perf_event_intel.c 59.8 KB
Newer Older
1
/*
2 3 4 5
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
6
 */
7

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
14
#include <linux/export.h>
15 16 17 18 19

#include <asm/hardirq.h>
#include <asm/apic.h>

#include "perf_event.h"
20

21
/*
22
 * Intel PerfMon, used on Core and later.
23
 */
24
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
25
{
26 27 28 29 30 31 32 33
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
34 35
};

36
static struct event_constraint intel_core_event_constraints[] __read_mostly =
37 38 39 40 41 42 43 44 45 46
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

47
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
48
{
49 50
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
51
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
52 53 54 55 56 57 58 59
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
60
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
61 62 63 64
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

65
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
66
{
67 68
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
69
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
70 71 72 73 74 75 76 77 78 79 80
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

81
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
82
{
83
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
84 85 86
	EVENT_EXTRA_END
};

87
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
88
{
89 90
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
91
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
92 93 94
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
95
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
96 97 98
	EVENT_CONSTRAINT_END
};

99
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
100 101 102
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
103
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
104 105 106 107
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
108 109 110 111 112 113
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	EVENT_CONSTRAINT_END
};

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd3, 0xf), /*  MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
	EVENT_CONSTRAINT_END
};

135
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
136
{
137 138
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
139 140 141
	EVENT_EXTRA_END
};

142 143 144 145 146
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

147
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
148
{
149 150
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
151
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
152 153 154
	EVENT_CONSTRAINT_END
};

155 156 157 158 159 160
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
	EVENT_EXTRA_END
};

161 162 163 164 165
static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
#define SNB_DMND_DATA_RD	(1ULL << 0)
#define SNB_DMND_RFO		(1ULL << 1)
#define SNB_DMND_IFETCH		(1ULL << 2)
#define SNB_DMND_WB		(1ULL << 3)
#define SNB_PF_DATA_RD		(1ULL << 4)
#define SNB_PF_RFO		(1ULL << 5)
#define SNB_PF_IFETCH		(1ULL << 6)
#define SNB_LLC_DATA_RD		(1ULL << 7)
#define SNB_LLC_RFO		(1ULL << 8)
#define SNB_LLC_IFETCH		(1ULL << 9)
#define SNB_BUS_LOCKS		(1ULL << 10)
#define SNB_STRM_ST		(1ULL << 11)
#define SNB_OTHER		(1ULL << 15)
#define SNB_RESP_ANY		(1ULL << 16)
#define SNB_NO_SUPP		(1ULL << 17)
#define SNB_LLC_HITM		(1ULL << 18)
#define SNB_LLC_HITE		(1ULL << 19)
#define SNB_LLC_HITS		(1ULL << 20)
#define SNB_LLC_HITF		(1ULL << 21)
#define SNB_LOCAL		(1ULL << 22)
#define SNB_REMOTE		(0xffULL << 23)
#define SNB_SNP_NONE		(1ULL << 31)
#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
#define SNB_SNP_MISS		(1ULL << 33)
#define SNB_NO_FWD		(1ULL << 34)
#define SNB_SNP_FWD		(1ULL << 35)
#define SNB_HITM		(1ULL << 36)
#define SNB_NON_DRAM		(1ULL << 37)

#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
				 SNB_HITM)

#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)

#define SNB_L3_ACCESS		SNB_RESP_ANY
#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)

static __initconst const u64 snb_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
	},
 },
};

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
279
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
280
		[ C(RESULT_ACCESS) ] = 0x01b7,
281 282
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
283 284
	},
	[ C(OP_WRITE) ] = {
285
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
286
		[ C(RESULT_ACCESS) ] = 0x01b7,
287 288
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
289 290
	},
	[ C(OP_PREFETCH) ] = {
291
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
292
		[ C(RESULT_ACCESS) ] = 0x01b7,
293 294
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
339 340
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
341 342
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
343 344
	},
	[ C(OP_WRITE) ] = {
345 346
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
347 348
	},
	[ C(OP_PREFETCH) ] = {
349 350
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
351 352 353
	},
 },

354 355
};

356
static __initconst const u64 westmere_hw_cache_event_ids
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
391
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
392
		[ C(RESULT_ACCESS) ] = 0x01b7,
393 394
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
395
	},
396 397 398 399
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
400
	[ C(OP_WRITE) ] = {
401 402 403
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
404
		[ C(RESULT_MISS)   ] = 0x01b7,
405 406
	},
	[ C(OP_PREFETCH) ] = {
407
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
408
		[ C(RESULT_ACCESS) ] = 0x01b7,
409 410
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
455 456 457 458 459 460 461 462 463 464 465 466 467 468
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
469 470
};

471
/*
472 473
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
474 475
 */

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

493 494
#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)
495 496 497 498 499 500

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
501
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
502
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
503 504 505 506 507 508 509 510

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
511 512
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
513 514
	},
	[ C(OP_WRITE) ] = {
515 516
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
517 518
	},
	[ C(OP_PREFETCH) ] = {
519 520
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
521
	},
522 523 524
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
525 526
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
527 528
	},
	[ C(OP_WRITE) ] = {
529 530
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
531 532
	},
	[ C(OP_PREFETCH) ] = {
533 534
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
535 536
	},
 },
537 538
};

539
static __initconst const u64 nehalem_hw_cache_event_ids
540 541 542 543 544 545
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
546 547
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
548 549
	},
	[ C(OP_WRITE) ] = {
550 551
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
574 575 576 577
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
578
	},
579 580 581 582
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
583
	[ C(OP_WRITE) ] = {
584 585 586 587
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
588 589
	},
	[ C(OP_PREFETCH) ] = {
590 591 592 593
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
638 639 640 641 642 643 644 645 646 647 648 649 650 651
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
652 653
};

654
static __initconst const u64 core2_hw_cache_event_ids
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

745
static __initconst const u64 atom_hw_cache_event_ids
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

836 837 838 839 840 841 842 843 844 845 846 847 848
static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
{
	/* user explicitly requested branch sampling */
	if (has_branch_stack(event))
		return true;

	/* implicit branch sampling to correct PEBS skid */
	if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
		return true;

	return false;
}

849 850 851 852 853 854
static void intel_pmu_disable_all(void)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

855
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
856
		intel_pmu_disable_bts();
857 858

	intel_pmu_pebs_disable_all();
859
	intel_pmu_lbr_disable_all();
860 861
}

862
static void intel_pmu_enable_all(int added)
863 864 865
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

866 867
	intel_pmu_pebs_enable_all();
	intel_pmu_lbr_enable_all();
868 869
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
870

871
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
872
		struct perf_event *event =
873
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
874 875 876 877 878 879 880 881

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
	}
}

882 883 884 885
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
886
 *   Intel Errata BD53   (model 44)
887
 *
888 889 890 891 892 893 894
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practise it appears some of these events do in fact count, and
 * we need to programm all 4 events.
895
 */
896
static void intel_pmu_nhm_workaround(void)
897
{
898 899 900 901 902 903 904 905 906
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
907

908 909 910 911 912 913 914 915 916
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
917

918 919 920 921 922 923 924 925 926 927
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
928

929 930 931 932 933 934
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
935

936 937 938 939 940 941 942
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
943

944 945 946 947 948
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
949
			__x86_pmu_enable_event(&event->hw,
950 951 952
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
953
	}
954 955 956 957 958 959
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
960 961 962
	intel_pmu_enable_all(added);
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

977
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
978
{
979
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
980 981 982 983 984 985
	u64 ctrl_val, mask;

	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
986
	wrmsrl(hwc->config_base, ctrl_val);
987 988
}

989
static void intel_pmu_disable_event(struct perf_event *event)
990
{
991
	struct hw_perf_event *hwc = &event->hw;
992
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
993

994
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
995 996 997 998 999
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
		return;
	}

1000 1001 1002
	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);

1003 1004 1005 1006 1007 1008 1009
	/*
	 * must disable before any actual event
	 * because any event may be combined with LBR
	 */
	if (intel_pmu_needs_lbr_smpl(event))
		intel_pmu_lbr_disable(event);

1010
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1011
		intel_pmu_disable_fixed(hwc);
1012 1013 1014
		return;
	}

1015
	x86_pmu_disable_event(event);
1016

P
Peter Zijlstra 已提交
1017
	if (unlikely(event->attr.precise_ip))
1018
		intel_pmu_pebs_disable(event);
1019 1020
}

1021
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1022
{
1023
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	u64 ctrl_val, bits, mask;

	/*
	 * Enable IRQ generation (0x8),
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
	bits = 0x8ULL;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
1049
	wrmsrl(hwc->config_base, ctrl_val);
1050 1051
}

1052
static void intel_pmu_enable_event(struct perf_event *event)
1053
{
1054
	struct hw_perf_event *hwc = &event->hw;
1055
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1056

1057
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
T
Tejun Heo 已提交
1058
		if (!__this_cpu_read(cpu_hw_events.enabled))
1059 1060 1061 1062 1063
			return;

		intel_pmu_enable_bts(hwc->config);
		return;
	}
1064 1065 1066 1067 1068 1069
	/*
	 * must enabled before any actual event
	 * because any event may be combined with LBR
	 */
	if (intel_pmu_needs_lbr_smpl(event))
		intel_pmu_lbr_enable(event);
1070

1071 1072 1073 1074 1075
	if (event->attr.exclude_host)
		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
	if (event->attr.exclude_guest)
		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);

1076
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1077
		intel_pmu_enable_fixed(hwc);
1078 1079 1080
		return;
	}

P
Peter Zijlstra 已提交
1081
	if (unlikely(event->attr.precise_ip))
1082
		intel_pmu_pebs_enable(event);
1083

1084
	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1085 1086 1087 1088 1089 1090
}

/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
1091
int intel_pmu_save_and_restart(struct perf_event *event)
1092
{
1093 1094
	x86_perf_event_update(event);
	return x86_perf_event_set_period(event);
1095 1096 1097 1098
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
1099
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1100 1101 1102
	unsigned long flags;
	int idx;

1103
	if (!x86_pmu.num_counters)
1104 1105 1106 1107
		return;

	local_irq_save(flags);

1108
	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1109

1110
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1111 1112
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1113
	}
1114
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1115
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

	local_irq_restore(flags);
}

/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct cpu_hw_events *cpuc;
	int bit, loops;
1132
	u64 status;
1133
	int handled;
1134 1135 1136

	cpuc = &__get_cpu_var(cpu_hw_events);

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	/*
	 * Some chipsets need to unmask the LVTPC in a particular spot
	 * inside the nmi handler.  As a result, the unmasking was pushed
	 * into all the nmi handlers.
	 *
	 * This handler doesn't seem to have any issues with the unmasking
	 * so it was left at the top.
	 */
	apic_write(APIC_LVTPC, APIC_DM_NMI);

1147
	intel_pmu_disable_all();
1148
	handled = intel_pmu_drain_bts_buffer();
1149 1150
	status = intel_pmu_get_status();
	if (!status) {
1151
		intel_pmu_enable_all(0);
1152
		return handled;
1153 1154 1155 1156
	}

	loops = 0;
again:
1157
	intel_pmu_ack_status(status);
1158 1159 1160 1161
	if (++loops > 100) {
		WARN_ONCE(1, "perfevents: irq loop stuck!\n");
		perf_event_print_debug();
		intel_pmu_reset();
1162
		goto done;
1163 1164 1165
	}

	inc_irq_stat(apic_perf_irqs);
1166

1167 1168
	intel_pmu_lbr_read();

1169 1170 1171
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
1172 1173
	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
		handled++;
1174
		x86_pmu.drain_pebs(regs);
1175
	}
1176

1177
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1178 1179
		struct perf_event *event = cpuc->events[bit];

1180 1181
		handled++;

1182 1183 1184 1185 1186 1187
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

1188
		perf_sample_data_init(&data, 0, event->hw.last_period);
1189

1190 1191 1192
		if (has_branch_stack(event))
			data.br_stack = &cpuc->lbr_stack;

1193
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1194
			x86_pmu_stop(event, 0);
1195 1196 1197 1198 1199 1200 1201 1202 1203
	}

	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

1204
done:
1205
	intel_pmu_enable_all(0);
1206
	return handled;
1207 1208 1209
}

static struct event_constraint *
1210
intel_bts_constraints(struct perf_event *event)
1211
{
1212 1213
	struct hw_perf_event *hwc = &event->hw;
	unsigned int hw_event, bts_event;
1214

P
Peter Zijlstra 已提交
1215 1216 1217
	if (event->attr.freq)
		return NULL;

1218 1219
	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1220

1221
	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1222
		return &bts_constraint;
1223

1224 1225 1226
	return NULL;
}

1227
static int intel_alt_er(int idx)
1228 1229
{
	if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1230
		return idx;
1231

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (idx == EXTRA_REG_RSP_0)
		return EXTRA_REG_RSP_1;

	if (idx == EXTRA_REG_RSP_1)
		return EXTRA_REG_RSP_0;

	return idx;
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
1246 1247 1248
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
		event->hw.config |= 0x01b7;
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1249 1250 1251 1252
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
		event->hw.config |= 0x01bb;
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1253 1254 1255
	}
}

1256 1257 1258 1259 1260 1261 1262
/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
1263
static struct event_constraint *
1264
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1265 1266
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
1267
{
1268
	struct event_constraint *c = &emptyconstraint;
1269
	struct er_account *era;
1270
	unsigned long flags;
1271
	int idx = reg->idx;
1272

1273 1274 1275 1276 1277 1278
	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
1279
		return NULL; /* call x86_get_event_constraint() */
1280

1281
again:
1282
	era = &cpuc->shared_regs->regs[idx];
1283 1284 1285 1286 1287
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);
1288 1289 1290

	if (!atomic_read(&era->ref) || era->config == reg->config) {

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

1314 1315 1316 1317 1318 1319 1320
		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

1321
		/*
1322 1323
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
1324
		 */
1325
		c = NULL;
1326 1327 1328 1329 1330 1331
	} else {
		idx = intel_alt_er(idx);
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
1332
	}
1333
	raw_spin_unlock_irqrestore(&era->lock, flags);
1334

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
1345 1346 1347 1348 1349 1350
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
1351
	 */
1352
	if (!reg->alloc || cpuc->is_fake)
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
1385
	return c;
1386 1387
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
			if ((event->hw.config & c->cmask) == c->code)
				return c;
		}
	}

	return &unconstrained;
}

1403 1404 1405 1406 1407
static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

1408 1409 1410 1411 1412
	c = intel_bts_constraints(event);
	if (c)
		return c;

	c = intel_pebs_constraints(event);
1413 1414 1415
	if (c)
		return c;

1416
	c = intel_shared_regs_constraints(cpuc, event);
1417 1418 1419
	if (c)
		return c;

1420 1421 1422
	return x86_get_event_constraints(cpuc, event);
}

1423 1424
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1425 1426
					struct perf_event *event)
{
1427
	struct hw_perf_event_extra *reg;
1428

1429 1430 1431
	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1432 1433 1434 1435

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1436
}
1437

1438 1439 1440 1441
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);
1442 1443
}

1444
static void intel_pebs_aliases_core2(struct perf_event *event)
1445
{
1446
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
1465 1466
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1494 1495 1496 1497

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
}

static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	if (event->attr.precise_ip && x86_pmu.pebs_aliases)
		x86_pmu.pebs_aliases(event);
1509

1510 1511 1512 1513 1514 1515
	if (intel_pmu_needs_lbr_smpl(event)) {
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
	}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
{
	if (x86_pmu.guest_get_msrs)
		return x86_pmu.guest_get_msrs(nr);
	*nr = 0;
	return NULL;
}
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);

static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;

	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1550 1551 1552 1553 1554 1555 1556 1557
	/*
	 * If PMU counter has PEBS enabled it is not enough to disable counter
	 * on a guest entry since PEBS memory write can overshoot guest entry
	 * and corrupt guest memory. Disabling PEBS solves the problem.
	 */
	arr[1].msr = MSR_IA32_PEBS_ENABLE;
	arr[1].host = cpuc->pebs_enabled;
	arr[1].guest = 0;
1558

1559
	*nr = 2;
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

1631 1632 1633 1634 1635 1636 1637
ssize_t intel_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);

	return x86_event_sysfs_show(page, config, event);
}

1638
static __initconst const struct x86_pmu core_pmu = {
1639 1640 1641
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
1642 1643
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
1644
	.disable		= x86_pmu_disable_event,
1645
	.hw_config		= x86_pmu_hw_config,
1646
	.schedule_events	= x86_schedule_events,
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
1659
	.put_event_constraints	= intel_put_event_constraints,
1660
	.event_constraints	= intel_core_event_constraints,
1661
	.guest_get_msrs		= core_guest_get_msrs,
1662
	.format_attrs		= intel_arch_formats_attr,
1663
	.events_sysfs_show	= intel_event_sysfs_show,
1664 1665
};

1666
struct intel_shared_regs *allocate_shared_regs(int cpu)
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

1685 1686 1687 1688
static int intel_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

1689
	if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1690 1691
		return NOTIFY_OK;

1692 1693
	cpuc->shared_regs = allocate_shared_regs(cpu);
	if (!cpuc->shared_regs)
1694 1695 1696 1697 1698
		return NOTIFY_BAD;

	return NOTIFY_OK;
}

1699 1700
static void intel_pmu_cpu_starting(int cpu)
{
1701 1702 1703 1704
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

1705 1706 1707 1708 1709 1710
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

1711 1712 1713
	cpuc->lbr_sel = NULL;

	if (!cpuc->shared_regs)
1714 1715
		return;

1716 1717 1718
	if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
		for_each_cpu(i, topology_thread_cpumask(cpu)) {
			struct intel_shared_regs *pc;
1719

1720 1721 1722 1723 1724 1725
			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
				cpuc->kfree_on_online = cpuc->shared_regs;
				cpuc->shared_regs = pc;
				break;
			}
1726
		}
1727 1728
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
1729 1730
	}

1731 1732
	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1733 1734 1735 1736
}

static void intel_pmu_cpu_dying(int cpu)
{
1737
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1738
	struct intel_shared_regs *pc;
1739

1740
	pc = cpuc->shared_regs;
1741 1742 1743
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
1744
		cpuc->shared_regs = NULL;
1745 1746
	}

1747 1748 1749
	fini_debug_store_on_cpu(cpu);
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
static void intel_pmu_flush_branch_stack(void)
{
	/*
	 * Intel LBR does not tag entries with the
	 * PID of the current task, then we need to
	 * flush it on ctxsw
	 * For now, we simply reset it
	 */
	if (x86_pmu.lbr_nr)
		intel_pmu_lbr_reset();
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,

	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
	NULL,
};

1777
static __initconst const struct x86_pmu intel_pmu = {
1778 1779 1780 1781 1782 1783
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
1784
	.hw_config		= intel_pmu_hw_config,
1785
	.schedule_events	= x86_schedule_events,
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
1797
	.get_event_constraints	= intel_get_event_constraints,
1798
	.put_event_constraints	= intel_put_event_constraints,
1799
	.pebs_aliases		= intel_pebs_aliases_core2,
1800

1801
	.format_attrs		= intel_arch3_formats_attr,
1802
	.events_sysfs_show	= intel_event_sysfs_show,
1803

1804
	.cpu_prepare		= intel_pmu_cpu_prepare,
1805 1806
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
1807
	.guest_get_msrs		= intel_guest_get_msrs,
1808
	.flush_branch_stack	= intel_pmu_flush_branch_stack,
1809 1810
};

1811
static __init void intel_clovertown_quirk(void)
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
1827
	 *	 a pebs_event_reset[0] value and coping with the lost events.
1828 1829 1830 1831
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
1832
	pr_warn("PEBS disabled due to CPU errata\n");
1833 1834 1835 1836
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
static int intel_snb_pebs_broken(int cpu)
{
	u32 rev = UINT_MAX; /* default to broken for unknown models */

	switch (cpu_data(cpu).x86_model) {
	case 42: /* SNB */
		rev = 0x28;
		break;

	case 45: /* SNB-EP */
		switch (cpu_data(cpu).x86_mask) {
		case 6: rev = 0x618; break;
		case 7: rev = 0x70c; break;
		}
	}

	return (cpu_data(cpu).microcode < rev);
}

static void intel_snb_check_microcode(void)
{
	int pebs_broken = 0;
	int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
			break;
	}
	put_online_cpus();

	if (pebs_broken == x86_pmu.pebs_broken)
		return;

	/*
	 * Serialized by the microcode lock..
	 */
	if (x86_pmu.pebs_broken) {
		pr_info("PEBS enabled due to microcode update\n");
		x86_pmu.pebs_broken = 0;
	} else {
		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
		x86_pmu.pebs_broken = 1;
	}
}

1883
static __init void intel_sandybridge_quirk(void)
1884
{
1885 1886
	x86_pmu.check_microcode = intel_snb_check_microcode;
	intel_snb_check_microcode();
1887 1888
}

1889 1890 1891 1892 1893 1894 1895 1896
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1897 1898
};

1899 1900 1901 1902 1903 1904 1905
static __init void intel_arch_events_quirk(void)
{
	int bit;

	/* disable event that reported as not presend by cpuid */
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1906 1907
		pr_warn("CPUID marked event: \'%s\' unavailable\n",
			intel_arch_events_map[bit].name);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
1926
		pr_info("CPU erratum AAJ80 worked around\n");
1927 1928 1929
	}
}

1930
__init int intel_pmu_init(void)
1931 1932 1933
{
	union cpuid10_edx edx;
	union cpuid10_eax eax;
1934
	union cpuid10_ebx ebx;
1935
	struct event_constraint *c;
1936 1937 1938 1939
	unsigned int unused;
	int version;

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1940 1941 1942
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
1943 1944
		case 0xb:
			return knc_pmu_init();
1945 1946 1947
		case 0xf:
			return p4_pmu_init();
		}
1948 1949 1950 1951 1952 1953 1954
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
1955 1956
	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1957 1958 1959 1960 1961 1962 1963 1964 1965
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
1966 1967 1968
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
1969

1970 1971 1972
	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

1973 1974
	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);

1975 1976 1977 1978 1979
	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
	 * assume at least 3 events:
	 */
	if (version > 1)
1980
		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1981

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	/*
	 * v2 and above have a perf capabilities MSR
	 */
	if (version > 1) {
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

1992 1993
	intel_ds_init();

1994 1995
	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

1996 1997 1998 1999 2000 2001 2002 2003 2004
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
	case 14: /* 65 nm core solo/duo, "Yonah" */
		pr_cont("Core events, ");
		break;

	case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2005
		x86_add_quirk(intel_clovertown_quirk);
2006 2007 2008 2009 2010 2011
	case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
	case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
	case 29: /* six-core 45 nm xeon "Dunnington" */
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

2012 2013
		intel_pmu_lbr_init_core();

2014
		x86_pmu.event_constraints = intel_core2_event_constraints;
2015
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2016 2017 2018 2019 2020
		pr_cont("Core2 events, ");
		break;

	case 26: /* 45 nm nehalem, "Bloomfield" */
	case 30: /* 45 nm nehalem, "Lynnfield" */
2021
	case 46: /* 45 nm nehalem-ex, "Beckton" */
2022 2023
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2024 2025
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2026

2027 2028
		intel_pmu_lbr_init_nhm();

2029
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
2030
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2031
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2032
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
2033

2034
		/* UOPS_ISSUED.STALLED_CYCLES */
2035 2036
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2037
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2038 2039
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2040

2041
		x86_add_quirk(intel_nehalem_quirk);
2042

2043
		pr_cont("Nehalem events, ");
2044
		break;
2045

2046
	case 28: /* Atom */
2047 2048 2049 2050
	case 38: /* Lincroft */
	case 39: /* Penwell */
	case 53: /* Cloverview */
	case 54: /* Cedarview */
2051 2052 2053
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

2054 2055
		intel_pmu_lbr_init_atom();

2056
		x86_pmu.event_constraints = intel_gen_event_constraints;
2057
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2058 2059 2060 2061 2062
		pr_cont("Atom events, ");
		break;

	case 37: /* 32 nm nehalem, "Clarkdale" */
	case 44: /* 32 nm nehalem, "Gulftown" */
2063
	case 47: /* 32 nm Xeon E7 */
2064 2065
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2066 2067
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2068

2069 2070
		intel_pmu_lbr_init_nhm();

2071
		x86_pmu.event_constraints = intel_westmere_event_constraints;
2072
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2073
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2074
		x86_pmu.extra_regs = intel_westmere_extra_regs;
2075
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
2076 2077

		/* UOPS_ISSUED.STALLED_CYCLES */
2078 2079
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2080
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2081 2082
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2083

2084 2085
		pr_cont("Westmere events, ");
		break;
2086

2087
	case 42: /* SandyBridge */
2088
	case 45: /* SandyBridge, "Romely-EP" */
2089
		x86_add_quirk(intel_sandybridge_quirk);
2090 2091
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2092 2093
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2094

2095
		intel_pmu_lbr_init_snb();
2096 2097

		x86_pmu.event_constraints = intel_snb_event_constraints;
2098
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2099
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2100 2101
		x86_pmu.extra_regs = intel_snb_extra_regs;
		/* all extra regs are per-cpu when HT is on */
2102 2103
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2104 2105

		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2106 2107
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2108
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2109 2110
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2111

2112 2113
		pr_cont("SandyBridge events, ");
		break;
2114
	case 58: /* IvyBridge */
2115
	case 62: /* IvyBridge EP */
2116 2117 2118 2119 2120 2121 2122
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

2123
		x86_pmu.event_constraints = intel_ivb_event_constraints;
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
		x86_pmu.extra_regs = intel_snb_extra_regs;
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;

		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);

		pr_cont("IvyBridge events, ");
		break;

2138

2139
	default:
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
			break;
		default:
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
			break;
		}
2153
	}
2154

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
	}
	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;

	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
	}

	x86_pmu.intel_ctrl |=
		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;

	if (x86_pmu.event_constraints) {
		/*
		 * event on fixed counter2 (REF_CYCLES) only works on this
		 * counter, so do not extend mask to generic counters
		 */
		for_each_event_constraint(c, x86_pmu.event_constraints) {
			if (c->cmask != X86_RAW_EVENT_MASK
			    || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
				continue;
			}

			c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
			c->weight += x86_pmu.num_counters;
		}
	}

2187 2188
	return 0;
}