perf_event_intel.c 73.6 KB
Newer Older
1
/*
2 3 4 5
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
6
 */
7

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
14
#include <linux/export.h>
15

16
#include <asm/cpufeature.h>
17 18 19 20
#include <asm/hardirq.h>
#include <asm/apic.h>

#include "perf_event.h"
21

22
/*
23
 * Intel PerfMon, used on Core and later.
24
 */
25
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26
{
27 28 29 30 31 32 33 34
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
35 36
};

37
static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 39 40 41 42 43 44 45 46 47
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

48
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49
{
50 51
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
52
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
53 54 55 56 57 58 59 60
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62 63 64 65
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

66
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67
{
68 69
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
71 72 73 74 75 76 77 78 79 80 81
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

82
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83
{
84 85
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
86
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
87 88 89
	EVENT_EXTRA_END
};

90
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
91
{
92 93
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
94
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
95 96 97
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
98
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
99 100 101
	EVENT_CONSTRAINT_END
};

102
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
103 104 105
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
106
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
107 108 109 110
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
111 112 113
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
114 115
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116 117 118
	EVENT_CONSTRAINT_END
};

119 120 121 122 123 124 125 126
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
127
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
128 129 130 131 132 133
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
134 135 136 137 138 139 140 141 142
	/*
	 * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
	 * siblings; disable these events because they can corrupt unrelated
	 * counters.
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
143 144 145
	EVENT_CONSTRAINT_END
};

146
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
147
{
148 149 150
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
151
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
152 153 154
	EVENT_EXTRA_END
};

155 156 157 158 159
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

160
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
161
{
162 163
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
164
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
165 166 167
	EVENT_CONSTRAINT_END
};

168 169 170 171 172 173 174 175
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
	EVENT_CONSTRAINT_END
};

176
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
177 178 179
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
180
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
181 182 183 184
	EVENT_EXTRA_END
};

static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
185 186 187
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
188
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
189 190 191
	EVENT_EXTRA_END
};

192 193 194
EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
195 196 197 198 199 200 201 202

struct attribute *nhm_events_attrs[] = {
	EVENT_PTR(mem_ld_nhm),
	NULL,
};

struct attribute *snb_events_attrs[] = {
	EVENT_PTR(mem_ld_snb),
203
	EVENT_PTR(mem_st_snb),
204 205 206
	NULL,
};

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static struct event_constraint intel_hsw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
	EVENT_CONSTRAINT_END
};

223 224 225 226 227
static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
#define SNB_DMND_DATA_RD	(1ULL << 0)
#define SNB_DMND_RFO		(1ULL << 1)
#define SNB_DMND_IFETCH		(1ULL << 2)
#define SNB_DMND_WB		(1ULL << 3)
#define SNB_PF_DATA_RD		(1ULL << 4)
#define SNB_PF_RFO		(1ULL << 5)
#define SNB_PF_IFETCH		(1ULL << 6)
#define SNB_LLC_DATA_RD		(1ULL << 7)
#define SNB_LLC_RFO		(1ULL << 8)
#define SNB_LLC_IFETCH		(1ULL << 9)
#define SNB_BUS_LOCKS		(1ULL << 10)
#define SNB_STRM_ST		(1ULL << 11)
#define SNB_OTHER		(1ULL << 15)
#define SNB_RESP_ANY		(1ULL << 16)
#define SNB_NO_SUPP		(1ULL << 17)
#define SNB_LLC_HITM		(1ULL << 18)
#define SNB_LLC_HITE		(1ULL << 19)
#define SNB_LLC_HITS		(1ULL << 20)
#define SNB_LLC_HITF		(1ULL << 21)
#define SNB_LOCAL		(1ULL << 22)
#define SNB_REMOTE		(0xffULL << 23)
#define SNB_SNP_NONE		(1ULL << 31)
#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
#define SNB_SNP_MISS		(1ULL << 33)
#define SNB_NO_FWD		(1ULL << 34)
#define SNB_SNP_FWD		(1ULL << 35)
#define SNB_HITM		(1ULL << 36)
#define SNB_NON_DRAM		(1ULL << 37)

#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
				 SNB_HITM)

#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)

#define SNB_L3_ACCESS		SNB_RESP_ANY
#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)

static __initconst const u64 snb_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
	},
 },
};

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
341
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
342
		[ C(RESULT_ACCESS) ] = 0x01b7,
343 344
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
345 346
	},
	[ C(OP_WRITE) ] = {
347
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
348
		[ C(RESULT_ACCESS) ] = 0x01b7,
349 350
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
351 352
	},
	[ C(OP_PREFETCH) ] = {
353
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
354
		[ C(RESULT_ACCESS) ] = 0x01b7,
355 356
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
401 402
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
403 404
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
405 406
	},
	[ C(OP_WRITE) ] = {
407 408
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
409 410
	},
	[ C(OP_PREFETCH) ] = {
411 412
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
413 414 415
	},
 },

416 417
};

418
static __initconst const u64 westmere_hw_cache_event_ids
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
453
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
454
		[ C(RESULT_ACCESS) ] = 0x01b7,
455 456
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
457
	},
458 459 460 461
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
462
	[ C(OP_WRITE) ] = {
463 464 465
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
466
		[ C(RESULT_MISS)   ] = 0x01b7,
467 468
	},
	[ C(OP_PREFETCH) ] = {
469
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
470
		[ C(RESULT_ACCESS) ] = 0x01b7,
471 472
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
517 518 519 520 521 522 523 524 525 526 527 528 529 530
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
531 532
};

533
/*
534 535
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
536 537
 */

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

555 556
#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)
557 558 559 560 561 562

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
563
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
564
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
565 566 567 568 569 570 571 572

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
573 574
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
575 576
	},
	[ C(OP_WRITE) ] = {
577 578
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
579 580
	},
	[ C(OP_PREFETCH) ] = {
581 582
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
583
	},
584 585 586
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
587 588
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
589 590
	},
	[ C(OP_WRITE) ] = {
591 592
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
593 594
	},
	[ C(OP_PREFETCH) ] = {
595 596
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
597 598
	},
 },
599 600
};

601
static __initconst const u64 nehalem_hw_cache_event_ids
602 603 604 605 606 607
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
608 609
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
610 611
	},
	[ C(OP_WRITE) ] = {
612 613
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
636 637 638 639
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
640
	},
641 642 643 644
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
645
	[ C(OP_WRITE) ] = {
646 647 648 649
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
650 651
	},
	[ C(OP_PREFETCH) ] = {
652 653 654 655
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
700 701 702 703 704 705 706 707 708 709 710 711 712 713
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
714 715
};

716
static __initconst const u64 core2_hw_cache_event_ids
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

807
static __initconst const u64 atom_hw_cache_event_ids
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

898 899 900
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
{
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
901 902
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	EVENT_EXTRA_END
};

#define SLM_DMND_READ		SNB_DMND_DATA_RD
#define SLM_DMND_WRITE		SNB_DMND_RFO
#define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
#define SLM_LLC_ACCESS		SNB_RESP_ANY
#define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 slm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_READ|SLM_LLC_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
	},
 },
};

static __initconst const u64 slm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1032 1033 1034 1035 1036 1037 1038
static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
{
	/* user explicitly requested branch sampling */
	if (has_branch_stack(event))
		return true;

	/* implicit branch sampling to correct PEBS skid */
1039 1040
	if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 &&
	    x86_pmu.intel_cap.pebs_format < 2)
1041 1042 1043 1044 1045
		return true;

	return false;
}

1046 1047
static void intel_pmu_disable_all(void)
{
1048
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1049 1050 1051

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

1052
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1053
		intel_pmu_disable_bts();
1054 1055

	intel_pmu_pebs_disable_all();
1056
	intel_pmu_lbr_disable_all();
1057 1058
}

1059
static void intel_pmu_enable_all(int added)
1060
{
1061
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1062

1063 1064
	intel_pmu_pebs_enable_all();
	intel_pmu_lbr_enable_all();
1065 1066
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1067

1068
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1069
		struct perf_event *event =
1070
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1071 1072 1073 1074 1075 1076 1077 1078

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
	}
}

1079 1080 1081 1082
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
1083
 *   Intel Errata BD53   (model 44)
1084
 *
1085 1086 1087 1088 1089 1090 1091
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practise it appears some of these events do in fact count, and
 * we need to programm all 4 events.
1092
 */
1093
static void intel_pmu_nhm_workaround(void)
1094
{
1095
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1096 1097 1098 1099 1100 1101 1102 1103
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
1125

1126 1127 1128 1129 1130 1131
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
1132

1133 1134 1135 1136 1137 1138 1139
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1140

1141 1142 1143 1144 1145
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
1146
			__x86_pmu_enable_event(&event->hw,
1147 1148 1149
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1150
	}
1151 1152 1153 1154 1155 1156
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
1157 1158 1159
	intel_pmu_enable_all(added);
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

1174
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1175
{
1176
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1177 1178 1179 1180 1181 1182
	u64 ctrl_val, mask;

	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
1183
	wrmsrl(hwc->config_base, ctrl_val);
1184 1185
}

1186 1187 1188 1189 1190
static inline bool event_is_checkpointed(struct perf_event *event)
{
	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
}

1191
static void intel_pmu_disable_event(struct perf_event *event)
1192
{
1193
	struct hw_perf_event *hwc = &event->hw;
1194
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1195

1196
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1197 1198 1199 1200 1201
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
		return;
	}

1202 1203
	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1204
	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1205

1206 1207 1208 1209 1210 1211 1212
	/*
	 * must disable before any actual event
	 * because any event may be combined with LBR
	 */
	if (intel_pmu_needs_lbr_smpl(event))
		intel_pmu_lbr_disable(event);

1213
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1214
		intel_pmu_disable_fixed(hwc);
1215 1216 1217
		return;
	}

1218
	x86_pmu_disable_event(event);
1219

P
Peter Zijlstra 已提交
1220
	if (unlikely(event->attr.precise_ip))
1221
		intel_pmu_pebs_disable(event);
1222 1223
}

1224
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1225
{
1226
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	u64 ctrl_val, bits, mask;

	/*
	 * Enable IRQ generation (0x8),
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
	bits = 0x8ULL;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
1252
	wrmsrl(hwc->config_base, ctrl_val);
1253 1254
}

1255
static void intel_pmu_enable_event(struct perf_event *event)
1256
{
1257
	struct hw_perf_event *hwc = &event->hw;
1258
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1259

1260
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
T
Tejun Heo 已提交
1261
		if (!__this_cpu_read(cpu_hw_events.enabled))
1262 1263 1264 1265 1266
			return;

		intel_pmu_enable_bts(hwc->config);
		return;
	}
1267 1268 1269 1270 1271 1272
	/*
	 * must enabled before any actual event
	 * because any event may be combined with LBR
	 */
	if (intel_pmu_needs_lbr_smpl(event))
		intel_pmu_lbr_enable(event);
1273

1274 1275 1276 1277 1278
	if (event->attr.exclude_host)
		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
	if (event->attr.exclude_guest)
		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);

1279 1280 1281
	if (unlikely(event_is_checkpointed(event)))
		cpuc->intel_cp_status |= (1ull << hwc->idx);

1282
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1283
		intel_pmu_enable_fixed(hwc);
1284 1285 1286
		return;
	}

P
Peter Zijlstra 已提交
1287
	if (unlikely(event->attr.precise_ip))
1288
		intel_pmu_pebs_enable(event);
1289

1290
	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1291 1292 1293 1294 1295 1296
}

/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
1297
int intel_pmu_save_and_restart(struct perf_event *event)
1298
{
1299
	x86_perf_event_update(event);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	/*
	 * For a checkpointed counter always reset back to 0.  This
	 * avoids a situation where the counter overflows, aborts the
	 * transaction and is then set back to shortly before the
	 * overflow, and overflows and aborts again.
	 */
	if (unlikely(event_is_checkpointed(event))) {
		/* No race with NMIs because the counter should not be armed */
		wrmsrl(event->hw.event_base, 0);
		local64_set(&event->hw.prev_count, 0);
	}
1311
	return x86_perf_event_set_period(event);
1312 1313 1314 1315
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
1316
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1317 1318 1319
	unsigned long flags;
	int idx;

1320
	if (!x86_pmu.num_counters)
1321 1322 1323 1324
		return;

	local_irq_save(flags);

1325
	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1326

1327
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1328 1329
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1330
	}
1331
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1332
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

	local_irq_restore(flags);
}

/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct cpu_hw_events *cpuc;
	int bit, loops;
1349
	u64 status;
1350
	int handled;
1351

1352
	cpuc = this_cpu_ptr(&cpu_hw_events);
1353

1354
	/*
1355 1356
	 * No known reason to not always do late ACK,
	 * but just in case do it opt-in.
1357
	 */
1358 1359
	if (!x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
1360
	intel_pmu_disable_all();
1361
	handled = intel_pmu_drain_bts_buffer();
1362
	status = intel_pmu_get_status();
1363 1364
	if (!status)
		goto done;
1365 1366 1367

	loops = 0;
again:
1368
	intel_pmu_ack_status(status);
1369
	if (++loops > 100) {
1370 1371 1372 1373 1374 1375
		static bool warned = false;
		if (!warned) {
			WARN(1, "perfevents: irq loop stuck!\n");
			perf_event_print_debug();
			warned = true;
		}
1376
		intel_pmu_reset();
1377
		goto done;
1378 1379 1380
	}

	inc_irq_stat(apic_perf_irqs);
1381

1382 1383
	intel_pmu_lbr_read();

1384 1385 1386 1387 1388 1389 1390 1391 1392
	/*
	 * CondChgd bit 63 doesn't mean any overflow status. Ignore
	 * and clear the bit.
	 */
	if (__test_and_clear_bit(63, (unsigned long *)&status)) {
		if (!status)
			goto done;
	}

1393 1394 1395
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
1396 1397
	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
		handled++;
1398
		x86_pmu.drain_pebs(regs);
1399
	}
1400

1401
	/*
1402 1403 1404
	 * Checkpointed counters can lead to 'spurious' PMIs because the
	 * rollback caused by the PMI will have cleared the overflow status
	 * bit. Therefore always force probe these counters.
1405
	 */
1406
	status |= cpuc->intel_cp_status;
1407

1408
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1409 1410
		struct perf_event *event = cpuc->events[bit];

1411 1412
		handled++;

1413 1414 1415 1416 1417 1418
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

1419
		perf_sample_data_init(&data, 0, event->hw.last_period);
1420

1421 1422 1423
		if (has_branch_stack(event))
			data.br_stack = &cpuc->lbr_stack;

1424
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1425
			x86_pmu_stop(event, 0);
1426 1427 1428 1429 1430 1431 1432 1433 1434
	}

	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

1435
done:
1436
	intel_pmu_enable_all(0);
1437 1438 1439 1440 1441 1442 1443
	/*
	 * Only unmask the NMI after the overflow counters
	 * have been reset. This avoids spurious NMIs on
	 * Haswell CPUs.
	 */
	if (x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
1444
	return handled;
1445 1446 1447
}

static struct event_constraint *
1448
intel_bts_constraints(struct perf_event *event)
1449
{
1450 1451
	struct hw_perf_event *hwc = &event->hw;
	unsigned int hw_event, bts_event;
1452

P
Peter Zijlstra 已提交
1453 1454 1455
	if (event->attr.freq)
		return NULL;

1456 1457
	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1458

1459
	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1460
		return &bts_constraint;
1461

1462 1463 1464
	return NULL;
}

1465
static int intel_alt_er(int idx)
1466 1467
{
	if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1468
		return idx;
1469

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	if (idx == EXTRA_REG_RSP_0)
		return EXTRA_REG_RSP_1;

	if (idx == EXTRA_REG_RSP_1)
		return EXTRA_REG_RSP_0;

	return idx;
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
1484
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1485
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1486
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1487 1488
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1489
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1490
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1491 1492 1493
	}
}

1494 1495 1496 1497 1498 1499 1500
/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
1501
static struct event_constraint *
1502
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1503 1504
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
1505
{
1506
	struct event_constraint *c = &emptyconstraint;
1507
	struct er_account *era;
1508
	unsigned long flags;
1509
	int idx = reg->idx;
1510

1511 1512 1513 1514 1515 1516
	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
1517
		return NULL; /* call x86_get_event_constraint() */
1518

1519
again:
1520
	era = &cpuc->shared_regs->regs[idx];
1521 1522 1523 1524 1525
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);
1526 1527 1528

	if (!atomic_read(&era->ref) || era->config == reg->config) {

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

1552 1553 1554 1555 1556 1557 1558
		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

1559
		/*
1560 1561
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
1562
		 */
1563
		c = NULL;
1564 1565 1566 1567 1568 1569
	} else {
		idx = intel_alt_er(idx);
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
1570
	}
1571
	raw_spin_unlock_irqrestore(&era->lock, flags);
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
1583 1584 1585 1586 1587 1588
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
1589
	 */
1590
	if (!reg->alloc || cpuc->is_fake)
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
1623
	return c;
1624 1625
}

1626 1627 1628 1629 1630 1631 1632
struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
1633 1634
			if ((event->hw.config & c->cmask) == c->code) {
				event->hw.flags |= c->flags;
1635
				return c;
1636
			}
1637 1638 1639 1640 1641 1642
		}
	}

	return &unconstrained;
}

1643 1644 1645 1646 1647
static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

1648 1649 1650 1651 1652
	c = intel_bts_constraints(event);
	if (c)
		return c;

	c = intel_pebs_constraints(event);
1653 1654 1655
	if (c)
		return c;

1656
	c = intel_shared_regs_constraints(cpuc, event);
1657 1658 1659
	if (c)
		return c;

1660 1661 1662
	return x86_get_event_constraints(cpuc, event);
}

1663 1664
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1665 1666
					struct perf_event *event)
{
1667
	struct hw_perf_event_extra *reg;
1668

1669 1670 1671
	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1672 1673 1674 1675

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1676
}
1677

1678 1679 1680 1681
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);
1682 1683
}

1684
static void intel_pebs_aliases_core2(struct perf_event *event)
1685
{
1686
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
1705 1706
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1734 1735 1736 1737

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
}

static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	if (event->attr.precise_ip && x86_pmu.pebs_aliases)
		x86_pmu.pebs_aliases(event);
1749

1750 1751 1752 1753 1754 1755
	if (intel_pmu_needs_lbr_smpl(event)) {
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
	}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
{
	if (x86_pmu.guest_get_msrs)
		return x86_pmu.guest_get_msrs(nr);
	*nr = 0;
	return NULL;
}
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);

static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
1784
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1785 1786 1787 1788 1789
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;

	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1790 1791 1792 1793 1794 1795 1796 1797
	/*
	 * If PMU counter has PEBS enabled it is not enough to disable counter
	 * on a guest entry since PEBS memory write can overshoot guest entry
	 * and corrupt guest memory. Disabling PEBS solves the problem.
	 */
	arr[1].msr = MSR_IA32_PEBS_ENABLE;
	arr[1].host = cpuc->pebs_enabled;
	arr[1].guest = 0;
1798

1799
	*nr = 2;
1800 1801 1802 1803 1804
	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
1805
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
1839
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static int hsw_hw_config(struct perf_event *event)
{
	int ret = intel_pmu_hw_config(event);

	if (ret)
		return ret;
	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
		return 0;
	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);

	/*
	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
	 * this combination.
	 */
	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
	      event->attr.precise_ip > 0))
		return -EOPNOTSUPP;

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	if (event_is_checkpointed(event)) {
		/*
		 * Sampling of checkpointed events can cause situations where
		 * the CPU constantly aborts because of a overflow, which is
		 * then checkpointed back and ignored. Forbid checkpointing
		 * for sampling.
		 *
		 * But still allow a long sampling period, so that perf stat
		 * from KVM works.
		 */
		if (event->attr.sample_period > 0 &&
		    event->attr.sample_period < 0x7fffffff)
			return -EOPNOTSUPP;
	}
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	return 0;
}

static struct event_constraint counter2_constraint =
			EVENT_CONSTRAINT(0, 0x4, 0);

static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c = intel_get_event_constraints(cpuc, event);

	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
		if (c->idxmsk64 & (1U << 2))
			return &counter2_constraint;
		return &emptyconstraint;
	}

	return c;
}

1908 1909 1910 1911 1912 1913 1914
PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
1915 1916
PMU_FORMAT_ATTR(in_tx,  "config:32");
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

1928 1929 1930 1931 1932 1933 1934
ssize_t intel_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);

	return x86_event_sysfs_show(page, config, event);
}

1935
static __initconst const struct x86_pmu core_pmu = {
1936 1937 1938
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
1939 1940
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
1941
	.disable		= x86_pmu_disable_event,
1942
	.hw_config		= x86_pmu_hw_config,
1943
	.schedule_events	= x86_schedule_events,
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
1956
	.put_event_constraints	= intel_put_event_constraints,
1957
	.event_constraints	= intel_core_event_constraints,
1958
	.guest_get_msrs		= core_guest_get_msrs,
1959
	.format_attrs		= intel_arch_formats_attr,
1960
	.events_sysfs_show	= intel_event_sysfs_show,
1961 1962
};

1963
struct intel_shared_regs *allocate_shared_regs(int cpu)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

1982 1983 1984 1985
static int intel_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

1986
	if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1987 1988
		return NOTIFY_OK;

1989 1990
	cpuc->shared_regs = allocate_shared_regs(cpu);
	if (!cpuc->shared_regs)
1991 1992 1993 1994 1995
		return NOTIFY_BAD;

	return NOTIFY_OK;
}

1996 1997
static void intel_pmu_cpu_starting(int cpu)
{
1998 1999 2000 2001
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

2002 2003 2004 2005 2006 2007
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

2008 2009 2010
	cpuc->lbr_sel = NULL;

	if (!cpuc->shared_regs)
2011 2012
		return;

2013 2014 2015
	if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
		for_each_cpu(i, topology_thread_cpumask(cpu)) {
			struct intel_shared_regs *pc;
2016

2017 2018 2019 2020 2021 2022
			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
				cpuc->kfree_on_online = cpuc->shared_regs;
				cpuc->shared_regs = pc;
				break;
			}
2023
		}
2024 2025
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
2026 2027
	}

2028 2029
	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2030 2031 2032 2033
}

static void intel_pmu_cpu_dying(int cpu)
{
2034
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2035
	struct intel_shared_regs *pc;
2036

2037
	pc = cpuc->shared_regs;
2038 2039 2040
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
2041
		cpuc->shared_regs = NULL;
2042 2043
	}

2044 2045 2046
	fini_debug_store_on_cpu(cpu);
}

2047 2048
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

2049 2050
PMU_FORMAT_ATTR(ldlat, "config1:0-15");

2051 2052 2053 2054 2055 2056 2057 2058
static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
2059 2060
	&format_attr_in_tx.attr,
	&format_attr_in_tx_cp.attr,
2061 2062

	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2063
	&format_attr_ldlat.attr, /* PEBS load latency */
2064 2065 2066
	NULL,
};

2067
static __initconst const struct x86_pmu intel_pmu = {
2068 2069 2070 2071 2072 2073
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
2074
	.hw_config		= intel_pmu_hw_config,
2075
	.schedule_events	= x86_schedule_events,
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
2087
	.get_event_constraints	= intel_get_event_constraints,
2088
	.put_event_constraints	= intel_put_event_constraints,
2089
	.pebs_aliases		= intel_pebs_aliases_core2,
2090

2091
	.format_attrs		= intel_arch3_formats_attr,
2092
	.events_sysfs_show	= intel_event_sysfs_show,
2093

2094
	.cpu_prepare		= intel_pmu_cpu_prepare,
2095 2096
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
2097
	.guest_get_msrs		= intel_guest_get_msrs,
2098
	.sched_task		= intel_pmu_lbr_sched_task,
2099 2100
};

2101
static __init void intel_clovertown_quirk(void)
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
2117
	 *	 a pebs_event_reset[0] value and coping with the lost events.
2118 2119 2120 2121
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
2122
	pr_warn("PEBS disabled due to CPU errata\n");
2123 2124 2125 2126
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
static int intel_snb_pebs_broken(int cpu)
{
	u32 rev = UINT_MAX; /* default to broken for unknown models */

	switch (cpu_data(cpu).x86_model) {
	case 42: /* SNB */
		rev = 0x28;
		break;

	case 45: /* SNB-EP */
		switch (cpu_data(cpu).x86_mask) {
		case 6: rev = 0x618; break;
		case 7: rev = 0x70c; break;
		}
	}

	return (cpu_data(cpu).microcode < rev);
}

static void intel_snb_check_microcode(void)
{
	int pebs_broken = 0;
	int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
			break;
	}
	put_online_cpus();

	if (pebs_broken == x86_pmu.pebs_broken)
		return;

	/*
	 * Serialized by the microcode lock..
	 */
	if (x86_pmu.pebs_broken) {
		pr_info("PEBS enabled due to microcode update\n");
		x86_pmu.pebs_broken = 0;
	} else {
		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
		x86_pmu.pebs_broken = 1;
	}
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/*
 * Under certain circumstances, access certain MSR may cause #GP.
 * The function tests if the input MSR can be safely accessed.
 */
static bool check_msr(unsigned long msr, u64 mask)
{
	u64 val_old, val_new, val_tmp;

	/*
	 * Read the current value, change it and read it back to see if it
	 * matches, this is needed to detect certain hardware emulators
	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
	 */
	if (rdmsrl_safe(msr, &val_old))
		return false;

	/*
	 * Only change the bits which can be updated by wrmsrl.
	 */
	val_tmp = val_old ^ mask;
	if (wrmsrl_safe(msr, val_tmp) ||
	    rdmsrl_safe(msr, &val_new))
		return false;

	if (val_new != val_tmp)
		return false;

	/* Here it's sure that the MSR can be safely accessed.
	 * Restore the old value and return.
	 */
	wrmsrl(msr, val_old);

	return true;
}

2208
static __init void intel_sandybridge_quirk(void)
2209
{
2210 2211
	x86_pmu.check_microcode = intel_snb_check_microcode;
	intel_snb_check_microcode();
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2222 2223
};

2224 2225 2226 2227 2228 2229 2230
static __init void intel_arch_events_quirk(void)
{
	int bit;

	/* disable event that reported as not presend by cpuid */
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2231 2232
		pr_warn("CPUID marked event: \'%s\' unavailable\n",
			intel_arch_events_map[bit].name);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
2251
		pr_info("CPU erratum AAJ80 worked around\n");
2252 2253 2254
	}
}

2255 2256
EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
2257

2258
/* Haswell special events */
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
2271

2272
static struct attribute *hsw_events_attrs[] = {
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_capacity),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_capacity),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
2285 2286 2287 2288 2289
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL
};

2290
__init int intel_pmu_init(void)
2291 2292 2293
{
	union cpuid10_edx edx;
	union cpuid10_eax eax;
2294
	union cpuid10_ebx ebx;
2295
	struct event_constraint *c;
2296
	unsigned int unused;
2297 2298
	struct extra_reg *er;
	int version, i;
2299 2300

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2301 2302 2303
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
2304 2305
		case 0xb:
			return knc_pmu_init();
2306 2307 2308
		case 0xf:
			return p4_pmu_init();
		}
2309 2310 2311 2312 2313 2314 2315
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
2316 2317
	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2318 2319 2320 2321 2322 2323 2324 2325 2326
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
2327 2328 2329
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
2330

2331 2332 2333
	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

2334 2335
	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);

2336 2337 2338 2339 2340
	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
	 * assume at least 3 events:
	 */
	if (version > 1)
2341
		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
2342

2343
	if (boot_cpu_has(X86_FEATURE_PDCM)) {
2344 2345 2346 2347 2348 2349
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

2350 2351
	intel_ds_init();

2352 2353
	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

2354 2355 2356 2357
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
2358
	case 14: /* 65nm Core "Yonah" */
2359 2360 2361
		pr_cont("Core events, ");
		break;

2362
	case 15: /* 65nm Core2 "Merom"          */
2363
		x86_add_quirk(intel_clovertown_quirk);
2364 2365 2366
	case 22: /* 65nm Core2 "Merom-L"        */
	case 23: /* 45nm Core2 "Penryn"         */
	case 29: /* 45nm Core2 "Dunnington (MP) */
2367 2368 2369
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

2370 2371
		intel_pmu_lbr_init_core();

2372
		x86_pmu.event_constraints = intel_core2_event_constraints;
2373
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2374 2375 2376
		pr_cont("Core2 events, ");
		break;

2377 2378 2379
	case 30: /* 45nm Nehalem    */
	case 26: /* 45nm Nehalem-EP */
	case 46: /* 45nm Nehalem-EX */
2380 2381
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2382 2383
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2384

2385 2386
		intel_pmu_lbr_init_nhm();

2387
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
2388
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2389
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2390
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
2391

2392 2393
		x86_pmu.cpu_events = nhm_events_attrs;

2394
		/* UOPS_ISSUED.STALLED_CYCLES */
2395 2396
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2397
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2398 2399
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2400

2401
		x86_add_quirk(intel_nehalem_quirk);
2402

2403
		pr_cont("Nehalem events, ");
2404
		break;
2405

2406 2407 2408 2409 2410
	case 28: /* 45nm Atom "Pineview"   */
	case 38: /* 45nm Atom "Lincroft"   */
	case 39: /* 32nm Atom "Penwell"    */
	case 53: /* 32nm Atom "Cloverview" */
	case 54: /* 32nm Atom "Cedarview"  */
2411 2412 2413
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

2414 2415
		intel_pmu_lbr_init_atom();

2416
		x86_pmu.event_constraints = intel_gen_event_constraints;
2417
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2418 2419 2420
		pr_cont("Atom events, ");
		break;

2421
	case 55: /* 22nm Atom "Silvermont"                */
2422
	case 76: /* 14nm Atom "Airmont"                   */
2423
	case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
			sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_atom();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_slm_extra_regs;
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		pr_cont("Silvermont events, ");
		break;

2438 2439 2440
	case 37: /* 32nm Westmere    */
	case 44: /* 32nm Westmere-EP */
	case 47: /* 32nm Westmere-EX */
2441 2442
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2443 2444
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2445

2446 2447
		intel_pmu_lbr_init_nhm();

2448
		x86_pmu.event_constraints = intel_westmere_event_constraints;
2449
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2450
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2451
		x86_pmu.extra_regs = intel_westmere_extra_regs;
2452
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
2453

2454 2455
		x86_pmu.cpu_events = nhm_events_attrs;

2456
		/* UOPS_ISSUED.STALLED_CYCLES */
2457 2458
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2459
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2460 2461
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2462

2463 2464
		pr_cont("Westmere events, ");
		break;
2465

2466 2467
	case 42: /* 32nm SandyBridge         */
	case 45: /* 32nm SandyBridge-E/EN/EP */
2468
		x86_add_quirk(intel_sandybridge_quirk);
2469 2470
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2471 2472
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2473

2474
		intel_pmu_lbr_init_snb();
2475 2476

		x86_pmu.event_constraints = intel_snb_event_constraints;
2477
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2478
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2479 2480 2481 2482
		if (boot_cpu_data.x86_model == 45)
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
2483
		/* all extra regs are per-cpu when HT is on */
2484 2485
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2486

2487 2488
		x86_pmu.cpu_events = snb_events_attrs;

2489
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2490 2491
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2492
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2493 2494
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2495

2496 2497
		pr_cont("SandyBridge events, ");
		break;
2498 2499 2500

	case 58: /* 22nm IvyBridge       */
	case 62: /* 22nm IvyBridge-EP/EX */
2501 2502
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2503 2504 2505
		/* dTLB-load-misses on IVB is different than SNB */
		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */

2506 2507 2508 2509 2510
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

2511
		x86_pmu.event_constraints = intel_ivb_event_constraints;
2512 2513
		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2514 2515 2516 2517
		if (boot_cpu_data.x86_model == 62)
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
2518 2519 2520 2521
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;

2522 2523
		x86_pmu.cpu_events = snb_events_attrs;

2524 2525 2526 2527 2528 2529 2530
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);

		pr_cont("IvyBridge events, ");
		break;

2531

2532 2533 2534 2535
	case 60: /* 22nm Haswell Core */
	case 63: /* 22nm Haswell Server */
	case 69: /* 22nm Haswell ULT */
	case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
2536
		x86_pmu.late_ack = true;
2537 2538
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2539

2540
		intel_pmu_lbr_init_hsw();
2541 2542

		x86_pmu.event_constraints = intel_hsw_event_constraints;
2543
		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2544
		x86_pmu.extra_regs = intel_snbep_extra_regs;
2545
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2546 2547 2548 2549 2550 2551
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
2552
		x86_pmu.cpu_events = hsw_events_attrs;
2553
		x86_pmu.lbr_double_abort = true;
2554 2555 2556
		pr_cont("Haswell events, ");
		break;

2557
	default:
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
			break;
		default:
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
			break;
		}
2571
	}
2572

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
	}
	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;

	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
	}

	x86_pmu.intel_ctrl |=
		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;

	if (x86_pmu.event_constraints) {
		/*
		 * event on fixed counter2 (REF_CYCLES) only works on this
		 * counter, so do not extend mask to generic counters
		 */
		for_each_event_constraint(c, x86_pmu.event_constraints) {
2595
			if (c->cmask != FIXED_EVENT_FLAGS
2596 2597 2598 2599 2600 2601 2602 2603 2604
			    || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
				continue;
			}

			c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
			c->weight += x86_pmu.num_counters;
		}
	}

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
	/*
	 * Access LBR MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support LBR MSR
	 * Check all LBT MSR here.
	 * Disable LBR access if any LBR MSRs can not be accessed.
	 */
	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
		x86_pmu.lbr_nr = 0;
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
			x86_pmu.lbr_nr = 0;
	}

	/*
	 * Access extra MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support offcore event
	 * Check all extra_regs here.
	 */
	if (x86_pmu.extra_regs) {
		for (er = x86_pmu.extra_regs; er->msr; er++) {
			er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
			/* Disable LBR select mapping */
			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
				x86_pmu.lbr_sel_map = NULL;
		}
	}

2633 2634 2635 2636 2637 2638 2639
	/* Support full width counters using alternative MSR range */
	if (x86_pmu.intel_cap.full_width_write) {
		x86_pmu.max_period = x86_pmu.cntval_mask;
		x86_pmu.perfctr = MSR_IA32_PMC0;
		pr_cont("full-width counters, ");
	}

2640 2641
	return 0;
}