granularity.
 * (default: 10 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
							10000000000ULL/HZ;

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;

unsigned int sysctl_sched_stat_granularity __read_mostly;

/*
 * Initialized in sched_init_granularity():
 */
unsigned int sysctl_sched_runtime_limit __read_mostly;

/*
 * Debugging: various feature bits
 */
enum {
	SCHED_FEAT_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_SLEEPER_AVG		= 2,
	SCHED_FEAT_SLEEPER_LOAD_AVG	= 4,
	SCHED_FEAT_PRECISE_CPU_LOAD	= 8,
	SCHED_FEAT_START_DEBIT		= 16,
	SCHED_FEAT_SKIP_INITIAL		= 32,
};

unsigned int sysctl_sched_features __read_mostly =
		SCHED_FEAT_FAIR_SLEEPERS	*1 |
I
Ingo Molnar 已提交
78
		SCHED_FEAT_SLEEPER_AVG		*0 |
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
		SCHED_FEAT_SLEEPER_LOAD_AVG	*1 |
		SCHED_FEAT_PRECISE_CPU_LOAD	*1 |
		SCHED_FEAT_START_DEBIT		*1 |
		SCHED_FEAT_SKIP_INITIAL		*0;

extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* cpu runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rq;
}

/* currently running entity (if any) on this cfs_rq */
static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
{
	return cfs_rq->curr;
}

/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)

static inline void
set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->curr = se;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
}

static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);

	if (unlikely(rq->curr->sched_class != &fair_sched_class))
		return NULL;

	return &rq->curr->se;
}

#define entity_is_task(se)	1

static inline void
set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

/*
 * Enqueue an entity into the rb-tree:
 */
static inline void
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	s64 key = se->fair_key;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
		if (key - entry->fair_key < 0) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
		cfs_rq->rb_leftmost = &se->run_node;

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static inline void
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

/**************************************************************
 * Scheduling class statistics methods:
 */

/*
 * We rescale the rescheduling granularity of tasks according to their
 * nice level, but only linearly, not exponentially:
 */
static long
niced_granularity(struct sched_entity *curr, unsigned long granularity)
{
	u64 tmp;

225 226
	if (likely(curr->load.weight == NICE_0_LOAD))
		return granularity;
227
	/*
228
	 * Positive nice levels get the same granularity as nice-0:
229
	 */
230 231 232 233
	if (likely(curr->load.weight < NICE_0_LOAD)) {
		tmp = curr->load.weight * (u64)granularity;
		return (long) (tmp >> NICE_0_SHIFT);
	}
234
	/*
235
	 * Negative nice level tasks get linearly finer
236 237
	 * granularity:
	 */
238
	tmp = curr->load.inv_weight * (u64)granularity;
239 240 241 242

	/*
	 * It will always fit into 'long':
	 */
243
	return (long) (tmp >> WMULT_SHIFT);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
}

static inline void
limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	long limit = sysctl_sched_runtime_limit;

	/*
	 * Niced tasks have the same history dynamic range as
	 * non-niced tasks:
	 */
	if (unlikely(se->wait_runtime > limit)) {
		se->wait_runtime = limit;
		schedstat_inc(se, wait_runtime_overruns);
		schedstat_inc(cfs_rq, wait_runtime_overruns);
	}
	if (unlikely(se->wait_runtime < -limit)) {
		se->wait_runtime = -limit;
		schedstat_inc(se, wait_runtime_underruns);
		schedstat_inc(cfs_rq, wait_runtime_underruns);
	}
}

static inline void
__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	se->wait_runtime += delta;
	schedstat_add(se, sum_wait_runtime, delta);
	limit_wait_runtime(cfs_rq, se);
}

static void
add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
	__add_wait_runtime(cfs_rq, se, delta);
	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
}

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
288
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
289
{
I
Ingo Molnar 已提交
290
	unsigned long delta, delta_exec, delta_fair, delta_mine;
291 292 293 294
	struct load_weight *lw = &cfs_rq->load;
	unsigned long load = lw->weight;

	delta_exec = curr->delta_exec;
295
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
296 297 298 299

	curr->sum_exec_runtime += delta_exec;
	cfs_rq->exec_clock += delta_exec;

I
Ingo Molnar 已提交
300 301 302
	if (unlikely(!load))
		return;

303 304 305
	delta_fair = calc_delta_fair(delta_exec, lw);
	delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);

I
Ingo Molnar 已提交
306
	if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
I
Ingo Molnar 已提交
307 308 309
		delta = min(cfs_rq->sleeper_bonus, (u64)delta_exec);
		delta = calc_delta_mine(delta, curr->load.weight, lw);
		delta = min((u64)delta, cfs_rq->sleeper_bonus);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		cfs_rq->sleeper_bonus -= delta;
		delta_mine -= delta;
	}

	cfs_rq->fair_clock += delta_fair;
	/*
	 * We executed delta_exec amount of time on the CPU,
	 * but we were only entitled to delta_mine amount of
	 * time during that period (if nr_running == 1 then
	 * the two values are equal)
	 * [Note: delta_mine - delta_exec is negative]:
	 */
	add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
}

325
static void update_curr(struct cfs_rq *cfs_rq)
326 327 328 329 330 331 332 333 334 335 336 337
{
	struct sched_entity *curr = cfs_rq_curr(cfs_rq);
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
338
	delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
339 340 341 342

	curr->delta_exec += delta_exec;

	if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
343
		__update_curr(cfs_rq, curr);
344 345
		curr->delta_exec = 0;
	}
346
	curr->exec_start = rq_of(cfs_rq)->clock;
347 348 349
}

static inline void
350
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
351 352
{
	se->wait_start_fair = cfs_rq->fair_clock;
353
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
}

/*
 * We calculate fair deltas here, so protect against the random effects
 * of a multiplication overflow by capping it to the runtime limit:
 */
#if BITS_PER_LONG == 32
static inline unsigned long
calc_weighted(unsigned long delta, unsigned long weight, int shift)
{
	u64 tmp = (u64)delta * weight >> shift;

	if (unlikely(tmp > sysctl_sched_runtime_limit*2))
		return sysctl_sched_runtime_limit*2;
	return tmp;
}
#else
static inline unsigned long
calc_weighted(unsigned long delta, unsigned long weight, int shift)
{
	return delta * weight >> shift;
}
#endif

/*
 * Task is being enqueued - update stats:
 */
381
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
382 383 384 385 386 387 388 389
{
	s64 key;

	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
	if (se != cfs_rq_curr(cfs_rq))
390
		update_stats_wait_start(cfs_rq, se);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	/*
	 * Update the key:
	 */
	key = cfs_rq->fair_clock;

	/*
	 * Optimize the common nice 0 case:
	 */
	if (likely(se->load.weight == NICE_0_LOAD)) {
		key -= se->wait_runtime;
	} else {
		u64 tmp;

		if (se->wait_runtime < 0) {
			tmp = -se->wait_runtime;
			key += (tmp * se->load.inv_weight) >>
					(WMULT_SHIFT - NICE_0_SHIFT);
		} else {
			tmp = se->wait_runtime;
410 411
			key -= (tmp * se->load.inv_weight) >>
					(WMULT_SHIFT - NICE_0_SHIFT);
412 413 414 415 416 417 418 419 420 421
		}
	}

	se->fair_key = key;
}

/*
 * Note: must be called with a freshly updated rq->fair_clock.
 */
static inline void
422
__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
423 424 425
{
	unsigned long delta_fair = se->delta_fair_run;

426 427
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
428 429 430 431 432 433 434 435 436

	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta_fair = calc_weighted(delta_fair, se->load.weight,
							NICE_0_SHIFT);

	add_wait_runtime(cfs_rq, se, delta_fair);
}

static void
437
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
438 439 440 441 442 443 444 445 446
{
	unsigned long delta_fair;

	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
			(u64)(cfs_rq->fair_clock - se->wait_start_fair));

	se->delta_fair_run += delta_fair;
	if (unlikely(abs(se->delta_fair_run) >=
				sysctl_sched_stat_granularity)) {
447
		__update_stats_wait_end(cfs_rq, se);
448 449 450 451
		se->delta_fair_run = 0;
	}

	se->wait_start_fair = 0;
I
Ingo Molnar 已提交
452
	schedstat_set(se->wait_start, 0);
453 454 455
}

static inline void
456
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
457
{
458
	update_curr(cfs_rq);
459 460 461 462 463
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
	if (se != cfs_rq_curr(cfs_rq))
464
		update_stats_wait_end(cfs_rq, se);
465 466 467 468 469 470
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
471
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
472 473 474 475
{
	/*
	 * We are starting a new run period:
	 */
476
	se->exec_start = rq_of(cfs_rq)->clock;
477 478 479 480 481 482
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
483
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
484 485 486 487 488 489 490 491
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

492
static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
{
	unsigned long load = cfs_rq->load.weight, delta_fair;
	long prev_runtime;

	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
		load = rq_of(cfs_rq)->cpu_load[2];

	delta_fair = se->delta_fair_sleep;

	/*
	 * Fix up delta_fair with the effect of us running
	 * during the whole sleep period:
	 */
	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
		delta_fair = div64_likely32((u64)delta_fair * load,
						load + se->load.weight);

	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta_fair = calc_weighted(delta_fair, se->load.weight,
							NICE_0_SHIFT);

	prev_runtime = se->wait_runtime;
	__add_wait_runtime(cfs_rq, se, delta_fair);
	delta_fair = se->wait_runtime - prev_runtime;

	/*
	 * Track the amount of bonus we've given to sleepers:
	 */
	cfs_rq->sleeper_bonus += delta_fair;
I
Ingo Molnar 已提交
522 523
	if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
		cfs_rq->sleeper_bonus = sysctl_sched_runtime_limit;
524 525 526 527

	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
}

528
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
529 530 531 532 533 534 535 536 537 538 539 540 541 542
{
	struct task_struct *tsk = task_of(se);
	unsigned long delta_fair;

	if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
			 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
		return;

	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
		(u64)(cfs_rq->fair_clock - se->sleep_start_fair));

	se->delta_fair_sleep += delta_fair;
	if (unlikely(abs(se->delta_fair_sleep) >=
				sysctl_sched_stat_granularity)) {
543
		__enqueue_sleeper(cfs_rq, se);
544 545 546 547 548 549 550
		se->delta_fair_sleep = 0;
	}

	se->sleep_start_fair = 0;

#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
551
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
552 553 554 555 556 557 558 559 560 561 562

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
563
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
564 565 566 567 568 569 570 571 572 573 574 575 576 577

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
	}
#endif
}

static void
578
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
579 580 581 582
{
	/*
	 * Update the fair clock.
	 */
583
	update_curr(cfs_rq);
584 585

	if (wakeup)
586
		enqueue_sleeper(cfs_rq, se);
587

588
	update_stats_enqueue(cfs_rq, se);
589 590 591 592
	__enqueue_entity(cfs_rq, se);
}

static void
593
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
594
{
595
	update_stats_dequeue(cfs_rq, se);
596 597 598 599 600 601 602
	if (sleep) {
		se->sleep_start_fair = cfs_rq->fair_clock;
#ifdef CONFIG_SCHEDSTATS
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
603
				se->sleep_start = rq_of(cfs_rq)->clock;
604
			if (tsk->state & TASK_UNINTERRUPTIBLE)
605
				se->block_start = rq_of(cfs_rq)->clock;
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		}
		cfs_rq->wait_runtime -= se->wait_runtime;
#endif
	}
	__dequeue_entity(cfs_rq, se);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void
__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
			  struct sched_entity *curr, unsigned long granularity)
{
	s64 __delta = curr->fair_key - se->fair_key;

	/*
	 * Take scheduling granularity into account - do not
	 * preempt the current task unless the best task has
	 * a larger than sched_granularity fairness advantage:
	 */
	if (__delta > niced_granularity(curr, granularity))
		resched_task(rq_of(cfs_rq)->curr);
}

static inline void
632
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 634 635 636 637 638 639 640
{
	/*
	 * Any task has to be enqueued before it get to execute on
	 * a CPU. So account for the time it spent waiting on the
	 * runqueue. (note, here we rely on pick_next_task() having
	 * done a put_prev_task_fair() shortly before this, which
	 * updated rq->fair_clock - used by update_stats_wait_end())
	 */
641
	update_stats_wait_end(cfs_rq, se);
642
	update_stats_curr_start(cfs_rq, se);
643 644 645
	set_cfs_rq_curr(cfs_rq, se);
}

646
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
647 648 649
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

650
	set_next_entity(cfs_rq, se);
651 652 653 654

	return se;
}

655
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
656 657 658 659 660 661
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
662
		update_curr(cfs_rq);
663

664
	update_stats_curr_end(cfs_rq, prev);
665 666

	if (prev->on_rq)
667
		update_stats_wait_start(cfs_rq, prev);
668 669 670 671 672 673
	set_cfs_rq_curr(cfs_rq, NULL);
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	struct sched_entity *next;
I
Ingo Molnar 已提交
674

675 676 677 678
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
679
	dequeue_entity(cfs_rq, curr, 0);
680
	enqueue_entity(cfs_rq, curr, 0);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

	/*
	 * Reschedule if another task tops the current one.
	 */
	next = __pick_next_entity(cfs_rq);
	if (next == curr)
		return;

	__check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	/* A later patch will take group into account */
	return &cpu_rq(this_cpu)->cfs;
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
785
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
786 787 788 789 790 791 792 793
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
794
		enqueue_entity(cfs_rq, se, wakeup);
795 796 797 798 799 800 801 802
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
803
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
804 805 806 807 808 809
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
810
		dequeue_entity(cfs_rq, se, sleep);
811 812 813 814 815 816 817 818 819 820 821 822 823
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
 * sched_yield() support is very simple - we dequeue and enqueue
 */
static void yield_task_fair(struct rq *rq, struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

I
Ingo Molnar 已提交
824
	__update_rq_clock(rq);
825 826 827 828
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
829
	dequeue_entity(cfs_rq, &p->se, 0);
830
	enqueue_entity(cfs_rq, &p->se, 0);
831 832 833 834 835 836 837 838 839 840 841 842
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	unsigned long gran;

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
843
		update_rq_clock(rq);
844
		update_curr(cfs_rq);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
		resched_task(curr);
		return;
	}

	gran = sysctl_sched_wakeup_granularity;
	/*
	 * Batch tasks prefer throughput over latency:
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		gran = sysctl_sched_batch_wakeup_granularity;

	if (is_same_group(curr, p))
		__check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
}

860
static struct task_struct *pick_next_task_fair(struct rq *rq)
861 862 863 864 865 866 867 868
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
869
		se = pick_next_entity(cfs_rq);
870 871 872 873 874 875 876 877 878
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
879
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
880 881 882 883 884 885
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
886
		put_prev_entity(cfs_rq, se);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

929
#ifdef CONFIG_FAIR_GROUP_SCHED
930 931 932 933 934 935 936 937 938 939 940 941 942
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

	curr = __pick_next_entity(cfs_rq);
	p = task_of(curr);

	return p->prio;
}
943
#endif
944

P
Peter Williams 已提交
945
static unsigned long
946
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
947 948 949
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
950 951 952 953 954 955 956 957 958 959
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
960
#ifdef CONFIG_FAIR_GROUP_SCHED
961
		struct cfs_rq *this_cfs_rq;
962
		long imbalance;
963 964 965 966
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

967
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
968 969 970 971 972 973 974 975
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

976 977
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
978
# define maxload rem_load_move
979
#endif
980 981 982 983 984 985
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
986
				&load_moved, this_best_prio, &cfs_rq_iterator);
987 988 989 990 991 992 993 994 995

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
996
	return max_load_move - rem_load_move;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1020
static void task_new_fair(struct rq *rq, struct task_struct *p)
1021 1022 1023 1024 1025 1026
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
	struct sched_entity *se = &p->se;

	sched_info_queued(p);

1027
	update_stats_enqueue(cfs_rq, se);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	/*
	 * Child runs first: we let it run before the parent
	 * until it reschedules once. We set up the key so that
	 * it will preempt the parent:
	 */
	p->se.fair_key = current->se.fair_key -
		niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
	/*
	 * The first wait is dominated by the child-runs-first logic,
	 * so do not credit it with that waiting time yet:
	 */
	if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
		p->se.wait_start_fair = 0;

	/*
	 * The statistical average of wait_runtime is about
	 * -granularity/2, so initialize the task with that:
	 */
	if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
		p->se.wait_runtime = -(sysctl_sched_granularity / 2);

	__enqueue_entity(cfs_rq, se);
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
1060
	struct sched_entity *se = &rq->curr->se;
I
Ingo Molnar 已提交
1061

1062 1063
	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
}
#else
static void set_curr_task_fair(struct rq *rq)
{
}
#endif

/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

	.check_preempt_curr	= check_preempt_curr_fair,

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1092
static void print_cfs_stats(struct seq_file *m, int cpu)
1093 1094 1095
{
	struct cfs_rq *cfs_rq;

1096
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1097
		print_cfs_rq(m, cpu, cfs_rq);
1098 1099
}
#endif