core.c 160.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include "internal.h"

41 42
#include <asm/irq_regs.h>

43
struct remote_function_call {
44 45 46 47
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
81 82 83 84
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
105 106 107 108
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
109 110 111 112 113 114 115
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
116 117 118 119
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

120 121 122 123 124 125
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
126 127 128 129
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
130
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
131 132
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

133 134 135
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
136

P
Peter Zijlstra 已提交
137 138 139 140
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

141
/*
142
 * perf event paranoia level:
143 144
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
145
 *   1 - disallow cpu events for unpriv
146
 *   2 - disallow kernel profiling for unpriv
147
 */
148
int sysctl_perf_event_paranoid __read_mostly = 1;
149

150 151
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
152 153

/*
154
 * max perf event sample rate
155
 */
P
Peter Zijlstra 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
174

175
static atomic64_t perf_event_id;
176

177 178 179 180
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
181 182 183 184 185
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
186

187
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
188

189
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
190
{
191
	return "pmu";
T
Thomas Gleixner 已提交
192 193
}

194 195 196 197 198
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
199 200 201 202 203 204
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
221 222
#ifdef CONFIG_CGROUP_PERF

223 224 225 226 227
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
295 296
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
297
	/*
298 299
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
300
	 */
301
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
302 303
		return;

304 305 306 307 308 309
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
310 311 312
}

static inline void
313 314
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
315 316 317 318
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

319 320 321 322 323 324
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
325 326 327 328
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
329
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
371 372
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
373 374 375 376 377 378 379 380 381 382 383

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
384
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
385 386 387 388 389 390 391
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
392 393
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
426 427 428 429
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
430 431 432 433

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

434 435 436
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
437 438 439 440 441 442 443 444 445
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
446
out:
S
Stephane Eranian 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
537 538
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
569
void perf_pmu_disable(struct pmu *pmu)
570
{
P
Peter Zijlstra 已提交
571 572 573
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
574 575
}

P
Peter Zijlstra 已提交
576
void perf_pmu_enable(struct pmu *pmu)
577
{
P
Peter Zijlstra 已提交
578 579 580
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
581 582
}

583 584 585 586 587 588 589
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
590
static void perf_pmu_rotate_start(struct pmu *pmu)
591
{
P
Peter Zijlstra 已提交
592
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
593
	struct list_head *head = &__get_cpu_var(rotation_list);
594

595
	WARN_ON(!irqs_disabled());
596

597 598
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
599 600
}

601
static void get_ctx(struct perf_event_context *ctx)
602
{
603
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
604 605
}

606
static void put_ctx(struct perf_event_context *ctx)
607
{
608 609 610
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
611 612
		if (ctx->task)
			put_task_struct(ctx->task);
613
		kfree_rcu(ctx, rcu_head);
614
	}
615 616
}

617
static void unclone_ctx(struct perf_event_context *ctx)
618 619 620 621 622 623 624
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

647
/*
648
 * If we inherit events we want to return the parent event id
649 650
 * to userspace.
 */
651
static u64 primary_event_id(struct perf_event *event)
652
{
653
	u64 id = event->id;
654

655 656
	if (event->parent)
		id = event->parent->id;
657 658 659 660

	return id;
}

661
/*
662
 * Get the perf_event_context for a task and lock it.
663 664 665
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
666
static struct perf_event_context *
P
Peter Zijlstra 已提交
667
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
668
{
669
	struct perf_event_context *ctx;
670 671

	rcu_read_lock();
P
Peter Zijlstra 已提交
672
retry:
P
Peter Zijlstra 已提交
673
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
674 675 676 677
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
678
		 * perf_event_task_sched_out, though the
679 680 681 682 683 684
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
685
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
686
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
687
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
688 689
			goto retry;
		}
690 691

		if (!atomic_inc_not_zero(&ctx->refcount)) {
692
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
693 694
			ctx = NULL;
		}
695 696 697 698 699 700 701 702 703 704
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
705 706
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
707
{
708
	struct perf_event_context *ctx;
709 710
	unsigned long flags;

P
Peter Zijlstra 已提交
711
	ctx = perf_lock_task_context(task, ctxn, &flags);
712 713
	if (ctx) {
		++ctx->pin_count;
714
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
715 716 717 718
	}
	return ctx;
}

719
static void perf_unpin_context(struct perf_event_context *ctx)
720 721 722
{
	unsigned long flags;

723
	raw_spin_lock_irqsave(&ctx->lock, flags);
724
	--ctx->pin_count;
725
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
726 727
}

728 729 730 731 732 733 734 735 736 737 738
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

739 740 741
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
742 743 744 745

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

746 747 748
	return ctx ? ctx->time : 0;
}

749 750
/*
 * Update the total_time_enabled and total_time_running fields for a event.
751
 * The caller of this function needs to hold the ctx->lock.
752 753 754 755 756 757 758 759 760
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
761 762 763 764 765 766 767 768 769 770 771
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
772
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
773 774
	else if (ctx->is_active)
		run_end = ctx->time;
775 776 777 778
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
779 780 781 782

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
783
		run_end = perf_event_time(event);
784 785

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
786

787 788
}

789 790 791 792 793 794 795 796 797 798 799 800
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

801 802 803 804 805 806 807 808 809
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

810
/*
811
 * Add a event from the lists for its context.
812 813
 * Must be called with ctx->mutex and ctx->lock held.
 */
814
static void
815
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
816
{
817 818
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
819 820

	/*
821 822 823
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
824
	 */
825
	if (event->group_leader == event) {
826 827
		struct list_head *list;

828 829 830
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

831 832
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
833
	}
P
Peter Zijlstra 已提交
834

835
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
836 837
		ctx->nr_cgroups++;

838
	list_add_rcu(&event->event_entry, &ctx->event_list);
839
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
840
		perf_pmu_rotate_start(ctx->pmu);
841 842
	ctx->nr_events++;
	if (event->attr.inherit_stat)
843
		ctx->nr_stat++;
844 845
}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

918
	event->id_header_size = size;
919 920
}

921 922
static void perf_group_attach(struct perf_event *event)
{
923
	struct perf_event *group_leader = event->group_leader, *pos;
924

P
Peter Zijlstra 已提交
925 926 927 928 929 930
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

931 932 933 934 935 936 937 938 939 940 941
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
942 943 944 945 946

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
947 948
}

949
/*
950
 * Remove a event from the lists for its context.
951
 * Must be called with ctx->mutex and ctx->lock held.
952
 */
953
static void
954
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
955
{
956
	struct perf_cpu_context *cpuctx;
957 958 959 960
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
961
		return;
962 963 964

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

965
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
966
		ctx->nr_cgroups--;
967 968 969 970 971 972 973 974 975
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
976

977 978
	ctx->nr_events--;
	if (event->attr.inherit_stat)
979
		ctx->nr_stat--;
980

981
	list_del_rcu(&event->event_entry);
982

983 984
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
985

986
	update_group_times(event);
987 988 989 990 991 992 993 994 995 996

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
997 998
}

999
static void perf_group_detach(struct perf_event *event)
1000 1001
{
	struct perf_event *sibling, *tmp;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1018
		goto out;
1019 1020 1021 1022
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1023

1024
	/*
1025 1026
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1027
	 * to whatever list we are on.
1028
	 */
1029
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1030 1031
		if (list)
			list_move_tail(&sibling->group_entry, list);
1032
		sibling->group_leader = sibling;
1033 1034 1035

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1036
	}
1037 1038 1039 1040 1041 1042

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1043 1044
}

1045 1046 1047
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1048 1049
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1050 1051
}

1052 1053
static void
event_sched_out(struct perf_event *event,
1054
		  struct perf_cpu_context *cpuctx,
1055
		  struct perf_event_context *ctx)
1056
{
1057
	u64 tstamp = perf_event_time(event);
1058 1059 1060 1061 1062 1063 1064 1065 1066
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1067
		delta = tstamp - event->tstamp_stopped;
1068
		event->tstamp_running += delta;
1069
		event->tstamp_stopped = tstamp;
1070 1071
	}

1072
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1073
		return;
1074

1075 1076 1077 1078
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1079
	}
1080
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1081
	event->pmu->del(event, 0);
1082
	event->oncpu = -1;
1083

1084
	if (!is_software_event(event))
1085 1086
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1087
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1088 1089 1090
		cpuctx->exclusive = 0;
}

1091
static void
1092
group_sched_out(struct perf_event *group_event,
1093
		struct perf_cpu_context *cpuctx,
1094
		struct perf_event_context *ctx)
1095
{
1096
	struct perf_event *event;
1097
	int state = group_event->state;
1098

1099
	event_sched_out(group_event, cpuctx, ctx);
1100 1101 1102 1103

	/*
	 * Schedule out siblings (if any):
	 */
1104 1105
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1106

1107
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1108 1109 1110
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1111
/*
1112
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1113
 *
1114
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1115 1116
 * remove it from the context list.
 */
1117
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1118
{
1119 1120
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1121
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1122

1123
	raw_spin_lock(&ctx->lock);
1124 1125
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1126 1127 1128 1129
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1130
	raw_spin_unlock(&ctx->lock);
1131 1132

	return 0;
T
Thomas Gleixner 已提交
1133 1134 1135 1136
}


/*
1137
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1138
 *
1139
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1140
 * call when the task is on a CPU.
1141
 *
1142 1143
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1144 1145
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1146
 * When called from perf_event_exit_task, it's OK because the
1147
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1148
 */
1149
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1150
{
1151
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1152 1153
	struct task_struct *task = ctx->task;

1154 1155
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1156 1157
	if (!task) {
		/*
1158
		 * Per cpu events are removed via an smp call and
1159
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1160
		 */
1161
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1162 1163 1164 1165
		return;
	}

retry:
1166 1167
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1168

1169
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1170
	/*
1171 1172
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1173
	 */
1174
	if (ctx->is_active) {
1175
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1176 1177 1178 1179
		goto retry;
	}

	/*
1180 1181
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1182
	 */
1183
	list_del_event(event, ctx);
1184
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1185 1186
}

1187
/*
1188
 * Cross CPU call to disable a performance event
1189
 */
1190
static int __perf_event_disable(void *info)
1191
{
1192 1193
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1194
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1195 1196

	/*
1197 1198
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1199 1200 1201
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1202
	 */
1203
	if (ctx->task && cpuctx->task_ctx != ctx)
1204
		return -EINVAL;
1205

1206
	raw_spin_lock(&ctx->lock);
1207 1208

	/*
1209
	 * If the event is on, turn it off.
1210 1211
	 * If it is in error state, leave it in error state.
	 */
1212
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1213
		update_context_time(ctx);
S
Stephane Eranian 已提交
1214
		update_cgrp_time_from_event(event);
1215 1216 1217
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1218
		else
1219 1220
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1221 1222
	}

1223
	raw_spin_unlock(&ctx->lock);
1224 1225

	return 0;
1226 1227 1228
}

/*
1229
 * Disable a event.
1230
 *
1231 1232
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1233
 * remains valid.  This condition is satisifed when called through
1234 1235 1236 1237
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1238
 * is the current context on this CPU and preemption is disabled,
1239
 * hence we can't get into perf_event_task_sched_out for this context.
1240
 */
1241
void perf_event_disable(struct perf_event *event)
1242
{
1243
	struct perf_event_context *ctx = event->ctx;
1244 1245 1246 1247
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1248
		 * Disable the event on the cpu that it's on
1249
		 */
1250
		cpu_function_call(event->cpu, __perf_event_disable, event);
1251 1252 1253
		return;
	}

P
Peter Zijlstra 已提交
1254
retry:
1255 1256
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1257

1258
	raw_spin_lock_irq(&ctx->lock);
1259
	/*
1260
	 * If the event is still active, we need to retry the cross-call.
1261
	 */
1262
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1263
		raw_spin_unlock_irq(&ctx->lock);
1264 1265 1266 1267 1268
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1269 1270 1271 1272 1273 1274 1275
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1276 1277 1278
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1279
	}
1280
	raw_spin_unlock_irq(&ctx->lock);
1281 1282
}

S
Stephane Eranian 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1318 1319 1320 1321
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1322
static int
1323
event_sched_in(struct perf_event *event,
1324
		 struct perf_cpu_context *cpuctx,
1325
		 struct perf_event_context *ctx)
1326
{
1327 1328
	u64 tstamp = perf_event_time(event);

1329
	if (event->state <= PERF_EVENT_STATE_OFF)
1330 1331
		return 0;

1332
	event->state = PERF_EVENT_STATE_ACTIVE;
1333
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1345 1346 1347 1348 1349
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1350
	if (event->pmu->add(event, PERF_EF_START)) {
1351 1352
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1353 1354 1355
		return -EAGAIN;
	}

1356
	event->tstamp_running += tstamp - event->tstamp_stopped;
1357

S
Stephane Eranian 已提交
1358
	perf_set_shadow_time(event, ctx, tstamp);
1359

1360
	if (!is_software_event(event))
1361
		cpuctx->active_oncpu++;
1362 1363
	ctx->nr_active++;

1364
	if (event->attr.exclusive)
1365 1366
		cpuctx->exclusive = 1;

1367 1368 1369
	return 0;
}

1370
static int
1371
group_sched_in(struct perf_event *group_event,
1372
	       struct perf_cpu_context *cpuctx,
1373
	       struct perf_event_context *ctx)
1374
{
1375
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1376
	struct pmu *pmu = group_event->pmu;
1377 1378
	u64 now = ctx->time;
	bool simulate = false;
1379

1380
	if (group_event->state == PERF_EVENT_STATE_OFF)
1381 1382
		return 0;

P
Peter Zijlstra 已提交
1383
	pmu->start_txn(pmu);
1384

1385
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1386
		pmu->cancel_txn(pmu);
1387
		return -EAGAIN;
1388
	}
1389 1390 1391 1392

	/*
	 * Schedule in siblings as one group (if any):
	 */
1393
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1394
		if (event_sched_in(event, cpuctx, ctx)) {
1395
			partial_group = event;
1396 1397 1398 1399
			goto group_error;
		}
	}

1400
	if (!pmu->commit_txn(pmu))
1401
		return 0;
1402

1403 1404 1405 1406
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1417
	 */
1418 1419
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1420 1421 1422 1423 1424 1425 1426 1427
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1428
	}
1429
	event_sched_out(group_event, cpuctx, ctx);
1430

P
Peter Zijlstra 已提交
1431
	pmu->cancel_txn(pmu);
1432

1433 1434 1435
	return -EAGAIN;
}

1436
/*
1437
 * Work out whether we can put this event group on the CPU now.
1438
 */
1439
static int group_can_go_on(struct perf_event *event,
1440 1441 1442 1443
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1444
	 * Groups consisting entirely of software events can always go on.
1445
	 */
1446
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1447 1448 1449
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1450
	 * events can go on.
1451 1452 1453 1454 1455
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1456
	 * events on the CPU, it can't go on.
1457
	 */
1458
	if (event->attr.exclusive && cpuctx->active_oncpu)
1459 1460 1461 1462 1463 1464 1465 1466
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1467 1468
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1469
{
1470 1471
	u64 tstamp = perf_event_time(event);

1472
	list_add_event(event, ctx);
1473
	perf_group_attach(event);
1474 1475 1476
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1477 1478
}

1479 1480 1481 1482 1483 1484
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1498
/*
1499
 * Cross CPU call to install and enable a performance event
1500 1501
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1502
 */
1503
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1504
{
1505 1506
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1507
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1508 1509 1510
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1511
	perf_ctx_lock(cpuctx, task_ctx);
1512
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1513 1514

	/*
1515
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1516
	 */
1517
	if (task_ctx)
1518
		task_ctx_sched_out(task_ctx);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1533 1534
		task = task_ctx->task;
	}
1535

1536
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1537

1538
	update_context_time(ctx);
S
Stephane Eranian 已提交
1539 1540 1541 1542 1543 1544
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1545

1546
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1547

1548
	/*
1549
	 * Schedule everything back in
1550
	 */
1551
	perf_event_sched_in(cpuctx, task_ctx, task);
1552 1553 1554

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1555 1556

	return 0;
T
Thomas Gleixner 已提交
1557 1558 1559
}

/*
1560
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1561
 *
1562 1563
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1564
 *
1565
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1566 1567 1568 1569
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1570 1571
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1572 1573 1574 1575
			int cpu)
{
	struct task_struct *task = ctx->task;

1576 1577
	lockdep_assert_held(&ctx->mutex);

1578 1579
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1580 1581
	if (!task) {
		/*
1582
		 * Per cpu events are installed via an smp call and
1583
		 * the install is always successful.
T
Thomas Gleixner 已提交
1584
		 */
1585
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1586 1587 1588 1589
		return;
	}

retry:
1590 1591
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1592

1593
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1594
	/*
1595 1596
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1597
	 */
1598
	if (ctx->is_active) {
1599
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1600 1601 1602 1603
		goto retry;
	}

	/*
1604 1605
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1606
	 */
1607
	add_event_to_ctx(event, ctx);
1608
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1609 1610
}

1611
/*
1612
 * Put a event into inactive state and update time fields.
1613 1614 1615 1616 1617 1618
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1619 1620
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1621
{
1622
	struct perf_event *sub;
1623
	u64 tstamp = perf_event_time(event);
1624

1625
	event->state = PERF_EVENT_STATE_INACTIVE;
1626
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1627
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1628 1629
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1630
	}
1631 1632
}

1633
/*
1634
 * Cross CPU call to enable a performance event
1635
 */
1636
static int __perf_event_enable(void *info)
1637
{
1638 1639 1640
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1641
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1642
	int err;
1643

1644 1645
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1646

1647
	raw_spin_lock(&ctx->lock);
1648
	update_context_time(ctx);
1649

1650
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1651
		goto unlock;
S
Stephane Eranian 已提交
1652 1653 1654 1655

	/*
	 * set current task's cgroup time reference point
	 */
1656
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1657

1658
	__perf_event_mark_enabled(event, ctx);
1659

S
Stephane Eranian 已提交
1660 1661 1662
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1663
		goto unlock;
S
Stephane Eranian 已提交
1664
	}
1665

1666
	/*
1667
	 * If the event is in a group and isn't the group leader,
1668
	 * then don't put it on unless the group is on.
1669
	 */
1670
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1671
		goto unlock;
1672

1673
	if (!group_can_go_on(event, cpuctx, 1)) {
1674
		err = -EEXIST;
1675
	} else {
1676
		if (event == leader)
1677
			err = group_sched_in(event, cpuctx, ctx);
1678
		else
1679
			err = event_sched_in(event, cpuctx, ctx);
1680
	}
1681 1682 1683

	if (err) {
		/*
1684
		 * If this event can't go on and it's part of a
1685 1686
		 * group, then the whole group has to come off.
		 */
1687
		if (leader != event)
1688
			group_sched_out(leader, cpuctx, ctx);
1689
		if (leader->attr.pinned) {
1690
			update_group_times(leader);
1691
			leader->state = PERF_EVENT_STATE_ERROR;
1692
		}
1693 1694
	}

P
Peter Zijlstra 已提交
1695
unlock:
1696
	raw_spin_unlock(&ctx->lock);
1697 1698

	return 0;
1699 1700 1701
}

/*
1702
 * Enable a event.
1703
 *
1704 1705
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1706
 * remains valid.  This condition is satisfied when called through
1707 1708
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1709
 */
1710
void perf_event_enable(struct perf_event *event)
1711
{
1712
	struct perf_event_context *ctx = event->ctx;
1713 1714 1715 1716
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1717
		 * Enable the event on the cpu that it's on
1718
		 */
1719
		cpu_function_call(event->cpu, __perf_event_enable, event);
1720 1721 1722
		return;
	}

1723
	raw_spin_lock_irq(&ctx->lock);
1724
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1725 1726 1727
		goto out;

	/*
1728 1729
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1730 1731 1732 1733
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1734 1735
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1736

P
Peter Zijlstra 已提交
1737
retry:
1738 1739 1740 1741 1742
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1743
	raw_spin_unlock_irq(&ctx->lock);
1744 1745 1746

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1747

1748
	raw_spin_lock_irq(&ctx->lock);
1749 1750

	/*
1751
	 * If the context is active and the event is still off,
1752 1753
	 * we need to retry the cross-call.
	 */
1754 1755 1756 1757 1758 1759
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1760
		goto retry;
1761
	}
1762

P
Peter Zijlstra 已提交
1763
out:
1764
	raw_spin_unlock_irq(&ctx->lock);
1765 1766
}

1767
int perf_event_refresh(struct perf_event *event, int refresh)
1768
{
1769
	/*
1770
	 * not supported on inherited events
1771
	 */
1772
	if (event->attr.inherit || !is_sampling_event(event))
1773 1774
		return -EINVAL;

1775 1776
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1777 1778

	return 0;
1779
}
1780
EXPORT_SYMBOL_GPL(perf_event_refresh);
1781

1782 1783 1784
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1785
{
1786
	struct perf_event *event;
1787
	int is_active = ctx->is_active;
1788

1789
	ctx->is_active &= ~event_type;
1790
	if (likely(!ctx->nr_events))
1791 1792
		return;

1793
	update_context_time(ctx);
S
Stephane Eranian 已提交
1794
	update_cgrp_time_from_cpuctx(cpuctx);
1795
	if (!ctx->nr_active)
1796
		return;
1797

P
Peter Zijlstra 已提交
1798
	perf_pmu_disable(ctx->pmu);
1799
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1800 1801
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1802
	}
1803

1804
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1805
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1806
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1807
	}
P
Peter Zijlstra 已提交
1808
	perf_pmu_enable(ctx->pmu);
1809 1810
}

1811 1812 1813
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1814 1815 1816 1817
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1818
 * in them directly with an fd; we can only enable/disable all
1819
 * events via prctl, or enable/disable all events in a family
1820 1821
 * via ioctl, which will have the same effect on both contexts.
 */
1822 1823
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1824 1825
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1826
		&& ctx1->parent_gen == ctx2->parent_gen
1827
		&& !ctx1->pin_count && !ctx2->pin_count;
1828 1829
}

1830 1831
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1832 1833 1834
{
	u64 value;

1835
	if (!event->attr.inherit_stat)
1836 1837 1838
		return;

	/*
1839
	 * Update the event value, we cannot use perf_event_read()
1840 1841
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1842
	 * we know the event must be on the current CPU, therefore we
1843 1844
	 * don't need to use it.
	 */
1845 1846
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1847 1848
		event->pmu->read(event);
		/* fall-through */
1849

1850 1851
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1852 1853 1854 1855 1856 1857 1858
		break;

	default:
		break;
	}

	/*
1859
	 * In order to keep per-task stats reliable we need to flip the event
1860 1861
	 * values when we flip the contexts.
	 */
1862 1863 1864
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1865

1866 1867
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1868

1869
	/*
1870
	 * Since we swizzled the values, update the user visible data too.
1871
	 */
1872 1873
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1874 1875 1876 1877 1878
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1879 1880
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1881
{
1882
	struct perf_event *event, *next_event;
1883 1884 1885 1886

	if (!ctx->nr_stat)
		return;

1887 1888
	update_context_time(ctx);

1889 1890
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1891

1892 1893
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1894

1895 1896
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1897

1898
		__perf_event_sync_stat(event, next_event);
1899

1900 1901
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1902 1903 1904
	}
}

1905 1906
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1907
{
P
Peter Zijlstra 已提交
1908
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1909 1910
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1911
	struct perf_cpu_context *cpuctx;
1912
	int do_switch = 1;
T
Thomas Gleixner 已提交
1913

P
Peter Zijlstra 已提交
1914 1915
	if (likely(!ctx))
		return;
1916

P
Peter Zijlstra 已提交
1917 1918
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1919 1920
		return;

1921 1922
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1923
	next_ctx = next->perf_event_ctxp[ctxn];
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1935 1936
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1937
		if (context_equiv(ctx, next_ctx)) {
1938 1939
			/*
			 * XXX do we need a memory barrier of sorts
1940
			 * wrt to rcu_dereference() of perf_event_ctxp
1941
			 */
P
Peter Zijlstra 已提交
1942 1943
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1944 1945 1946
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1947

1948
			perf_event_sync_stat(ctx, next_ctx);
1949
		}
1950 1951
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1952
	}
1953
	rcu_read_unlock();
1954

1955
	if (do_switch) {
1956
		raw_spin_lock(&ctx->lock);
1957
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1958
		cpuctx->task_ctx = NULL;
1959
		raw_spin_unlock(&ctx->lock);
1960
	}
T
Thomas Gleixner 已提交
1961 1962
}

P
Peter Zijlstra 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1977 1978
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1979 1980 1981 1982 1983
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1984 1985 1986 1987 1988 1989 1990 1991

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1992 1993
}

1994
static void task_ctx_sched_out(struct perf_event_context *ctx)
1995
{
P
Peter Zijlstra 已提交
1996
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1997

1998 1999
	if (!cpuctx->task_ctx)
		return;
2000 2001 2002 2003

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2004
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2005 2006 2007
	cpuctx->task_ctx = NULL;
}

2008 2009 2010 2011 2012 2013 2014
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2015 2016
}

2017
static void
2018
ctx_pinned_sched_in(struct perf_event_context *ctx,
2019
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2020
{
2021
	struct perf_event *event;
T
Thomas Gleixner 已提交
2022

2023 2024
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2025
			continue;
2026
		if (!event_filter_match(event))
2027 2028
			continue;

S
Stephane Eranian 已提交
2029 2030 2031 2032
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2033
		if (group_can_go_on(event, cpuctx, 1))
2034
			group_sched_in(event, cpuctx, ctx);
2035 2036 2037 2038 2039

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2040 2041 2042
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2043
		}
2044
	}
2045 2046 2047 2048
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2049
		      struct perf_cpu_context *cpuctx)
2050 2051 2052
{
	struct perf_event *event;
	int can_add_hw = 1;
2053

2054 2055 2056
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2057
			continue;
2058 2059
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2060
		 * of events:
2061
		 */
2062
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2063 2064
			continue;

S
Stephane Eranian 已提交
2065 2066 2067 2068
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2069
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2070
			if (group_sched_in(event, cpuctx, ctx))
2071
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2072
		}
T
Thomas Gleixner 已提交
2073
	}
2074 2075 2076 2077 2078
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2079 2080
	     enum event_type_t event_type,
	     struct task_struct *task)
2081
{
S
Stephane Eranian 已提交
2082
	u64 now;
2083
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2084

2085
	ctx->is_active |= event_type;
2086
	if (likely(!ctx->nr_events))
2087
		return;
2088

S
Stephane Eranian 已提交
2089 2090
	now = perf_clock();
	ctx->timestamp = now;
2091
	perf_cgroup_set_timestamp(task, ctx);
2092 2093 2094 2095
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2096
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2097
		ctx_pinned_sched_in(ctx, cpuctx);
2098 2099

	/* Then walk through the lower prio flexible groups */
2100
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2101
		ctx_flexible_sched_in(ctx, cpuctx);
2102 2103
}

2104
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2105 2106
			     enum event_type_t event_type,
			     struct task_struct *task)
2107 2108 2109
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2110
	ctx_sched_in(ctx, cpuctx, event_type, task);
2111 2112
}

S
Stephane Eranian 已提交
2113 2114
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2115
{
P
Peter Zijlstra 已提交
2116
	struct perf_cpu_context *cpuctx;
2117

P
Peter Zijlstra 已提交
2118
	cpuctx = __get_cpu_context(ctx);
2119 2120 2121
	if (cpuctx->task_ctx == ctx)
		return;

2122
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2123
	perf_pmu_disable(ctx->pmu);
2124 2125 2126 2127 2128 2129 2130
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2131
	perf_event_sched_in(cpuctx, ctx, task);
2132 2133

	cpuctx->task_ctx = ctx;
2134

2135 2136 2137
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2138 2139 2140 2141
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2142
	perf_pmu_rotate_start(ctx->pmu);
2143 2144
}

P
Peter Zijlstra 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2156
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2166
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2167
	}
S
Stephane Eranian 已提交
2168 2169 2170 2171 2172 2173 2174
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2175 2176
}

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2204
#define REDUCE_FLS(a, b)		\
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2244 2245 2246
	if (!divisor)
		return dividend;

2247 2248 2249 2250
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2251
{
2252
	struct hw_perf_event *hwc = &event->hw;
2253
	s64 period, sample_period;
2254 2255
	s64 delta;

2256
	period = perf_calculate_period(event, nsec, count);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2267

2268
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2269
		event->pmu->stop(event, PERF_EF_UPDATE);
2270
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2271
		event->pmu->start(event, PERF_EF_RELOAD);
2272
	}
2273 2274
}

2275
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2276
{
2277 2278
	struct perf_event *event;
	struct hw_perf_event *hwc;
2279 2280
	u64 interrupts, now;
	s64 delta;
2281

2282
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2283
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2284 2285
			continue;

2286
		if (!event_filter_match(event))
2287 2288
			continue;

2289
		hwc = &event->hw;
2290 2291 2292

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2293

2294
		/*
2295
		 * unthrottle events on the tick
2296
		 */
2297
		if (interrupts == MAX_INTERRUPTS) {
2298
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2299
			event->pmu->start(event, 0);
2300 2301
		}

2302
		if (!event->attr.freq || !event->attr.sample_freq)
2303 2304
			continue;

2305
		event->pmu->read(event);
2306
		now = local64_read(&event->count);
2307 2308
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2309

2310
		if (delta > 0)
2311
			perf_adjust_period(event, period, delta);
2312 2313 2314
	}
}

2315
/*
2316
 * Round-robin a context's events:
2317
 */
2318
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2319
{
2320 2321 2322 2323 2324 2325
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2326 2327
}

2328
/*
2329 2330 2331
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2332
 */
2333
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2334
{
2335
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2336
	struct perf_event_context *ctx = NULL;
2337
	int rotate = 0, remove = 1;
2338

2339
	if (cpuctx->ctx.nr_events) {
2340
		remove = 0;
2341 2342 2343
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2344

P
Peter Zijlstra 已提交
2345
	ctx = cpuctx->task_ctx;
2346
	if (ctx && ctx->nr_events) {
2347
		remove = 0;
2348 2349 2350
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2351

2352
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2353
	perf_pmu_disable(cpuctx->ctx.pmu);
2354
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2355
	if (ctx)
2356
		perf_ctx_adjust_freq(ctx, interval);
2357

2358
	if (!rotate)
2359
		goto done;
2360

2361
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2362
	if (ctx)
2363
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2364

2365
	rotate_ctx(&cpuctx->ctx);
2366 2367
	if (ctx)
		rotate_ctx(ctx);
2368

2369
	perf_event_sched_in(cpuctx, ctx, current);
2370 2371

done:
2372 2373 2374
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2375
	perf_pmu_enable(cpuctx->ctx.pmu);
2376
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2377 2378 2379 2380 2381 2382
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2383

2384 2385 2386 2387 2388 2389 2390
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2391 2392
}

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2408
/*
2409
 * Enable all of a task's events that have been marked enable-on-exec.
2410 2411
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2412
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2413
{
2414
	struct perf_event *event;
2415 2416
	unsigned long flags;
	int enabled = 0;
2417
	int ret;
2418 2419

	local_irq_save(flags);
2420
	if (!ctx || !ctx->nr_events)
2421 2422
		goto out;

2423 2424 2425 2426 2427 2428 2429 2430
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
	perf_cgroup_sched_out(current);
2431

2432
	raw_spin_lock(&ctx->lock);
2433
	task_ctx_sched_out(ctx);
2434

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2445 2446 2447
	}

	/*
2448
	 * Unclone this context if we enabled any event.
2449
	 */
2450 2451
	if (enabled)
		unclone_ctx(ctx);
2452

2453
	raw_spin_unlock(&ctx->lock);
2454

2455 2456 2457
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2458
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2459
out:
2460 2461 2462
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2463
/*
2464
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2465
 */
2466
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2467
{
2468 2469
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2470
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2471

2472 2473 2474 2475
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2476 2477
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2478 2479 2480 2481
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2482
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2483
	if (ctx->is_active) {
2484
		update_context_time(ctx);
S
Stephane Eranian 已提交
2485 2486
		update_cgrp_time_from_event(event);
	}
2487
	update_event_times(event);
2488 2489
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2490
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2491 2492
}

P
Peter Zijlstra 已提交
2493 2494
static inline u64 perf_event_count(struct perf_event *event)
{
2495
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2496 2497
}

2498
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2499 2500
{
	/*
2501 2502
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2503
	 */
2504 2505 2506 2507
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2508 2509 2510
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2511
		raw_spin_lock_irqsave(&ctx->lock, flags);
2512 2513 2514 2515 2516
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2517
		if (ctx->is_active) {
2518
			update_context_time(ctx);
S
Stephane Eranian 已提交
2519 2520
			update_cgrp_time_from_event(event);
		}
2521
		update_event_times(event);
2522
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2523 2524
	}

P
Peter Zijlstra 已提交
2525
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2526 2527
}

2528
/*
2529
 * Callchain support
2530
 */
2531 2532 2533 2534 2535 2536

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2537
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2538 2539 2540 2541 2542 2543 2544
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2545 2546 2547
{
}

2548 2549
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2550
{
2551
}
T
Thomas Gleixner 已提交
2552

2553 2554 2555 2556
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2557

2558
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2559

2560 2561
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2562

2563 2564
	kfree(entries);
}
T
Thomas Gleixner 已提交
2565

2566 2567 2568
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2569

2570 2571 2572 2573
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2574

2575 2576 2577 2578 2579
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2580

2581
	/*
2582 2583 2584
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2585
	 */
2586
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2587

2588 2589 2590
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2591

2592
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2593

2594 2595 2596 2597 2598
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2599 2600
	}

2601
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2602

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2737
/*
2738
 * Initialize the perf_event context in a task_struct:
2739
 */
2740
static void __perf_event_init_context(struct perf_event_context *ctx)
2741
{
2742
	raw_spin_lock_init(&ctx->lock);
2743
	mutex_init(&ctx->mutex);
2744 2745
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2746 2747
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2763
	}
2764 2765 2766
	ctx->pmu = pmu;

	return ctx;
2767 2768
}

2769 2770 2771 2772 2773
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2774 2775

	rcu_read_lock();
2776
	if (!vpid)
T
Thomas Gleixner 已提交
2777 2778
		task = current;
	else
2779
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2780 2781 2782 2783 2784 2785 2786 2787
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2788 2789 2790 2791
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2792 2793 2794 2795 2796 2797 2798
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2799 2800 2801
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2802
static struct perf_event_context *
M
Matt Helsley 已提交
2803
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2804
{
2805
	struct perf_event_context *ctx;
2806
	struct perf_cpu_context *cpuctx;
2807
	unsigned long flags;
P
Peter Zijlstra 已提交
2808
	int ctxn, err;
T
Thomas Gleixner 已提交
2809

2810
	if (!task) {
2811
		/* Must be root to operate on a CPU event: */
2812
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2813 2814 2815
			return ERR_PTR(-EACCES);

		/*
2816
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2817 2818 2819
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2820
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2821 2822
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2823
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2824
		ctx = &cpuctx->ctx;
2825
		get_ctx(ctx);
2826
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2827 2828 2829 2830

		return ctx;
	}

P
Peter Zijlstra 已提交
2831 2832 2833 2834 2835
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2836
retry:
P
Peter Zijlstra 已提交
2837
	ctx = perf_lock_task_context(task, ctxn, &flags);
2838
	if (ctx) {
2839
		unclone_ctx(ctx);
2840
		++ctx->pin_count;
2841
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2842
	} else {
2843
		ctx = alloc_perf_context(pmu, task);
2844 2845 2846
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2847

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2858
		else {
2859
			get_ctx(ctx);
2860
			++ctx->pin_count;
2861
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2862
		}
2863 2864 2865
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2866
			put_ctx(ctx);
2867 2868 2869 2870

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2871 2872 2873
		}
	}

T
Thomas Gleixner 已提交
2874
	return ctx;
2875

P
Peter Zijlstra 已提交
2876
errout:
2877
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2878 2879
}

L
Li Zefan 已提交
2880 2881
static void perf_event_free_filter(struct perf_event *event);

2882
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2883
{
2884
	struct perf_event *event;
P
Peter Zijlstra 已提交
2885

2886 2887 2888
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2889
	perf_event_free_filter(event);
2890
	kfree(event);
P
Peter Zijlstra 已提交
2891 2892
}

2893
static void ring_buffer_put(struct ring_buffer *rb);
2894

2895
static void free_event(struct perf_event *event)
2896
{
2897
	irq_work_sync(&event->pending);
2898

2899
	if (!event->parent) {
2900
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2901
			jump_label_dec(&perf_sched_events);
2902
		if (event->attr.mmap || event->attr.mmap_data)
2903 2904 2905 2906 2907
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2908 2909
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2910 2911 2912 2913
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2914
	}
2915

2916 2917 2918
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2919 2920
	}

S
Stephane Eranian 已提交
2921 2922 2923
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2924 2925
	if (event->destroy)
		event->destroy(event);
2926

P
Peter Zijlstra 已提交
2927 2928 2929
	if (event->ctx)
		put_ctx(event->ctx);

2930
	call_rcu(&event->rcu_head, free_event_rcu);
2931 2932
}

2933
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2934
{
2935
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2936

2937
	WARN_ON_ONCE(ctx->parent_ctx);
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2951
	raw_spin_lock_irq(&ctx->lock);
2952
	perf_group_detach(event);
2953
	raw_spin_unlock_irq(&ctx->lock);
2954
	perf_remove_from_context(event);
2955
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2956

2957
	free_event(event);
T
Thomas Gleixner 已提交
2958 2959 2960

	return 0;
}
2961
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2962

2963 2964 2965 2966
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2967
{
2968
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2969
	struct task_struct *owner;
2970

2971
	file->private_data = NULL;
2972

P
Peter Zijlstra 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3006
	return perf_event_release_kernel(event);
3007 3008
}

3009
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3010
{
3011
	struct perf_event *child;
3012 3013
	u64 total = 0;

3014 3015 3016
	*enabled = 0;
	*running = 0;

3017
	mutex_lock(&event->child_mutex);
3018
	total += perf_event_read(event);
3019 3020 3021 3022 3023 3024
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3025
		total += perf_event_read(child);
3026 3027 3028
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3029
	mutex_unlock(&event->child_mutex);
3030 3031 3032

	return total;
}
3033
EXPORT_SYMBOL_GPL(perf_event_read_value);
3034

3035
static int perf_event_read_group(struct perf_event *event,
3036 3037
				   u64 read_format, char __user *buf)
{
3038
	struct perf_event *leader = event->group_leader, *sub;
3039 3040
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3041
	u64 values[5];
3042
	u64 count, enabled, running;
3043

3044
	mutex_lock(&ctx->mutex);
3045
	count = perf_event_read_value(leader, &enabled, &running);
3046 3047

	values[n++] = 1 + leader->nr_siblings;
3048 3049 3050 3051
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3052 3053 3054
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3055 3056 3057 3058

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3059
		goto unlock;
3060

3061
	ret = size;
3062

3063
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3064
		n = 0;
3065

3066
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3067 3068 3069 3070 3071
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3072
		if (copy_to_user(buf + ret, values, size)) {
3073 3074 3075
			ret = -EFAULT;
			goto unlock;
		}
3076 3077

		ret += size;
3078
	}
3079 3080
unlock:
	mutex_unlock(&ctx->mutex);
3081

3082
	return ret;
3083 3084
}

3085
static int perf_event_read_one(struct perf_event *event,
3086 3087
				 u64 read_format, char __user *buf)
{
3088
	u64 enabled, running;
3089 3090 3091
	u64 values[4];
	int n = 0;

3092 3093 3094 3095 3096
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3097
	if (read_format & PERF_FORMAT_ID)
3098
		values[n++] = primary_event_id(event);
3099 3100 3101 3102 3103 3104 3105

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3106
/*
3107
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3108 3109
 */
static ssize_t
3110
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3111
{
3112
	u64 read_format = event->attr.read_format;
3113
	int ret;
T
Thomas Gleixner 已提交
3114

3115
	/*
3116
	 * Return end-of-file for a read on a event that is in
3117 3118 3119
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3120
	if (event->state == PERF_EVENT_STATE_ERROR)
3121 3122
		return 0;

3123
	if (count < event->read_size)
3124 3125
		return -ENOSPC;

3126
	WARN_ON_ONCE(event->ctx->parent_ctx);
3127
	if (read_format & PERF_FORMAT_GROUP)
3128
		ret = perf_event_read_group(event, read_format, buf);
3129
	else
3130
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3131

3132
	return ret;
T
Thomas Gleixner 已提交
3133 3134 3135 3136 3137
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3138
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3139

3140
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3141 3142 3143 3144
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3145
	struct perf_event *event = file->private_data;
3146
	struct ring_buffer *rb;
3147
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3148 3149

	rcu_read_lock();
3150 3151 3152
	rb = rcu_dereference(event->rb);
	if (rb)
		events = atomic_xchg(&rb->poll, 0);
P
Peter Zijlstra 已提交
3153
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3154

3155
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3156 3157 3158 3159

	return events;
}

3160
static void perf_event_reset(struct perf_event *event)
3161
{
3162
	(void)perf_event_read(event);
3163
	local64_set(&event->count, 0);
3164
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3165 3166
}

3167
/*
3168 3169 3170 3171
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3172
 */
3173 3174
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3175
{
3176
	struct perf_event *child;
P
Peter Zijlstra 已提交
3177

3178 3179 3180 3181
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3182
		func(child);
3183
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3184 3185
}

3186 3187
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3188
{
3189 3190
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3191

3192 3193
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3194
	event = event->group_leader;
3195

3196 3197 3198 3199
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3200
	mutex_unlock(&ctx->mutex);
3201 3202
}

3203
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3204
{
3205
	struct perf_event_context *ctx = event->ctx;
3206 3207 3208
	int ret = 0;
	u64 value;

3209
	if (!is_sampling_event(event))
3210 3211
		return -EINVAL;

3212
	if (copy_from_user(&value, arg, sizeof(value)))
3213 3214 3215 3216 3217
		return -EFAULT;

	if (!value)
		return -EINVAL;

3218
	raw_spin_lock_irq(&ctx->lock);
3219 3220
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3221 3222 3223 3224
			ret = -EINVAL;
			goto unlock;
		}

3225
		event->attr.sample_freq = value;
3226
	} else {
3227 3228
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3229 3230
	}
unlock:
3231
	raw_spin_unlock_irq(&ctx->lock);
3232 3233 3234 3235

	return ret;
}

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3257
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3258

3259 3260
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3261 3262
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3263
	u32 flags = arg;
3264 3265

	switch (cmd) {
3266 3267
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3268
		break;
3269 3270
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3271
		break;
3272 3273
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3274
		break;
P
Peter Zijlstra 已提交
3275

3276 3277
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3278

3279 3280
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3281

3282
	case PERF_EVENT_IOC_SET_OUTPUT:
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3300

L
Li Zefan 已提交
3301 3302 3303
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3304
	default:
P
Peter Zijlstra 已提交
3305
		return -ENOTTY;
3306
	}
P
Peter Zijlstra 已提交
3307 3308

	if (flags & PERF_IOC_FLAG_GROUP)
3309
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3310
	else
3311
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3312 3313

	return 0;
3314 3315
}

3316
int perf_event_task_enable(void)
3317
{
3318
	struct perf_event *event;
3319

3320 3321 3322 3323
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3324 3325 3326 3327

	return 0;
}

3328
int perf_event_task_disable(void)
3329
{
3330
	struct perf_event *event;
3331

3332 3333 3334 3335
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3336 3337 3338 3339

	return 0;
}

3340 3341
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3342 3343
#endif

3344
static int perf_event_index(struct perf_event *event)
3345
{
P
Peter Zijlstra 已提交
3346 3347 3348
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3349
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3350 3351
		return 0;

3352
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3353 3354
}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
static void calc_timer_values(struct perf_event *event,
				u64 *running,
				u64 *enabled)
{
	u64 now, ctx_time;

	now = perf_clock();
	ctx_time = event->shadow_ctx_time + now;
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3367 3368 3369 3370 3371
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3372
void perf_event_update_userpage(struct perf_event *event)
3373
{
3374
	struct perf_event_mmap_page *userpg;
3375
	struct ring_buffer *rb;
3376
	u64 enabled, running;
3377 3378

	rcu_read_lock();
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
	calc_timer_values(event, &enabled, &running);
3389 3390
	rb = rcu_dereference(event->rb);
	if (!rb)
3391 3392
		goto unlock;

3393
	userpg = rb->user_page;
3394

3395 3396 3397 3398 3399
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3400
	++userpg->lock;
3401
	barrier();
3402
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3403
	userpg->offset = perf_event_count(event);
3404
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3405
		userpg->offset -= local64_read(&event->hw.prev_count);
3406

3407
	userpg->time_enabled = enabled +
3408
			atomic64_read(&event->child_total_time_enabled);
3409

3410
	userpg->time_running = running +
3411
			atomic64_read(&event->child_total_time_running);
3412

3413
	barrier();
3414
	++userpg->lock;
3415
	preempt_enable();
3416
unlock:
3417
	rcu_read_unlock();
3418 3419
}

3420 3421 3422
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3423
	struct ring_buffer *rb;
3424 3425 3426 3427 3428 3429 3430 3431 3432
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3433 3434
	rb = rcu_dereference(event->rb);
	if (!rb)
3435 3436 3437 3438 3439
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3440
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3455
static void rb_free_rcu(struct rcu_head *rcu_head)
3456
{
3457
	struct ring_buffer *rb;
3458

3459 3460
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3461 3462
}

3463
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3464
{
3465
	struct ring_buffer *rb;
3466

3467
	rcu_read_lock();
3468 3469 3470 3471
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3472 3473 3474
	}
	rcu_read_unlock();

3475
	return rb;
3476 3477
}

3478
static void ring_buffer_put(struct ring_buffer *rb)
3479
{
3480
	if (!atomic_dec_and_test(&rb->refcount))
3481
		return;
3482

3483
	call_rcu(&rb->rcu_head, rb_free_rcu);
3484 3485 3486 3487
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3488
	struct perf_event *event = vma->vm_file->private_data;
3489

3490
	atomic_inc(&event->mmap_count);
3491 3492 3493 3494
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3495
	struct perf_event *event = vma->vm_file->private_data;
3496

3497
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3498
		unsigned long size = perf_data_size(event->rb);
3499
		struct user_struct *user = event->mmap_user;
3500
		struct ring_buffer *rb = event->rb;
3501

3502
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3503
		vma->vm_mm->locked_vm -= event->mmap_locked;
3504
		rcu_assign_pointer(event->rb, NULL);
3505
		mutex_unlock(&event->mmap_mutex);
3506

3507
		ring_buffer_put(rb);
3508
		free_uid(user);
3509
	}
3510 3511
}

3512
static const struct vm_operations_struct perf_mmap_vmops = {
3513 3514 3515 3516
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3517 3518 3519 3520
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3521
	struct perf_event *event = file->private_data;
3522
	unsigned long user_locked, user_lock_limit;
3523
	struct user_struct *user = current_user();
3524
	unsigned long locked, lock_limit;
3525
	struct ring_buffer *rb;
3526 3527
	unsigned long vma_size;
	unsigned long nr_pages;
3528
	long user_extra, extra;
3529
	int ret = 0, flags = 0;
3530

3531 3532 3533
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3534
	 * same rb.
3535 3536 3537 3538
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3539
	if (!(vma->vm_flags & VM_SHARED))
3540
		return -EINVAL;
3541 3542 3543 3544

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3545
	/*
3546
	 * If we have rb pages ensure they're a power-of-two number, so we
3547 3548 3549
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3550 3551
		return -EINVAL;

3552
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3553 3554
		return -EINVAL;

3555 3556
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3557

3558 3559
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3560 3561 3562
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3563
		else
3564 3565 3566 3567
			ret = -EINVAL;
		goto unlock;
	}

3568
	user_extra = nr_pages + 1;
3569
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3570 3571 3572 3573 3574 3575

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3576
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3577

3578 3579 3580
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3581

3582
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3583
	lock_limit >>= PAGE_SHIFT;
3584
	locked = vma->vm_mm->locked_vm + extra;
3585

3586 3587
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3588 3589 3590
		ret = -EPERM;
		goto unlock;
	}
3591

3592
	WARN_ON(event->rb);
3593

3594
	if (vma->vm_flags & VM_WRITE)
3595
		flags |= RING_BUFFER_WRITABLE;
3596

3597 3598 3599 3600
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3601
	if (!rb) {
3602
		ret = -ENOMEM;
3603
		goto unlock;
3604
	}
3605
	rcu_assign_pointer(event->rb, rb);
3606

3607 3608 3609 3610 3611
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3612
unlock:
3613 3614
	if (!ret)
		atomic_inc(&event->mmap_count);
3615
	mutex_unlock(&event->mmap_mutex);
3616 3617 3618

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3619 3620

	return ret;
3621 3622
}

P
Peter Zijlstra 已提交
3623 3624 3625
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3626
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3627 3628 3629
	int retval;

	mutex_lock(&inode->i_mutex);
3630
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3631 3632 3633 3634 3635 3636 3637 3638
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3639
static const struct file_operations perf_fops = {
3640
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3641 3642 3643
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3644 3645
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3646
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3647
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3648 3649
};

3650
/*
3651
 * Perf event wakeup
3652 3653 3654 3655 3656
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3657
void perf_event_wakeup(struct perf_event *event)
3658
{
3659
	wake_up_all(&event->waitq);
3660

3661 3662 3663
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3664
	}
3665 3666
}

3667
static void perf_pending_event(struct irq_work *entry)
3668
{
3669 3670
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3671

3672 3673 3674
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3675 3676
	}

3677 3678 3679
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3680 3681 3682
	}
}

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3704 3705 3706
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3734 3735 3736
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3763 3764 3765
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3766 3767 3768 3769 3770
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3771
static void perf_output_read_one(struct perf_output_handle *handle,
3772 3773
				 struct perf_event *event,
				 u64 enabled, u64 running)
3774
{
3775
	u64 read_format = event->attr.read_format;
3776 3777 3778
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3779
	values[n++] = perf_event_count(event);
3780
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3781
		values[n++] = enabled +
3782
			atomic64_read(&event->child_total_time_enabled);
3783 3784
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3785
		values[n++] = running +
3786
			atomic64_read(&event->child_total_time_running);
3787 3788
	}
	if (read_format & PERF_FORMAT_ID)
3789
		values[n++] = primary_event_id(event);
3790

3791
	__output_copy(handle, values, n * sizeof(u64));
3792 3793 3794
}

/*
3795
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3796 3797
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3798 3799
			    struct perf_event *event,
			    u64 enabled, u64 running)
3800
{
3801 3802
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3803 3804 3805 3806 3807 3808
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3809
		values[n++] = enabled;
3810 3811

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3812
		values[n++] = running;
3813

3814
	if (leader != event)
3815 3816
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3817
	values[n++] = perf_event_count(leader);
3818
	if (read_format & PERF_FORMAT_ID)
3819
		values[n++] = primary_event_id(leader);
3820

3821
	__output_copy(handle, values, n * sizeof(u64));
3822

3823
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3824 3825
		n = 0;

3826
		if (sub != event)
3827 3828
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3829
		values[n++] = perf_event_count(sub);
3830
		if (read_format & PERF_FORMAT_ID)
3831
			values[n++] = primary_event_id(sub);
3832

3833
		__output_copy(handle, values, n * sizeof(u64));
3834 3835 3836
	}
}

3837 3838 3839
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3840
static void perf_output_read(struct perf_output_handle *handle,
3841
			     struct perf_event *event)
3842
{
3843
	u64 enabled = 0, running = 0;
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3855 3856
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
		calc_timer_values(event, &enabled, &running);
3857

3858
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3859
		perf_output_read_group(handle, event, enabled, running);
3860
	else
3861
		perf_output_read_one(handle, event, enabled, running);
3862 3863
}

3864 3865 3866
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3867
			struct perf_event *event)
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3898
		perf_output_read(handle, event);
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3909
			__output_copy(handle, data->callchain, size);
3910 3911 3912 3913 3914 3915 3916 3917 3918
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3919 3920
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
3946 3947 3948 3949
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3950
			 struct perf_event *event,
3951
			 struct pt_regs *regs)
3952
{
3953
	u64 sample_type = event->attr.sample_type;
3954

3955
	header->type = PERF_RECORD_SAMPLE;
3956
	header->size = sizeof(*header) + event->header_size;
3957 3958 3959

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3960

3961
	__perf_event_header__init_id(header, data, event);
3962

3963
	if (sample_type & PERF_SAMPLE_IP)
3964 3965
		data->ip = perf_instruction_pointer(regs);

3966
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3967
		int size = 1;
3968

3969 3970 3971 3972 3973 3974
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3975 3976
	}

3977
	if (sample_type & PERF_SAMPLE_RAW) {
3978 3979 3980 3981 3982 3983 3984 3985
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3986
		header->size += size;
3987
	}
3988
}
3989

3990
static void perf_event_output(struct perf_event *event,
3991 3992 3993 3994 3995
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3996

3997 3998 3999
	/* protect the callchain buffers */
	rcu_read_lock();

4000
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4001

4002
	if (perf_output_begin(&handle, event, header.size))
4003
		goto exit;
4004

4005
	perf_output_sample(&handle, &header, data, event);
4006

4007
	perf_output_end(&handle);
4008 4009 4010

exit:
	rcu_read_unlock();
4011 4012
}

4013
/*
4014
 * read event_id
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4025
perf_event_read_event(struct perf_event *event,
4026 4027 4028
			struct task_struct *task)
{
	struct perf_output_handle handle;
4029
	struct perf_sample_data sample;
4030
	struct perf_read_event read_event = {
4031
		.header = {
4032
			.type = PERF_RECORD_READ,
4033
			.misc = 0,
4034
			.size = sizeof(read_event) + event->read_size,
4035
		},
4036 4037
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4038
	};
4039
	int ret;
4040

4041
	perf_event_header__init_id(&read_event.header, &sample, event);
4042
	ret = perf_output_begin(&handle, event, read_event.header.size);
4043 4044 4045
	if (ret)
		return;

4046
	perf_output_put(&handle, read_event);
4047
	perf_output_read(&handle, event);
4048
	perf_event__output_id_sample(event, &handle, &sample);
4049

4050 4051 4052
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4053
/*
P
Peter Zijlstra 已提交
4054 4055
 * task tracking -- fork/exit
 *
4056
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4057 4058
 */

P
Peter Zijlstra 已提交
4059
struct perf_task_event {
4060
	struct task_struct		*task;
4061
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4062 4063 4064 4065 4066 4067

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4068 4069
		u32				tid;
		u32				ptid;
4070
		u64				time;
4071
	} event_id;
P
Peter Zijlstra 已提交
4072 4073
};

4074
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4075
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4076 4077
{
	struct perf_output_handle handle;
4078
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4079
	struct task_struct *task = task_event->task;
4080
	int ret, size = task_event->event_id.header.size;
4081

4082
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4083

4084
	ret = perf_output_begin(&handle, event,
4085
				task_event->event_id.header.size);
4086
	if (ret)
4087
		goto out;
P
Peter Zijlstra 已提交
4088

4089 4090
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4091

4092 4093
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4094

4095
	perf_output_put(&handle, task_event->event_id);
4096

4097 4098
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4099
	perf_output_end(&handle);
4100 4101
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4102 4103
}

4104
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4105
{
P
Peter Zijlstra 已提交
4106
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4107 4108
		return 0;

4109
	if (!event_filter_match(event))
4110 4111
		return 0;

4112 4113
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4114 4115 4116 4117 4118
		return 1;

	return 0;
}

4119
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4120
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4121
{
4122
	struct perf_event *event;
P
Peter Zijlstra 已提交
4123

4124 4125 4126
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4127 4128 4129
	}
}

4130
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4131 4132
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4133
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4134
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4135
	int ctxn;
P
Peter Zijlstra 已提交
4136

4137
	rcu_read_lock();
P
Peter Zijlstra 已提交
4138
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4139
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4140 4141
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4142
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4143 4144 4145 4146 4147

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4148
				goto next;
P
Peter Zijlstra 已提交
4149 4150 4151 4152
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4153 4154
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4155
	}
P
Peter Zijlstra 已提交
4156 4157 4158
	rcu_read_unlock();
}

4159 4160
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4161
			      int new)
P
Peter Zijlstra 已提交
4162
{
P
Peter Zijlstra 已提交
4163
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4164

4165 4166 4167
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4168 4169
		return;

P
Peter Zijlstra 已提交
4170
	task_event = (struct perf_task_event){
4171 4172
		.task	  = task,
		.task_ctx = task_ctx,
4173
		.event_id    = {
P
Peter Zijlstra 已提交
4174
			.header = {
4175
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4176
				.misc = 0,
4177
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4178
			},
4179 4180
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4181 4182
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4183
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4184 4185 4186
		},
	};

4187
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4188 4189
}

4190
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4191
{
4192
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4193 4194
}

4195 4196 4197 4198 4199
/*
 * comm tracking
 */

struct perf_comm_event {
4200 4201
	struct task_struct	*task;
	char			*comm;
4202 4203 4204 4205 4206 4207 4208
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4209
	} event_id;
4210 4211
};

4212
static void perf_event_comm_output(struct perf_event *event,
4213 4214 4215
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4216
	struct perf_sample_data sample;
4217
	int size = comm_event->event_id.header.size;
4218 4219 4220 4221
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4222
				comm_event->event_id.header.size);
4223 4224

	if (ret)
4225
		goto out;
4226

4227 4228
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4229

4230
	perf_output_put(&handle, comm_event->event_id);
4231
	__output_copy(&handle, comm_event->comm,
4232
				   comm_event->comm_size);
4233 4234 4235

	perf_event__output_id_sample(event, &handle, &sample);

4236
	perf_output_end(&handle);
4237 4238
out:
	comm_event->event_id.header.size = size;
4239 4240
}

4241
static int perf_event_comm_match(struct perf_event *event)
4242
{
P
Peter Zijlstra 已提交
4243
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4244 4245
		return 0;

4246
	if (!event_filter_match(event))
4247 4248
		return 0;

4249
	if (event->attr.comm)
4250 4251 4252 4253 4254
		return 1;

	return 0;
}

4255
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4256 4257
				  struct perf_comm_event *comm_event)
{
4258
	struct perf_event *event;
4259

4260 4261 4262
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4263 4264 4265
	}
}

4266
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4267 4268
{
	struct perf_cpu_context *cpuctx;
4269
	struct perf_event_context *ctx;
4270
	char comm[TASK_COMM_LEN];
4271
	unsigned int size;
P
Peter Zijlstra 已提交
4272
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4273
	int ctxn;
4274

4275
	memset(comm, 0, sizeof(comm));
4276
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4277
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4278 4279 4280 4281

	comm_event->comm = comm;
	comm_event->comm_size = size;

4282
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4283
	rcu_read_lock();
P
Peter Zijlstra 已提交
4284
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4285
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4286 4287
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4288
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4289 4290 4291

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4292
			goto next;
P
Peter Zijlstra 已提交
4293 4294 4295 4296

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4297 4298
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4299
	}
4300
	rcu_read_unlock();
4301 4302
}

4303
void perf_event_comm(struct task_struct *task)
4304
{
4305
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4306 4307
	struct perf_event_context *ctx;
	int ctxn;
4308

P
Peter Zijlstra 已提交
4309 4310 4311 4312
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4313

P
Peter Zijlstra 已提交
4314 4315
		perf_event_enable_on_exec(ctx);
	}
4316

4317
	if (!atomic_read(&nr_comm_events))
4318
		return;
4319

4320
	comm_event = (struct perf_comm_event){
4321
		.task	= task,
4322 4323
		/* .comm      */
		/* .comm_size */
4324
		.event_id  = {
4325
			.header = {
4326
				.type = PERF_RECORD_COMM,
4327 4328 4329 4330 4331
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4332 4333 4334
		},
	};

4335
	perf_event_comm_event(&comm_event);
4336 4337
}

4338 4339 4340 4341 4342
/*
 * mmap tracking
 */

struct perf_mmap_event {
4343 4344 4345 4346
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4347 4348 4349 4350 4351 4352 4353 4354 4355

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4356
	} event_id;
4357 4358
};

4359
static void perf_event_mmap_output(struct perf_event *event,
4360 4361 4362
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4363
	struct perf_sample_data sample;
4364
	int size = mmap_event->event_id.header.size;
4365
	int ret;
4366

4367 4368
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4369
				mmap_event->event_id.header.size);
4370
	if (ret)
4371
		goto out;
4372

4373 4374
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4375

4376
	perf_output_put(&handle, mmap_event->event_id);
4377
	__output_copy(&handle, mmap_event->file_name,
4378
				   mmap_event->file_size);
4379 4380 4381

	perf_event__output_id_sample(event, &handle, &sample);

4382
	perf_output_end(&handle);
4383 4384
out:
	mmap_event->event_id.header.size = size;
4385 4386
}

4387
static int perf_event_mmap_match(struct perf_event *event,
4388 4389
				   struct perf_mmap_event *mmap_event,
				   int executable)
4390
{
P
Peter Zijlstra 已提交
4391
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4392 4393
		return 0;

4394
	if (!event_filter_match(event))
4395 4396
		return 0;

4397 4398
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4399 4400 4401 4402 4403
		return 1;

	return 0;
}

4404
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4405 4406
				  struct perf_mmap_event *mmap_event,
				  int executable)
4407
{
4408
	struct perf_event *event;
4409

4410
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4411
		if (perf_event_mmap_match(event, mmap_event, executable))
4412
			perf_event_mmap_output(event, mmap_event);
4413 4414 4415
	}
}

4416
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4417 4418
{
	struct perf_cpu_context *cpuctx;
4419
	struct perf_event_context *ctx;
4420 4421
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4422 4423 4424
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4425
	const char *name;
P
Peter Zijlstra 已提交
4426
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4427
	int ctxn;
4428

4429 4430
	memset(tmp, 0, sizeof(tmp));

4431
	if (file) {
4432
		/*
4433
		 * d_path works from the end of the rb backwards, so we
4434 4435 4436 4437
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4438 4439 4440 4441
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4442
		name = d_path(&file->f_path, buf, PATH_MAX);
4443 4444 4445 4446 4447
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4448 4449 4450
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4451
			goto got_name;
4452
		}
4453 4454 4455 4456

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4457 4458 4459 4460 4461 4462 4463 4464
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4465 4466
		}

4467 4468 4469 4470 4471
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4472
	size = ALIGN(strlen(name)+1, sizeof(u64));
4473 4474 4475 4476

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4477
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4478

4479
	rcu_read_lock();
P
Peter Zijlstra 已提交
4480
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4481
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4482 4483
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4484 4485
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4486 4487 4488

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4489
			goto next;
P
Peter Zijlstra 已提交
4490 4491 4492 4493 4494 4495

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4496 4497
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4498
	}
4499 4500
	rcu_read_unlock();

4501 4502 4503
	kfree(buf);
}

4504
void perf_event_mmap(struct vm_area_struct *vma)
4505
{
4506 4507
	struct perf_mmap_event mmap_event;

4508
	if (!atomic_read(&nr_mmap_events))
4509 4510 4511
		return;

	mmap_event = (struct perf_mmap_event){
4512
		.vma	= vma,
4513 4514
		/* .file_name */
		/* .file_size */
4515
		.event_id  = {
4516
			.header = {
4517
				.type = PERF_RECORD_MMAP,
4518
				.misc = PERF_RECORD_MISC_USER,
4519 4520 4521 4522
				/* .size */
			},
			/* .pid */
			/* .tid */
4523 4524
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4525
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4526 4527 4528
		},
	};

4529
	perf_event_mmap_event(&mmap_event);
4530 4531
}

4532 4533 4534 4535
/*
 * IRQ throttle logging
 */

4536
static void perf_log_throttle(struct perf_event *event, int enable)
4537 4538
{
	struct perf_output_handle handle;
4539
	struct perf_sample_data sample;
4540 4541 4542 4543 4544
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4545
		u64				id;
4546
		u64				stream_id;
4547 4548
	} throttle_event = {
		.header = {
4549
			.type = PERF_RECORD_THROTTLE,
4550 4551 4552
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4553
		.time		= perf_clock(),
4554 4555
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4556 4557
	};

4558
	if (enable)
4559
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4560

4561 4562 4563
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4564
				throttle_event.header.size);
4565 4566 4567 4568
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4569
	perf_event__output_id_sample(event, &handle, &sample);
4570 4571 4572
	perf_output_end(&handle);
}

4573
/*
4574
 * Generic event overflow handling, sampling.
4575 4576
 */

4577
static int __perf_event_overflow(struct perf_event *event,
4578 4579
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4580
{
4581 4582
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4583 4584
	int ret = 0;

4585 4586 4587 4588 4589 4590 4591
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4592 4593 4594 4595
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4596 4597
			ret = 1;
		}
P
Peter Zijlstra 已提交
4598 4599
	} else
		hwc->interrupts++;
4600

4601
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4602
		u64 now = perf_clock();
4603
		s64 delta = now - hwc->freq_time_stamp;
4604

4605
		hwc->freq_time_stamp = now;
4606

4607 4608
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4609 4610
	}

4611 4612
	/*
	 * XXX event_limit might not quite work as expected on inherited
4613
	 * events
4614 4615
	 */

4616 4617
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4618
		ret = 1;
4619
		event->pending_kill = POLL_HUP;
4620 4621
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4622 4623
	}

4624
	if (event->overflow_handler)
4625
		event->overflow_handler(event, data, regs);
4626
	else
4627
		perf_event_output(event, data, regs);
4628

P
Peter Zijlstra 已提交
4629
	if (event->fasync && event->pending_kill) {
4630 4631
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4632 4633
	}

4634
	return ret;
4635 4636
}

4637
int perf_event_overflow(struct perf_event *event,
4638 4639
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4640
{
4641
	return __perf_event_overflow(event, 1, data, regs);
4642 4643
}

4644
/*
4645
 * Generic software event infrastructure
4646 4647
 */

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4659
/*
4660 4661
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4662 4663 4664 4665
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4666
static u64 perf_swevent_set_period(struct perf_event *event)
4667
{
4668
	struct hw_perf_event *hwc = &event->hw;
4669 4670 4671 4672 4673
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4674 4675

again:
4676
	old = val = local64_read(&hwc->period_left);
4677 4678
	if (val < 0)
		return 0;
4679

4680 4681 4682
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4683
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4684
		goto again;
4685

4686
	return nr;
4687 4688
}

4689
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4690
				    struct perf_sample_data *data,
4691
				    struct pt_regs *regs)
4692
{
4693
	struct hw_perf_event *hwc = &event->hw;
4694
	int throttle = 0;
4695

4696
	data->period = event->hw.last_period;
4697 4698
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4699

4700 4701
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4702

4703
	for (; overflow; overflow--) {
4704
		if (__perf_event_overflow(event, throttle,
4705
					    data, regs)) {
4706 4707 4708 4709 4710 4711
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4712
		throttle = 1;
4713
	}
4714 4715
}

P
Peter Zijlstra 已提交
4716
static void perf_swevent_event(struct perf_event *event, u64 nr,
4717
			       struct perf_sample_data *data,
4718
			       struct pt_regs *regs)
4719
{
4720
	struct hw_perf_event *hwc = &event->hw;
4721

4722
	local64_add(nr, &event->count);
4723

4724 4725 4726
	if (!regs)
		return;

4727
	if (!is_sampling_event(event))
4728
		return;
4729

4730
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4731
		return perf_swevent_overflow(event, 1, data, regs);
4732

4733
	if (local64_add_negative(nr, &hwc->period_left))
4734
		return;
4735

4736
	perf_swevent_overflow(event, 0, data, regs);
4737 4738
}

4739 4740 4741
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4742
	if (event->hw.state & PERF_HES_STOPPED)
4743
		return 1;
P
Peter Zijlstra 已提交
4744

4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4756
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4757
				enum perf_type_id type,
L
Li Zefan 已提交
4758 4759 4760
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4761
{
4762
	if (event->attr.type != type)
4763
		return 0;
4764

4765
	if (event->attr.config != event_id)
4766 4767
		return 0;

4768 4769
	if (perf_exclude_event(event, regs))
		return 0;
4770 4771 4772 4773

	return 1;
}

4774 4775 4776 4777 4778 4779 4780
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4781 4782
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4783
{
4784 4785 4786 4787
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4788

4789 4790
/* For the read side: events when they trigger */
static inline struct hlist_head *
4791
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4792 4793
{
	struct swevent_hlist *hlist;
4794

4795
	hlist = rcu_dereference(swhash->swevent_hlist);
4796 4797 4798
	if (!hlist)
		return NULL;

4799 4800 4801 4802 4803
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4804
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4815
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4816 4817 4818 4819 4820
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4821 4822 4823
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4824
				    u64 nr,
4825 4826
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4827
{
4828
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4829
	struct perf_event *event;
4830 4831
	struct hlist_node *node;
	struct hlist_head *head;
4832

4833
	rcu_read_lock();
4834
	head = find_swevent_head_rcu(swhash, type, event_id);
4835 4836 4837 4838
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4839
		if (perf_swevent_match(event, type, event_id, data, regs))
4840
			perf_swevent_event(event, nr, data, regs);
4841
	}
4842 4843
end:
	rcu_read_unlock();
4844 4845
}

4846
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4847
{
4848
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4849

4850
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4851
}
I
Ingo Molnar 已提交
4852
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4853

4854
inline void perf_swevent_put_recursion_context(int rctx)
4855
{
4856
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4857

4858
	put_recursion_context(swhash->recursion, rctx);
4859
}
4860

4861
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4862
{
4863
	struct perf_sample_data data;
4864 4865
	int rctx;

4866
	preempt_disable_notrace();
4867 4868 4869
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4870

4871
	perf_sample_data_init(&data, addr);
4872

4873
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4874 4875

	perf_swevent_put_recursion_context(rctx);
4876
	preempt_enable_notrace();
4877 4878
}

4879
static void perf_swevent_read(struct perf_event *event)
4880 4881 4882
{
}

P
Peter Zijlstra 已提交
4883
static int perf_swevent_add(struct perf_event *event, int flags)
4884
{
4885
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4886
	struct hw_perf_event *hwc = &event->hw;
4887 4888
	struct hlist_head *head;

4889
	if (is_sampling_event(event)) {
4890
		hwc->last_period = hwc->sample_period;
4891
		perf_swevent_set_period(event);
4892
	}
4893

P
Peter Zijlstra 已提交
4894 4895
	hwc->state = !(flags & PERF_EF_START);

4896
	head = find_swevent_head(swhash, event);
4897 4898 4899 4900 4901
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4902 4903 4904
	return 0;
}

P
Peter Zijlstra 已提交
4905
static void perf_swevent_del(struct perf_event *event, int flags)
4906
{
4907
	hlist_del_rcu(&event->hlist_entry);
4908 4909
}

P
Peter Zijlstra 已提交
4910
static void perf_swevent_start(struct perf_event *event, int flags)
4911
{
P
Peter Zijlstra 已提交
4912
	event->hw.state = 0;
4913
}
I
Ingo Molnar 已提交
4914

P
Peter Zijlstra 已提交
4915
static void perf_swevent_stop(struct perf_event *event, int flags)
4916
{
P
Peter Zijlstra 已提交
4917
	event->hw.state = PERF_HES_STOPPED;
4918 4919
}

4920 4921
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4922
swevent_hlist_deref(struct swevent_htable *swhash)
4923
{
4924 4925
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4926 4927
}

4928
static void swevent_hlist_release(struct swevent_htable *swhash)
4929
{
4930
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4931

4932
	if (!hlist)
4933 4934
		return;

4935
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4936
	kfree_rcu(hlist, rcu_head);
4937 4938 4939 4940
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4941
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4942

4943
	mutex_lock(&swhash->hlist_mutex);
4944

4945 4946
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4947

4948
	mutex_unlock(&swhash->hlist_mutex);
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4966
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4967 4968
	int err = 0;

4969
	mutex_lock(&swhash->hlist_mutex);
4970

4971
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4972 4973 4974 4975 4976 4977 4978
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4979
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4980
	}
4981
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4982
exit:
4983
	mutex_unlock(&swhash->hlist_mutex);
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5007
fail:
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5018
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5019

5020 5021 5022
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5023

5024 5025
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5026
	jump_label_dec(&perf_swevent_enabled[event_id]);
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5046
	if (event_id >= PERF_COUNT_SW_MAX)
5047 5048 5049 5050 5051 5052 5053 5054 5055
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5056
		jump_label_inc(&perf_swevent_enabled[event_id]);
5057 5058 5059 5060 5061 5062 5063
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5064
	.task_ctx_nr	= perf_sw_context,
5065

5066
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5067 5068 5069 5070
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5071 5072 5073
	.read		= perf_swevent_read,
};

5074 5075
#ifdef CONFIG_EVENT_TRACING

5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5090 5091
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5092 5093 5094 5095
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5096 5097 5098 5099 5100 5101 5102 5103 5104
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5105
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5106 5107
{
	struct perf_sample_data data;
5108 5109 5110
	struct perf_event *event;
	struct hlist_node *node;

5111 5112 5113 5114 5115 5116 5117 5118
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5119 5120
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5121
			perf_swevent_event(event, count, &data, regs);
5122
	}
5123 5124

	perf_swevent_put_recursion_context(rctx);
5125 5126 5127
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5128
static void tp_perf_event_destroy(struct perf_event *event)
5129
{
5130
	perf_trace_destroy(event);
5131 5132
}

5133
static int perf_tp_event_init(struct perf_event *event)
5134
{
5135 5136
	int err;

5137 5138 5139
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5140 5141
	err = perf_trace_init(event);
	if (err)
5142
		return err;
5143

5144
	event->destroy = tp_perf_event_destroy;
5145

5146 5147 5148 5149
	return 0;
}

static struct pmu perf_tracepoint = {
5150 5151
	.task_ctx_nr	= perf_sw_context,

5152
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5153 5154 5155 5156
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5157 5158 5159 5160 5161
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5162
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5163
}
L
Li Zefan 已提交
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5188
#else
L
Li Zefan 已提交
5189

5190
static inline void perf_tp_register(void)
5191 5192
{
}
L
Li Zefan 已提交
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5203
#endif /* CONFIG_EVENT_TRACING */
5204

5205
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5206
void perf_bp_event(struct perf_event *bp, void *data)
5207
{
5208 5209 5210
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5211
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5212

P
Peter Zijlstra 已提交
5213
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5214
		perf_swevent_event(bp, 1, &sample, regs);
5215 5216 5217
}
#endif

5218 5219 5220
/*
 * hrtimer based swevent callback
 */
5221

5222
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5223
{
5224 5225 5226 5227 5228
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5229

5230
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5231 5232 5233 5234

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5235
	event->pmu->read(event);
5236

5237 5238 5239 5240 5241 5242
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
5243
			if (perf_event_overflow(event, &data, regs))
5244 5245
				ret = HRTIMER_NORESTART;
	}
5246

5247 5248
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5249

5250
	return ret;
5251 5252
}

5253
static void perf_swevent_start_hrtimer(struct perf_event *event)
5254
{
5255
	struct hw_perf_event *hwc = &event->hw;
5256 5257 5258 5259
	s64 period;

	if (!is_sampling_event(event))
		return;
5260

5261 5262 5263 5264
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5265

5266 5267 5268 5269 5270
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5271
				ns_to_ktime(period), 0,
5272
				HRTIMER_MODE_REL_PINNED, 0);
5273
}
5274 5275

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5276
{
5277 5278
	struct hw_perf_event *hwc = &event->hw;

5279
	if (is_sampling_event(event)) {
5280
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5281
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5282 5283 5284

		hrtimer_cancel(&hwc->hrtimer);
	}
5285 5286
}

P
Peter Zijlstra 已提交
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5311 5312 5313 5314 5315
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5316
{
5317 5318 5319
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5320
	now = local_clock();
5321 5322
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5323 5324
}

P
Peter Zijlstra 已提交
5325
static void cpu_clock_event_start(struct perf_event *event, int flags)
5326
{
P
Peter Zijlstra 已提交
5327
	local64_set(&event->hw.prev_count, local_clock());
5328 5329 5330
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5331
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5332
{
5333 5334 5335
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5336

P
Peter Zijlstra 已提交
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5350 5351 5352 5353
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5354

5355 5356 5357 5358 5359 5360 5361 5362
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5363 5364
	perf_swevent_init_hrtimer(event);

5365
	return 0;
5366 5367
}

5368
static struct pmu perf_cpu_clock = {
5369 5370
	.task_ctx_nr	= perf_sw_context,

5371
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5372 5373 5374 5375
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5376 5377 5378 5379 5380 5381 5382 5383
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5384
{
5385 5386
	u64 prev;
	s64 delta;
5387

5388 5389 5390 5391
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5392

P
Peter Zijlstra 已提交
5393
static void task_clock_event_start(struct perf_event *event, int flags)
5394
{
P
Peter Zijlstra 已提交
5395
	local64_set(&event->hw.prev_count, event->ctx->time);
5396 5397 5398
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5399
static void task_clock_event_stop(struct perf_event *event, int flags)
5400 5401 5402
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5403 5404 5405 5406 5407 5408
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5409

P
Peter Zijlstra 已提交
5410 5411 5412 5413 5414 5415
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5416 5417 5418 5419
}

static void task_clock_event_read(struct perf_event *event)
{
5420 5421 5422
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5423 5424 5425 5426 5427

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5428
{
5429 5430 5431 5432 5433 5434
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5435 5436
	perf_swevent_init_hrtimer(event);

5437
	return 0;
L
Li Zefan 已提交
5438 5439
}

5440
static struct pmu perf_task_clock = {
5441 5442
	.task_ctx_nr	= perf_sw_context,

5443
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5444 5445 5446 5447
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5448 5449
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5450

P
Peter Zijlstra 已提交
5451
static void perf_pmu_nop_void(struct pmu *pmu)
5452 5453
{
}
L
Li Zefan 已提交
5454

P
Peter Zijlstra 已提交
5455
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5456
{
P
Peter Zijlstra 已提交
5457
	return 0;
L
Li Zefan 已提交
5458 5459
}

P
Peter Zijlstra 已提交
5460
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5461
{
P
Peter Zijlstra 已提交
5462
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5463 5464
}

P
Peter Zijlstra 已提交
5465 5466 5467 5468 5469
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5470

P
Peter Zijlstra 已提交
5471
static void perf_pmu_cancel_txn(struct pmu *pmu)
5472
{
P
Peter Zijlstra 已提交
5473
	perf_pmu_enable(pmu);
5474 5475
}

P
Peter Zijlstra 已提交
5476 5477 5478 5479 5480
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5481
{
P
Peter Zijlstra 已提交
5482
	struct pmu *pmu;
5483

P
Peter Zijlstra 已提交
5484 5485
	if (ctxn < 0)
		return NULL;
5486

P
Peter Zijlstra 已提交
5487 5488 5489 5490
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5491

P
Peter Zijlstra 已提交
5492
	return NULL;
5493 5494
}

5495
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5496
{
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5512

P
Peter Zijlstra 已提交
5513
	mutex_lock(&pmus_lock);
5514
	/*
P
Peter Zijlstra 已提交
5515
	 * Like a real lame refcount.
5516
	 */
5517 5518 5519
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5520
			goto out;
5521
		}
P
Peter Zijlstra 已提交
5522
	}
5523

5524
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5525 5526
out:
	mutex_unlock(&pmus_lock);
5527
}
P
Peter Zijlstra 已提交
5528
static struct idr pmu_idr;
5529

P
Peter Zijlstra 已提交
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5582
static struct lock_class_key cpuctx_mutex;
5583
static struct lock_class_key cpuctx_lock;
5584

P
Peter Zijlstra 已提交
5585
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5586
{
P
Peter Zijlstra 已提交
5587
	int cpu, ret;
5588

5589
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5590 5591 5592 5593
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5594

P
Peter Zijlstra 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5613 5614 5615 5616 5617 5618
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5619
skip_type:
P
Peter Zijlstra 已提交
5620 5621 5622
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5623

P
Peter Zijlstra 已提交
5624 5625
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5626
		goto free_dev;
5627

P
Peter Zijlstra 已提交
5628 5629 5630 5631
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5632
		__perf_event_init_context(&cpuctx->ctx);
5633
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5634
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5635
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5636
		cpuctx->ctx.pmu = pmu;
5637 5638
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5639
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5640
	}
5641

P
Peter Zijlstra 已提交
5642
got_cpu_context:
P
Peter Zijlstra 已提交
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5657
		}
5658
	}
5659

P
Peter Zijlstra 已提交
5660 5661 5662 5663 5664
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5665
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5666 5667
	ret = 0;
unlock:
5668 5669
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5670
	return ret;
P
Peter Zijlstra 已提交
5671

P
Peter Zijlstra 已提交
5672 5673 5674 5675
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5676 5677 5678 5679
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5680 5681 5682
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5683 5684
}

5685
void perf_pmu_unregister(struct pmu *pmu)
5686
{
5687 5688 5689
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5690

5691
	/*
P
Peter Zijlstra 已提交
5692 5693
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5694
	 */
5695
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5696
	synchronize_rcu();
5697

P
Peter Zijlstra 已提交
5698
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5699 5700
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5701 5702
	device_del(pmu->dev);
	put_device(pmu->dev);
5703
	free_pmu_context(pmu);
5704
}
5705

5706 5707 5708 5709
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5710
	int ret;
5711 5712

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5713 5714 5715 5716

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5717 5718 5719 5720
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5721
		goto unlock;
5722
	}
P
Peter Zijlstra 已提交
5723

5724
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5725
		ret = pmu->event_init(event);
5726
		if (!ret)
P
Peter Zijlstra 已提交
5727
			goto unlock;
5728

5729 5730
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5731
			goto unlock;
5732
		}
5733
	}
P
Peter Zijlstra 已提交
5734 5735
	pmu = ERR_PTR(-ENOENT);
unlock:
5736
	srcu_read_unlock(&pmus_srcu, idx);
5737

5738
	return pmu;
5739 5740
}

T
Thomas Gleixner 已提交
5741
/*
5742
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5743
 */
5744
static struct perf_event *
5745
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5746 5747 5748
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5749 5750
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5751
{
P
Peter Zijlstra 已提交
5752
	struct pmu *pmu;
5753 5754
	struct perf_event *event;
	struct hw_perf_event *hwc;
5755
	long err;
T
Thomas Gleixner 已提交
5756

5757 5758 5759 5760 5761
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5762
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5763
	if (!event)
5764
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5765

5766
	/*
5767
	 * Single events are their own group leaders, with an
5768 5769 5770
	 * empty sibling list:
	 */
	if (!group_leader)
5771
		group_leader = event;
5772

5773 5774
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5775

5776 5777 5778 5779
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
5780
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5781

5782
	mutex_init(&event->mmap_mutex);
5783

5784 5785 5786 5787 5788
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5789

5790
	event->parent		= parent_event;
5791

5792 5793
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5794

5795
	event->state		= PERF_EVENT_STATE_INACTIVE;
5796

5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5808
	if (!overflow_handler && parent_event) {
5809
		overflow_handler = parent_event->overflow_handler;
5810 5811
		context = parent_event->overflow_handler_context;
	}
5812

5813
	event->overflow_handler	= overflow_handler;
5814
	event->overflow_handler_context = context;
5815

5816
	if (attr->disabled)
5817
		event->state = PERF_EVENT_STATE_OFF;
5818

5819
	pmu = NULL;
5820

5821
	hwc = &event->hw;
5822
	hwc->sample_period = attr->sample_period;
5823
	if (attr->freq && attr->sample_freq)
5824
		hwc->sample_period = 1;
5825
	hwc->last_period = hwc->sample_period;
5826

5827
	local64_set(&hwc->period_left, hwc->sample_period);
5828

5829
	/*
5830
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5831
	 */
5832
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5833 5834
		goto done;

5835
	pmu = perf_init_event(event);
5836

5837 5838
done:
	err = 0;
5839
	if (!pmu)
5840
		err = -EINVAL;
5841 5842
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5843

5844
	if (err) {
5845 5846 5847
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5848
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5849
	}
5850

5851
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5852

5853
	if (!event->parent) {
5854
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
5855
			jump_label_inc(&perf_sched_events);
5856
		if (event->attr.mmap || event->attr.mmap_data)
5857 5858 5859 5860 5861
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5862 5863 5864 5865 5866 5867 5868
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5869
	}
5870

5871
	return event;
T
Thomas Gleixner 已提交
5872 5873
}

5874 5875
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5876 5877
{
	u32 size;
5878
	int ret;
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5903 5904 5905
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5906 5907
	 */
	if (size > sizeof(*attr)) {
5908 5909 5910
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5911

5912 5913
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5914

5915
		for (; addr < end; addr++) {
5916 5917 5918 5919 5920 5921
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5922
		size = sizeof(*attr);
5923 5924 5925 5926 5927 5928
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

5929
	if (attr->__reserved_1)
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5947 5948
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5949
{
5950
	struct ring_buffer *rb = NULL, *old_rb = NULL;
5951 5952
	int ret = -EINVAL;

5953
	if (!output_event)
5954 5955
		goto set;

5956 5957
	/* don't allow circular references */
	if (event == output_event)
5958 5959
		goto out;

5960 5961 5962 5963 5964 5965 5966
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
5967
	 * If its not a per-cpu rb, it must be the same task.
5968 5969 5970 5971
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5972
set:
5973
	mutex_lock(&event->mmap_mutex);
5974 5975 5976
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5977

5978
	if (output_event) {
5979 5980 5981
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
5982
			goto unlock;
5983 5984
	}

5985 5986
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
5987
	ret = 0;
5988 5989 5990
unlock:
	mutex_unlock(&event->mmap_mutex);

5991 5992
	if (old_rb)
		ring_buffer_put(old_rb);
5993 5994 5995 5996
out:
	return ret;
}

T
Thomas Gleixner 已提交
5997
/**
5998
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5999
 *
6000
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6001
 * @pid:		target pid
I
Ingo Molnar 已提交
6002
 * @cpu:		target cpu
6003
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6004
 */
6005 6006
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6007
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6008
{
6009 6010
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6011 6012 6013
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6014
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6015
	struct task_struct *task = NULL;
6016
	struct pmu *pmu;
6017
	int event_fd;
6018
	int move_group = 0;
6019
	int fput_needed = 0;
6020
	int err;
T
Thomas Gleixner 已提交
6021

6022
	/* for future expandability... */
S
Stephane Eranian 已提交
6023
	if (flags & ~PERF_FLAG_ALL)
6024 6025
		return -EINVAL;

6026 6027 6028
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6029

6030 6031 6032 6033 6034
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6035
	if (attr.freq) {
6036
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6037 6038 6039
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6049 6050 6051 6052
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6053 6054 6055 6056
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6057
			goto err_fd;
6058 6059 6060 6061 6062 6063 6064 6065
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6066
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6067 6068 6069 6070 6071 6072 6073
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6074 6075
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6076 6077
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6078
		goto err_task;
6079 6080
	}

S
Stephane Eranian 已提交
6081 6082 6083 6084
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6085 6086 6087 6088 6089 6090 6091
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6092 6093
	}

6094 6095 6096 6097 6098
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6122 6123 6124 6125

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6126
	ctx = find_get_context(pmu, task, cpu);
6127 6128
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6129
		goto err_alloc;
6130 6131
	}

6132 6133 6134 6135 6136
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6137
	/*
6138
	 * Look up the group leader (we will attach this event to it):
6139
	 */
6140
	if (group_leader) {
6141
		err = -EINVAL;
6142 6143

		/*
I
Ingo Molnar 已提交
6144 6145 6146 6147
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6148
			goto err_context;
I
Ingo Molnar 已提交
6149 6150 6151
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6152
		 */
6153 6154 6155 6156 6157 6158 6159 6160
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6161 6162 6163
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6164
		if (attr.exclusive || attr.pinned)
6165
			goto err_context;
6166 6167 6168 6169 6170
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6171
			goto err_context;
6172
	}
T
Thomas Gleixner 已提交
6173

6174 6175 6176
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6177
		goto err_context;
6178
	}
6179

6180 6181 6182 6183
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6184
		perf_remove_from_context(group_leader);
6185 6186
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6187
			perf_remove_from_context(sibling);
6188 6189 6190 6191
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6192
	}
6193

6194
	event->filp = event_file;
6195
	WARN_ON_ONCE(ctx->parent_ctx);
6196
	mutex_lock(&ctx->mutex);
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6208
	perf_install_in_context(ctx, event, cpu);
6209
	++ctx->generation;
6210
	perf_unpin_context(ctx);
6211
	mutex_unlock(&ctx->mutex);
6212

6213
	event->owner = current;
P
Peter Zijlstra 已提交
6214

6215 6216 6217
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6218

6219 6220 6221 6222
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6223
	perf_event__id_header_size(event);
6224

6225 6226 6227 6228 6229 6230
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6231 6232 6233
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6234

6235
err_context:
6236
	perf_unpin_context(ctx);
6237
	put_ctx(ctx);
6238
err_alloc:
6239
	free_event(event);
P
Peter Zijlstra 已提交
6240 6241 6242
err_task:
	if (task)
		put_task_struct(task);
6243
err_group_fd:
6244
	fput_light(group_file, fput_needed);
6245 6246
err_fd:
	put_unused_fd(event_fd);
6247
	return err;
T
Thomas Gleixner 已提交
6248 6249
}

6250 6251 6252 6253 6254
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6255
 * @task: task to profile (NULL for percpu)
6256 6257 6258
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6259
				 struct task_struct *task,
6260 6261
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6262 6263
{
	struct perf_event_context *ctx;
6264
	struct perf_event *event;
6265
	int err;
6266

6267 6268 6269
	/*
	 * Get the target context (task or percpu):
	 */
6270

6271 6272
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6273 6274 6275 6276
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6277

M
Matt Helsley 已提交
6278
	ctx = find_get_context(event->pmu, task, cpu);
6279 6280
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6281
		goto err_free;
6282
	}
6283 6284 6285 6286 6287 6288

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6289
	perf_unpin_context(ctx);
6290 6291 6292 6293
	mutex_unlock(&ctx->mutex);

	return event;

6294 6295 6296
err_free:
	free_event(event);
err:
6297
	return ERR_PTR(err);
6298
}
6299
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6300

6301
static void sync_child_event(struct perf_event *child_event,
6302
			       struct task_struct *child)
6303
{
6304
	struct perf_event *parent_event = child_event->parent;
6305
	u64 child_val;
6306

6307 6308
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6309

P
Peter Zijlstra 已提交
6310
	child_val = perf_event_count(child_event);
6311 6312 6313 6314

	/*
	 * Add back the child's count to the parent's count:
	 */
6315
	atomic64_add(child_val, &parent_event->child_count);
6316 6317 6318 6319
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6320 6321

	/*
6322
	 * Remove this event from the parent's list
6323
	 */
6324 6325 6326 6327
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6328 6329

	/*
6330
	 * Release the parent event, if this was the last
6331 6332
	 * reference to it.
	 */
6333
	fput(parent_event->filp);
6334 6335
}

6336
static void
6337 6338
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6339
			 struct task_struct *child)
6340
{
6341 6342 6343 6344 6345
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6346

6347
	perf_remove_from_context(child_event);
6348

6349
	/*
6350
	 * It can happen that the parent exits first, and has events
6351
	 * that are still around due to the child reference. These
6352
	 * events need to be zapped.
6353
	 */
6354
	if (child_event->parent) {
6355 6356
		sync_child_event(child_event, child);
		free_event(child_event);
6357
	}
6358 6359
}

P
Peter Zijlstra 已提交
6360
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6361
{
6362 6363
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6364
	unsigned long flags;
6365

P
Peter Zijlstra 已提交
6366
	if (likely(!child->perf_event_ctxp[ctxn])) {
6367
		perf_event_task(child, NULL, 0);
6368
		return;
P
Peter Zijlstra 已提交
6369
	}
6370

6371
	local_irq_save(flags);
6372 6373 6374 6375 6376 6377
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6378
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6379 6380 6381

	/*
	 * Take the context lock here so that if find_get_context is
6382
	 * reading child->perf_event_ctxp, we wait until it has
6383 6384
	 * incremented the context's refcount before we do put_ctx below.
	 */
6385
	raw_spin_lock(&child_ctx->lock);
6386
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6387
	child->perf_event_ctxp[ctxn] = NULL;
6388 6389 6390
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6391
	 * the events from it.
6392 6393
	 */
	unclone_ctx(child_ctx);
6394
	update_context_time(child_ctx);
6395
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6396 6397

	/*
6398 6399 6400
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6401
	 */
6402
	perf_event_task(child, child_ctx, 0);
6403

6404 6405 6406
	/*
	 * We can recurse on the same lock type through:
	 *
6407 6408 6409
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6410 6411 6412 6413 6414
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6415
	mutex_lock(&child_ctx->mutex);
6416

6417
again:
6418 6419 6420 6421 6422
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6423
				 group_entry)
6424
		__perf_event_exit_task(child_event, child_ctx, child);
6425 6426

	/*
6427
	 * If the last event was a group event, it will have appended all
6428 6429 6430
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6431 6432
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6433
		goto again;
6434 6435 6436 6437

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6438 6439
}

P
Peter Zijlstra 已提交
6440 6441 6442 6443 6444
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6445
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6446 6447
	int ctxn;

P
Peter Zijlstra 已提交
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6463 6464 6465 6466
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6481
	perf_group_detach(event);
6482 6483 6484 6485
	list_del_event(event, ctx);
	free_event(event);
}

6486 6487
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6488
 * perf_event_init_task below, used by fork() in case of fail.
6489
 */
6490
void perf_event_free_task(struct task_struct *task)
6491
{
P
Peter Zijlstra 已提交
6492
	struct perf_event_context *ctx;
6493
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6494
	int ctxn;
6495

P
Peter Zijlstra 已提交
6496 6497 6498 6499
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6500

P
Peter Zijlstra 已提交
6501
		mutex_lock(&ctx->mutex);
6502
again:
P
Peter Zijlstra 已提交
6503 6504 6505
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6506

P
Peter Zijlstra 已提交
6507 6508 6509
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6510

P
Peter Zijlstra 已提交
6511 6512 6513
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6514

P
Peter Zijlstra 已提交
6515
		mutex_unlock(&ctx->mutex);
6516

P
Peter Zijlstra 已提交
6517 6518
		put_ctx(ctx);
	}
6519 6520
}

6521 6522 6523 6524 6525 6526 6527 6528
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6541
	unsigned long flags;
P
Peter Zijlstra 已提交
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6554
					   child,
P
Peter Zijlstra 已提交
6555
					   group_leader, parent_event,
6556
				           NULL, NULL);
P
Peter Zijlstra 已提交
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6583 6584
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6585

6586 6587 6588 6589
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6590
	perf_event__id_header_size(child_event);
6591

P
Peter Zijlstra 已提交
6592 6593 6594
	/*
	 * Link it up in the child's context:
	 */
6595
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6596
	add_event_to_ctx(child_event, child_ctx);
6597
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6639 6640 6641 6642 6643
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6644
		   struct task_struct *child, int ctxn,
6645 6646 6647
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6648
	struct perf_event_context *child_ctx;
6649 6650 6651 6652

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6653 6654
	}

6655
	child_ctx = child->perf_event_ctxp[ctxn];
6656 6657 6658 6659 6660 6661 6662
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6663

6664
		child_ctx = alloc_perf_context(event->pmu, child);
6665 6666
		if (!child_ctx)
			return -ENOMEM;
6667

P
Peter Zijlstra 已提交
6668
		child->perf_event_ctxp[ctxn] = child_ctx;
6669 6670 6671 6672 6673 6674 6675 6676 6677
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6678 6679
}

6680
/*
6681
 * Initialize the perf_event context in task_struct
6682
 */
P
Peter Zijlstra 已提交
6683
int perf_event_init_context(struct task_struct *child, int ctxn)
6684
{
6685
	struct perf_event_context *child_ctx, *parent_ctx;
6686 6687
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6688
	struct task_struct *parent = current;
6689
	int inherited_all = 1;
6690
	unsigned long flags;
6691
	int ret = 0;
6692

P
Peter Zijlstra 已提交
6693
	if (likely(!parent->perf_event_ctxp[ctxn]))
6694 6695
		return 0;

6696
	/*
6697 6698
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6699
	 */
P
Peter Zijlstra 已提交
6700
	parent_ctx = perf_pin_task_context(parent, ctxn);
6701

6702 6703 6704 6705 6706 6707 6708
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6709 6710 6711 6712
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6713
	mutex_lock(&parent_ctx->mutex);
6714 6715 6716 6717 6718

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6719
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6720 6721
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6722 6723 6724
		if (ret)
			break;
	}
6725

6726 6727 6728 6729 6730 6731 6732 6733 6734
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6735
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6736 6737
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6738
		if (ret)
6739
			break;
6740 6741
	}

6742 6743 6744
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6745
	child_ctx = child->perf_event_ctxp[ctxn];
6746

6747
	if (child_ctx && inherited_all) {
6748 6749 6750
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6751 6752 6753
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6754
		 */
P
Peter Zijlstra 已提交
6755
		cloned_ctx = parent_ctx->parent_ctx;
6756 6757
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6758
			child_ctx->parent_gen = parent_ctx->parent_gen;
6759 6760 6761 6762 6763
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6764 6765
	}

P
Peter Zijlstra 已提交
6766
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6767
	mutex_unlock(&parent_ctx->mutex);
6768

6769
	perf_unpin_context(parent_ctx);
6770
	put_ctx(parent_ctx);
6771

6772
	return ret;
6773 6774
}

P
Peter Zijlstra 已提交
6775 6776 6777 6778 6779 6780 6781
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6782 6783 6784 6785
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6786 6787 6788 6789 6790 6791 6792 6793 6794
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6795 6796
static void __init perf_event_init_all_cpus(void)
{
6797
	struct swevent_htable *swhash;
6798 6799 6800
	int cpu;

	for_each_possible_cpu(cpu) {
6801 6802
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6803
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6804 6805 6806
	}
}

6807
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6808
{
P
Peter Zijlstra 已提交
6809
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6810

6811 6812
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6813 6814
		struct swevent_hlist *hlist;

6815 6816 6817
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6818
	}
6819
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6820 6821
}

P
Peter Zijlstra 已提交
6822
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6823
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6824
{
6825 6826 6827 6828 6829 6830 6831
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6832
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6833
{
P
Peter Zijlstra 已提交
6834
	struct perf_event_context *ctx = __info;
6835
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6836

P
Peter Zijlstra 已提交
6837
	perf_pmu_rotate_stop(ctx->pmu);
6838

6839
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6840
		__perf_remove_from_context(event);
6841
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6842
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6843
}
P
Peter Zijlstra 已提交
6844 6845 6846 6847 6848 6849 6850 6851 6852

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6853
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6854 6855 6856 6857 6858 6859 6860 6861

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6862
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6863
{
6864
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6865

6866 6867 6868
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6869

P
Peter Zijlstra 已提交
6870
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6871 6872
}
#else
6873
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6874 6875
#endif

P
Peter Zijlstra 已提交
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6896 6897 6898 6899 6900
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6901
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6902 6903

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6904
	case CPU_DOWN_FAILED:
6905
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6906 6907
		break;

P
Peter Zijlstra 已提交
6908
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6909
	case CPU_DOWN_PREPARE:
6910
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6920
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6921
{
6922 6923
	int ret;

P
Peter Zijlstra 已提交
6924 6925
	idr_init(&pmu_idr);

6926
	perf_event_init_all_cpus();
6927
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
6928 6929 6930
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
6931 6932
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
6933
	register_reboot_notifier(&perf_reboot_notifier);
6934 6935 6936

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
6937
}
P
Peter Zijlstra 已提交
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
6966 6967 6968 6969 6970 6971 6972

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

6973
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7003 7004
static void
perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
S
Stephane Eranian 已提交
7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7020
	perf_cgroup_attach_task(cgrp, task);
S
Stephane Eranian 已提交
7021 7022 7023
}

struct cgroup_subsys perf_subsys = {
7024 7025 7026 7027 7028
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7029
	.attach_task	= perf_cgroup_attach_task,
S
Stephane Eranian 已提交
7030 7031
};
#endif /* CONFIG_CGROUP_PERF */