omap-dma.c 30.0 KB
Newer Older
1 2 3 4 5 6 7
/*
 * OMAP DMAengine support
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
8
#include <linux/delay.h>
9 10 11 12 13 14 15 16 17 18 19
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/omap-dma.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
20 21
#include <linux/of_dma.h>
#include <linux/of_device.h>
22 23

#include "virt-dma.h"
24

25 26 27
#define OMAP_SDMA_REQUESTS	127
#define OMAP_SDMA_CHANNELS	32

28 29 30
struct omap_dmadev {
	struct dma_device ddev;
	spinlock_t lock;
31 32
	void __iomem *base;
	const struct omap_dma_reg *reg_map;
33
	struct omap_system_dma_plat_info *plat;
34
	bool legacy;
35
	unsigned dma_requests;
36 37
	spinlock_t irq_lock;
	uint32_t irq_enable_mask;
38
	struct omap_chan *lch_map[OMAP_SDMA_CHANNELS];
39 40 41 42
};

struct omap_chan {
	struct virt_dma_chan vc;
43 44
	void __iomem *channel_base;
	const struct omap_dma_reg *reg_map;
45
	uint32_t ccr;
46 47 48

	struct dma_slave_config	cfg;
	unsigned dma_sig;
49
	bool cyclic;
50
	bool paused;
51
	bool running;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

	int dma_ch;
	struct omap_desc *desc;
	unsigned sgidx;
};

struct omap_sg {
	dma_addr_t addr;
	uint32_t en;		/* number of elements (24-bit) */
	uint32_t fn;		/* number of frames (16-bit) */
};

struct omap_desc {
	struct virt_dma_desc vd;
	enum dma_transfer_direction dir;
	dma_addr_t dev_addr;

69
	int16_t fi;		/* for OMAP_DMA_SYNC_PACKET */
70
	uint8_t es;		/* CSDP_DATA_TYPE_xxx */
71
	uint32_t ccr;		/* CCR value */
72
	uint16_t clnk_ctrl;	/* CLNK_CTRL value */
73
	uint16_t cicr;		/* CICR value */
74
	uint32_t csdp;		/* CSDP value */
75 76 77 78 79

	unsigned sglen;
	struct omap_sg sg[0];
};

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
enum {
	CCR_FS			= BIT(5),
	CCR_READ_PRIORITY	= BIT(6),
	CCR_ENABLE		= BIT(7),
	CCR_AUTO_INIT		= BIT(8),	/* OMAP1 only */
	CCR_REPEAT		= BIT(9),	/* OMAP1 only */
	CCR_OMAP31_DISABLE	= BIT(10),	/* OMAP1 only */
	CCR_SUSPEND_SENSITIVE	= BIT(8),	/* OMAP2+ only */
	CCR_RD_ACTIVE		= BIT(9),	/* OMAP2+ only */
	CCR_WR_ACTIVE		= BIT(10),	/* OMAP2+ only */
	CCR_SRC_AMODE_CONSTANT	= 0 << 12,
	CCR_SRC_AMODE_POSTINC	= 1 << 12,
	CCR_SRC_AMODE_SGLIDX	= 2 << 12,
	CCR_SRC_AMODE_DBLIDX	= 3 << 12,
	CCR_DST_AMODE_CONSTANT	= 0 << 14,
	CCR_DST_AMODE_POSTINC	= 1 << 14,
	CCR_DST_AMODE_SGLIDX	= 2 << 14,
	CCR_DST_AMODE_DBLIDX	= 3 << 14,
	CCR_CONSTANT_FILL	= BIT(16),
	CCR_TRANSPARENT_COPY	= BIT(17),
	CCR_BS			= BIT(18),
	CCR_SUPERVISOR		= BIT(22),
	CCR_PREFETCH		= BIT(23),
	CCR_TRIGGER_SRC		= BIT(24),
	CCR_BUFFERING_DISABLE	= BIT(25),
	CCR_WRITE_PRIORITY	= BIT(26),
	CCR_SYNC_ELEMENT	= 0,
	CCR_SYNC_FRAME		= CCR_FS,
	CCR_SYNC_BLOCK		= CCR_BS,
	CCR_SYNC_PACKET		= CCR_BS | CCR_FS,

	CSDP_DATA_TYPE_8	= 0,
	CSDP_DATA_TYPE_16	= 1,
	CSDP_DATA_TYPE_32	= 2,
	CSDP_SRC_PORT_EMIFF	= 0 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_EMIFS	= 1 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_OCP_T1	= 2 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_TIPB	= 3 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_OCP_T2	= 4 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_MPUI	= 5 << 2, /* OMAP1 only */
	CSDP_SRC_PACKED		= BIT(6),
	CSDP_SRC_BURST_1	= 0 << 7,
	CSDP_SRC_BURST_16	= 1 << 7,
	CSDP_SRC_BURST_32	= 2 << 7,
	CSDP_SRC_BURST_64	= 3 << 7,
	CSDP_DST_PORT_EMIFF	= 0 << 9, /* OMAP1 only */
	CSDP_DST_PORT_EMIFS	= 1 << 9, /* OMAP1 only */
	CSDP_DST_PORT_OCP_T1	= 2 << 9, /* OMAP1 only */
	CSDP_DST_PORT_TIPB	= 3 << 9, /* OMAP1 only */
	CSDP_DST_PORT_OCP_T2	= 4 << 9, /* OMAP1 only */
	CSDP_DST_PORT_MPUI	= 5 << 9, /* OMAP1 only */
	CSDP_DST_PACKED		= BIT(13),
	CSDP_DST_BURST_1	= 0 << 14,
	CSDP_DST_BURST_16	= 1 << 14,
	CSDP_DST_BURST_32	= 2 << 14,
	CSDP_DST_BURST_64	= 3 << 14,

	CICR_TOUT_IE		= BIT(0),	/* OMAP1 only */
	CICR_DROP_IE		= BIT(1),
	CICR_HALF_IE		= BIT(2),
	CICR_FRAME_IE		= BIT(3),
	CICR_LAST_IE		= BIT(4),
	CICR_BLOCK_IE		= BIT(5),
	CICR_PKT_IE		= BIT(7),	/* OMAP2+ only */
	CICR_TRANS_ERR_IE	= BIT(8),	/* OMAP2+ only */
	CICR_SUPERVISOR_ERR_IE	= BIT(10),	/* OMAP2+ only */
	CICR_MISALIGNED_ERR_IE	= BIT(11),	/* OMAP2+ only */
	CICR_DRAIN_IE		= BIT(12),	/* OMAP2+ only */
	CICR_SUPER_BLOCK_IE	= BIT(14),	/* OMAP2+ only */

	CLNK_CTRL_ENABLE_LNK	= BIT(15),
};

153
static const unsigned es_bytes[] = {
154 155 156
	[CSDP_DATA_TYPE_8] = 1,
	[CSDP_DATA_TYPE_16] = 2,
	[CSDP_DATA_TYPE_32] = 4,
157 158
};

159 160 161 162
static struct of_dma_filter_info omap_dma_info = {
	.filter_fn = omap_dma_filter_fn,
};

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
{
	return container_of(d, struct omap_dmadev, ddev);
}

static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
{
	return container_of(c, struct omap_chan, vc.chan);
}

static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
{
	return container_of(t, struct omap_desc, vd.tx);
}

static void omap_dma_desc_free(struct virt_dma_desc *vd)
{
	kfree(container_of(vd, struct omap_desc, vd));
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
{
	switch (type) {
	case OMAP_DMA_REG_16BIT:
		writew_relaxed(val, addr);
		break;
	case OMAP_DMA_REG_2X16BIT:
		writew_relaxed(val, addr);
		writew_relaxed(val >> 16, addr + 2);
		break;
	case OMAP_DMA_REG_32BIT:
		writel_relaxed(val, addr);
		break;
	default:
		WARN_ON(1);
	}
}

static unsigned omap_dma_read(unsigned type, void __iomem *addr)
{
	unsigned val;

	switch (type) {
	case OMAP_DMA_REG_16BIT:
		val = readw_relaxed(addr);
		break;
	case OMAP_DMA_REG_2X16BIT:
		val = readw_relaxed(addr);
		val |= readw_relaxed(addr + 2) << 16;
		break;
	case OMAP_DMA_REG_32BIT:
		val = readl_relaxed(addr);
		break;
	default:
		WARN_ON(1);
		val = 0;
	}

	return val;
}

224 225
static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
{
226 227 228 229 230
	const struct omap_dma_reg *r = od->reg_map + reg;

	WARN_ON(r->stride);

	omap_dma_write(val, r->type, od->base + r->offset);
231 232 233 234
}

static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
{
235 236 237 238 239
	const struct omap_dma_reg *r = od->reg_map + reg;

	WARN_ON(r->stride);

	return omap_dma_read(r->type, od->base + r->offset);
240 241 242 243
}

static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
{
244 245 246
	const struct omap_dma_reg *r = c->reg_map + reg;

	omap_dma_write(val, r->type, c->channel_base + r->offset);
247 248 249 250
}

static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
{
251 252 253
	const struct omap_dma_reg *r = c->reg_map + reg;

	return omap_dma_read(r->type, c->channel_base + r->offset);
254 255
}

256 257 258
static void omap_dma_clear_csr(struct omap_chan *c)
{
	if (dma_omap1())
259
		omap_dma_chan_read(c, CSR);
260
	else
261
		omap_dma_chan_write(c, CSR, ~0);
262 263
}

264 265 266 267 268 269 270 271 272 273
static unsigned omap_dma_get_csr(struct omap_chan *c)
{
	unsigned val = omap_dma_chan_read(c, CSR);

	if (!dma_omap1())
		omap_dma_chan_write(c, CSR, val);

	return val;
}

274 275 276 277
static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
	unsigned lch)
{
	c->channel_base = od->base + od->plat->channel_stride * lch;
278 279

	od->lch_map[lch] = c;
280 281
}

282 283 284 285 286
static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);

	if (__dma_omap15xx(od->plat->dma_attr))
287
		omap_dma_chan_write(c, CPC, 0);
288
	else
289
		omap_dma_chan_write(c, CDAC, 0);
290

291
	omap_dma_clear_csr(c);
292 293

	/* Enable interrupts */
294
	omap_dma_chan_write(c, CICR, d->cicr);
295

296
	/* Enable channel */
297
	omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
298 299

	c->running = true;
300 301 302 303 304 305 306 307
}

static void omap_dma_stop(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	uint32_t val;

	/* disable irq */
308
	omap_dma_chan_write(c, CICR, 0);
309

310
	omap_dma_clear_csr(c);
311

312
	val = omap_dma_chan_read(c, CCR);
313
	if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
314 315 316
		uint32_t sysconfig;
		unsigned i;

317
		sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
318 319
		val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
		val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
320
		omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
321

322
		val = omap_dma_chan_read(c, CCR);
323
		val &= ~CCR_ENABLE;
324
		omap_dma_chan_write(c, CCR, val);
325 326 327

		/* Wait for sDMA FIFO to drain */
		for (i = 0; ; i++) {
328
			val = omap_dma_chan_read(c, CCR);
329
			if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
330 331 332 333 334 335 336 337
				break;

			if (i > 100)
				break;

			udelay(5);
		}

338
		if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
339 340 341 342
			dev_err(c->vc.chan.device->dev,
				"DMA drain did not complete on lch %d\n",
			        c->dma_ch);

343
		omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
344
	} else {
345
		val &= ~CCR_ENABLE;
346
		omap_dma_chan_write(c, CCR, val);
347 348 349 350 351
	}

	mb();

	if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
352
		val = omap_dma_chan_read(c, CLNK_CTRL);
353 354 355 356

		if (dma_omap1())
			val |= 1 << 14; /* set the STOP_LNK bit */
		else
357
			val &= ~CLNK_CTRL_ENABLE_LNK;
358

359
		omap_dma_chan_write(c, CLNK_CTRL, val);
360
	}
361 362

	c->running = false;
363 364
}

365 366 367 368
static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d,
	unsigned idx)
{
	struct omap_sg *sg = d->sg + idx;
369
	unsigned cxsa, cxei, cxfi;
370

371
	if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
372 373 374
		cxsa = CDSA;
		cxei = CDEI;
		cxfi = CDFI;
375
	} else {
376 377 378
		cxsa = CSSA;
		cxei = CSEI;
		cxfi = CSFI;
379 380
	}

381 382 383 384 385
	omap_dma_chan_write(c, cxsa, sg->addr);
	omap_dma_chan_write(c, cxei, 0);
	omap_dma_chan_write(c, cxfi, 0);
	omap_dma_chan_write(c, CEN, sg->en);
	omap_dma_chan_write(c, CFN, sg->fn);
386

387
	omap_dma_start(c, d);
388 389 390 391 392 393
}

static void omap_dma_start_desc(struct omap_chan *c)
{
	struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
	struct omap_desc *d;
394
	unsigned cxsa, cxei, cxfi;
395

396 397 398 399 400 401 402 403 404 405
	if (!vd) {
		c->desc = NULL;
		return;
	}

	list_del(&vd->node);

	c->desc = d = to_omap_dma_desc(&vd->tx);
	c->sgidx = 0;

406 407 408 409 410 411 412
	/*
	 * This provides the necessary barrier to ensure data held in
	 * DMA coherent memory is visible to the DMA engine prior to
	 * the transfer starting.
	 */
	mb();

413
	omap_dma_chan_write(c, CCR, d->ccr);
414
	if (dma_omap1())
415
		omap_dma_chan_write(c, CCR2, d->ccr >> 16);
416

417
	if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
418 419 420
		cxsa = CSSA;
		cxei = CSEI;
		cxfi = CSFI;
421
	} else {
422 423 424
		cxsa = CDSA;
		cxei = CDEI;
		cxfi = CDFI;
425 426
	}

427 428 429 430 431
	omap_dma_chan_write(c, cxsa, d->dev_addr);
	omap_dma_chan_write(c, cxei, 0);
	omap_dma_chan_write(c, cxfi, d->fi);
	omap_dma_chan_write(c, CSDP, d->csdp);
	omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
432

433 434 435 436 437 438 439 440 441 442 443 444
	omap_dma_start_sg(c, d, 0);
}

static void omap_dma_callback(int ch, u16 status, void *data)
{
	struct omap_chan *c = data;
	struct omap_desc *d;
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
	d = c->desc;
	if (d) {
445 446 447 448 449 450 451
		if (!c->cyclic) {
			if (++c->sgidx < d->sglen) {
				omap_dma_start_sg(c, d, c->sgidx);
			} else {
				omap_dma_start_desc(c);
				vchan_cookie_complete(&d->vd);
			}
452
		} else {
453
			vchan_cyclic_callback(&d->vd);
454 455 456 457 458
		}
	}
	spin_unlock_irqrestore(&c->vc.lock, flags);
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
static irqreturn_t omap_dma_irq(int irq, void *devid)
{
	struct omap_dmadev *od = devid;
	unsigned status, channel;

	spin_lock(&od->irq_lock);

	status = omap_dma_glbl_read(od, IRQSTATUS_L1);
	status &= od->irq_enable_mask;
	if (status == 0) {
		spin_unlock(&od->irq_lock);
		return IRQ_NONE;
	}

	while ((channel = ffs(status)) != 0) {
		unsigned mask, csr;
		struct omap_chan *c;

		channel -= 1;
		mask = BIT(channel);
		status &= ~mask;

		c = od->lch_map[channel];
		if (c == NULL) {
			/* This should never happen */
			dev_err(od->ddev.dev, "invalid channel %u\n", channel);
			continue;
		}

		csr = omap_dma_get_csr(c);
		omap_dma_glbl_write(od, IRQSTATUS_L1, mask);

		omap_dma_callback(channel, csr, c);
	}

	spin_unlock(&od->irq_lock);

	return IRQ_HANDLED;
}

499 500
static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
{
501
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
502
	struct omap_chan *c = to_omap_dma_chan(chan);
503 504
	int ret;

505 506 507 508 509 510 511
	if (od->legacy) {
		ret = omap_request_dma(c->dma_sig, "DMA engine",
				       omap_dma_callback, c, &c->dma_ch);
	} else {
		ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
				       &c->dma_ch);
	}
512

513 514
	dev_dbg(od->ddev.dev, "allocating channel %u for %u\n",
		c->dma_ch, c->dma_sig);
515

516
	if (ret >= 0) {
517 518
		omap_dma_assign(od, c, c->dma_ch);

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		if (!od->legacy) {
			unsigned val;

			spin_lock_irq(&od->irq_lock);
			val = BIT(c->dma_ch);
			omap_dma_glbl_write(od, IRQSTATUS_L1, val);
			od->irq_enable_mask |= val;
			omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);

			val = omap_dma_glbl_read(od, IRQENABLE_L0);
			val &= ~BIT(c->dma_ch);
			omap_dma_glbl_write(od, IRQENABLE_L0, val);
			spin_unlock_irq(&od->irq_lock);
		}
	}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	if (dma_omap1()) {
		if (__dma_omap16xx(od->plat->dma_attr)) {
			c->ccr = CCR_OMAP31_DISABLE;
			/* Duplicate what plat-omap/dma.c does */
			c->ccr |= c->dma_ch + 1;
		} else {
			c->ccr = c->dma_sig & 0x1f;
		}
	} else {
		c->ccr = c->dma_sig & 0x1f;
		c->ccr |= (c->dma_sig & ~0x1f) << 14;
	}
	if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
		c->ccr |= CCR_BUFFERING_DISABLE;

550
	return ret;
551 552 553 554
}

static void omap_dma_free_chan_resources(struct dma_chan *chan)
{
555
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
556 557
	struct omap_chan *c = to_omap_dma_chan(chan);

558 559 560 561 562 563 564
	if (!od->legacy) {
		spin_lock_irq(&od->irq_lock);
		od->irq_enable_mask &= ~BIT(c->dma_ch);
		omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
		spin_unlock_irq(&od->irq_lock);
	}

565
	c->channel_base = NULL;
566
	od->lch_map[c->dma_ch] = NULL;
567 568 569
	vchan_free_chan_resources(&c->vc);
	omap_free_dma(c->dma_ch);

570
	dev_dbg(od->ddev.dev, "freeing channel for %u\n", c->dma_sig);
571
	c->dma_sig = 0;
572 573
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
static size_t omap_dma_sg_size(struct omap_sg *sg)
{
	return sg->en * sg->fn;
}

static size_t omap_dma_desc_size(struct omap_desc *d)
{
	unsigned i;
	size_t size;

	for (size = i = 0; i < d->sglen; i++)
		size += omap_dma_sg_size(&d->sg[i]);

	return size * es_bytes[d->es];
}

static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
{
	unsigned i;
	size_t size, es_size = es_bytes[d->es];

	for (size = i = 0; i < d->sglen; i++) {
		size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;

		if (size)
			size += this_size;
		else if (addr >= d->sg[i].addr &&
			 addr < d->sg[i].addr + this_size)
			size += d->sg[i].addr + this_size - addr;
	}
	return size;
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
/*
 * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
 * read before the DMA controller finished disabling the channel.
 */
static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	uint32_t val;

	val = omap_dma_chan_read(c, reg);
	if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
		val = omap_dma_chan_read(c, reg);

	return val;
}

623 624 625
static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
626
	dma_addr_t addr, cdac;
627

628
	if (__dma_omap15xx(od->plat->dma_attr)) {
629
		addr = omap_dma_chan_read(c, CPC);
630 631 632
	} else {
		addr = omap_dma_chan_read_3_3(c, CSAC);
		cdac = omap_dma_chan_read_3_3(c, CDAC);
633 634 635 636 637 638

		/*
		 * CDAC == 0 indicates that the DMA transfer on the channel has
		 * not been started (no data has been transferred so far).
		 * Return the programmed source start address in this case.
		 */
639
		if (cdac == 0)
640
			addr = omap_dma_chan_read(c, CSSA);
641 642 643
	}

	if (dma_omap1())
644
		addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
645 646 647 648 649 650 651 652 653

	return addr;
}

static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	dma_addr_t addr;

654
	if (__dma_omap15xx(od->plat->dma_attr)) {
655
		addr = omap_dma_chan_read(c, CPC);
656 657
	} else {
		addr = omap_dma_chan_read_3_3(c, CDAC);
658 659

		/*
660 661 662 663
		 * CDAC == 0 indicates that the DMA transfer on the channel
		 * has not been started (no data has been transferred so
		 * far).  Return the programmed destination start address in
		 * this case.
664 665
		 */
		if (addr == 0)
666
			addr = omap_dma_chan_read(c, CDSA);
667 668 669
	}

	if (dma_omap1())
670
		addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
671 672 673 674

	return addr;
}

675 676 677
static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
	dma_cookie_t cookie, struct dma_tx_state *txstate)
{
678 679 680 681 682 683
	struct omap_chan *c = to_omap_dma_chan(chan);
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
684 685 686 687 688 689 690 691 692 693 694

	if (!c->paused && c->running) {
		uint32_t ccr = omap_dma_chan_read(c, CCR);
		/*
		 * The channel is no longer active, set the return value
		 * accordingly
		 */
		if (!(ccr & CCR_ENABLE))
			ret = DMA_COMPLETE;
	}

695
	if (ret == DMA_COMPLETE || !txstate)
696 697 698 699 700 701 702 703 704 705 706
		return ret;

	spin_lock_irqsave(&c->vc.lock, flags);
	vd = vchan_find_desc(&c->vc, cookie);
	if (vd) {
		txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
	} else if (c->desc && c->desc->vd.tx.cookie == cookie) {
		struct omap_desc *d = c->desc;
		dma_addr_t pos;

		if (d->dir == DMA_MEM_TO_DEV)
707
			pos = omap_dma_get_src_pos(c);
708
		else if (d->dir == DMA_DEV_TO_MEM  || d->dir == DMA_MEM_TO_MEM)
709
			pos = omap_dma_get_dst_pos(c);
710 711 712 713 714 715 716 717 718 719
		else
			pos = 0;

		txstate->residue = omap_dma_desc_size_pos(d, pos);
	} else {
		txstate->residue = 0;
	}
	spin_unlock_irqrestore(&c->vc.lock, flags);

	return ret;
720 721 722 723 724 725 726 727
}

static void omap_dma_issue_pending(struct dma_chan *chan)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
728 729
	if (vchan_issue_pending(&c->vc) && !c->desc)
		omap_dma_start_desc(c);
730 731 732 733 734 735 736
	spin_unlock_irqrestore(&c->vc.lock, flags);
}

static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
{
737
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
738 739 740 741 742
	struct omap_chan *c = to_omap_dma_chan(chan);
	enum dma_slave_buswidth dev_width;
	struct scatterlist *sgent;
	struct omap_desc *d;
	dma_addr_t dev_addr;
743
	unsigned i, es, en, frame_bytes;
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	u32 burst;

	if (dir == DMA_DEV_TO_MEM) {
		dev_addr = c->cfg.src_addr;
		dev_width = c->cfg.src_addr_width;
		burst = c->cfg.src_maxburst;
	} else if (dir == DMA_MEM_TO_DEV) {
		dev_addr = c->cfg.dst_addr;
		dev_width = c->cfg.dst_addr_width;
		burst = c->cfg.dst_maxburst;
	} else {
		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
		return NULL;
	}

	/* Bus width translates to the element size (ES) */
	switch (dev_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
762
		es = CSDP_DATA_TYPE_8;
763 764
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
765
		es = CSDP_DATA_TYPE_16;
766 767
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
768
		es = CSDP_DATA_TYPE_32;
769 770 771 772 773 774 775 776 777 778 779 780 781
		break;
	default: /* not reached */
		return NULL;
	}

	/* Now allocate and setup the descriptor. */
	d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	d->dir = dir;
	d->dev_addr = dev_addr;
	d->es = es;
782

783
	d->ccr = c->ccr | CCR_SYNC_FRAME;
784
	if (dir == DMA_DEV_TO_MEM)
785
		d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
786
	else
787
		d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
788

789
	d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
790
	d->csdp = es;
791

792
	if (dma_omap1()) {
793
		d->cicr |= CICR_TOUT_IE;
794 795

		if (dir == DMA_DEV_TO_MEM)
796
			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
797
		else
798
			d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
799
	} else {
800
		if (dir == DMA_DEV_TO_MEM)
801
			d->ccr |= CCR_TRIGGER_SRC;
802

803
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
804
	}
805 806
	if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
		d->clnk_ctrl = c->dma_ch;
807 808 809 810 811 812 813 814 815 816 817 818 819

	/*
	 * Build our scatterlist entries: each contains the address,
	 * the number of elements (EN) in each frame, and the number of
	 * frames (FN).  Number of bytes for this entry = ES * EN * FN.
	 *
	 * Burst size translates to number of elements with frame sync.
	 * Note: DMA engine defines burst to be the number of dev-width
	 * transfers.
	 */
	en = burst;
	frame_bytes = es_bytes[es] * en;
	for_each_sg(sgl, sgent, sglen, i) {
820 821 822
		d->sg[i].addr = sg_dma_address(sgent);
		d->sg[i].en = en;
		d->sg[i].fn = sg_dma_len(sgent) / frame_bytes;
823 824
	}

825
	d->sglen = sglen;
826 827 828 829

	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
}

830 831
static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
832
	size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
833
{
834
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
835 836 837 838
	struct omap_chan *c = to_omap_dma_chan(chan);
	enum dma_slave_buswidth dev_width;
	struct omap_desc *d;
	dma_addr_t dev_addr;
839
	unsigned es;
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	u32 burst;

	if (dir == DMA_DEV_TO_MEM) {
		dev_addr = c->cfg.src_addr;
		dev_width = c->cfg.src_addr_width;
		burst = c->cfg.src_maxburst;
	} else if (dir == DMA_MEM_TO_DEV) {
		dev_addr = c->cfg.dst_addr;
		dev_width = c->cfg.dst_addr_width;
		burst = c->cfg.dst_maxburst;
	} else {
		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
		return NULL;
	}

	/* Bus width translates to the element size (ES) */
	switch (dev_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
858
		es = CSDP_DATA_TYPE_8;
859 860
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
861
		es = CSDP_DATA_TYPE_16;
862 863
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
864
		es = CSDP_DATA_TYPE_32;
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
		break;
	default: /* not reached */
		return NULL;
	}

	/* Now allocate and setup the descriptor. */
	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	d->dir = dir;
	d->dev_addr = dev_addr;
	d->fi = burst;
	d->es = es;
	d->sg[0].addr = buf_addr;
	d->sg[0].en = period_len / es_bytes[es];
	d->sg[0].fn = buf_len / period_len;
	d->sglen = 1;
883

884
	d->ccr = c->ccr;
885
	if (dir == DMA_DEV_TO_MEM)
886
		d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
887
	else
888
		d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
889

890
	d->cicr = CICR_DROP_IE;
891
	if (flags & DMA_PREP_INTERRUPT)
892
		d->cicr |= CICR_FRAME_IE;
893

894 895 896
	d->csdp = es;

	if (dma_omap1()) {
897
		d->cicr |= CICR_TOUT_IE;
898 899

		if (dir == DMA_DEV_TO_MEM)
900
			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
901
		else
902
			d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
903
	} else {
904
		if (burst)
905 906 907
			d->ccr |= CCR_SYNC_PACKET;
		else
			d->ccr |= CCR_SYNC_ELEMENT;
908

909
		if (dir == DMA_DEV_TO_MEM) {
910
			d->ccr |= CCR_TRIGGER_SRC;
911 912 913 914
			d->csdp |= CSDP_DST_PACKED;
		} else {
			d->csdp |= CSDP_SRC_PACKED;
		}
915

916
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
917

918
		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
919 920
	}

921 922 923 924 925
	if (__dma_omap15xx(od->plat->dma_attr))
		d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
	else
		d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;

926
	c->cyclic = true;
927

928
	return vchan_tx_prep(&c->vc, &d->vd, flags);
929 930
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	struct omap_desc *d;
	uint8_t data_type;

	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	data_type = __ffs((src | dest | len));
	if (data_type > CSDP_DATA_TYPE_32)
		data_type = CSDP_DATA_TYPE_32;

	d->dir = DMA_MEM_TO_MEM;
	d->dev_addr = src;
	d->fi = 0;
	d->es = data_type;
	d->sg[0].en = len / BIT(data_type);
	d->sg[0].fn = 1;
	d->sg[0].addr = dest;
	d->sglen = 1;
	d->ccr = c->ccr;
	d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;

958
	d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

	d->csdp = data_type;

	if (dma_omap1()) {
		d->cicr |= CICR_TOUT_IE;
		d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
	} else {
		d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
	}

	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
}

974
static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
975
{
976 977
	struct omap_chan *c = to_omap_dma_chan(chan);

978 979 980 981 982 983 984 985 986
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
		return -EINVAL;

	memcpy(&c->cfg, cfg, sizeof(c->cfg));

	return 0;
}

987
static int omap_dma_terminate_all(struct dma_chan *chan)
988
{
989
	struct omap_chan *c = to_omap_dma_chan(chan);
990 991 992 993 994 995 996
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&c->vc.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
997
	 * after omap_dma_stop() returns (even if it does, it will see
998 999 1000
	 * c->desc is NULL and exit.)
	 */
	if (c->desc) {
1001
		omap_dma_desc_free(&c->desc->vd);
1002
		c->desc = NULL;
1003 1004
		/* Avoid stopping the dma twice */
		if (!c->paused)
1005
			omap_dma_stop(c);
1006 1007
	}

1008 1009
	if (c->cyclic) {
		c->cyclic = false;
1010
		c->paused = false;
1011 1012
	}

1013 1014 1015 1016 1017 1018 1019
	vchan_get_all_descriptors(&c->vc, &head);
	spin_unlock_irqrestore(&c->vc.lock, flags);
	vchan_dma_desc_free_list(&c->vc, &head);

	return 0;
}

1020 1021 1022 1023 1024 1025 1026
static void omap_dma_synchronize(struct dma_chan *chan)
{
	struct omap_chan *c = to_omap_dma_chan(chan);

	vchan_synchronize(&c->vc);
}

1027
static int omap_dma_pause(struct dma_chan *chan)
1028
{
1029 1030
	struct omap_chan *c = to_omap_dma_chan(chan);

1031 1032 1033 1034 1035
	/* Pause/Resume only allowed with cyclic mode */
	if (!c->cyclic)
		return -EINVAL;

	if (!c->paused) {
1036
		omap_dma_stop(c);
1037 1038 1039 1040
		c->paused = true;
	}

	return 0;
1041 1042
}

1043
static int omap_dma_resume(struct dma_chan *chan)
1044
{
1045 1046
	struct omap_chan *c = to_omap_dma_chan(chan);

1047 1048 1049 1050 1051
	/* Pause/Resume only allowed with cyclic mode */
	if (!c->cyclic)
		return -EINVAL;

	if (c->paused) {
1052 1053
		mb();

1054 1055 1056
		/* Restore channel link register */
		omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);

1057
		omap_dma_start(c, c->desc);
1058 1059 1060 1061
		c->paused = false;
	}

	return 0;
1062 1063
}

1064
static int omap_dma_chan_init(struct omap_dmadev *od)
1065 1066 1067 1068 1069 1070 1071
{
	struct omap_chan *c;

	c = kzalloc(sizeof(*c), GFP_KERNEL);
	if (!c)
		return -ENOMEM;

1072
	c->reg_map = od->reg_map;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	c->vc.desc_free = omap_dma_desc_free;
	vchan_init(&c->vc, &od->ddev);

	return 0;
}

static void omap_dma_free(struct omap_dmadev *od)
{
	while (!list_empty(&od->ddev.channels)) {
		struct omap_chan *c = list_first_entry(&od->ddev.channels,
			struct omap_chan, vc.chan.device_node);

		list_del(&c->vc.chan.device_node);
		tasklet_kill(&c->vc.task);
		kfree(c);
	}
}

1091 1092 1093 1094
#define OMAP_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

1095 1096 1097
static int omap_dma_probe(struct platform_device *pdev)
{
	struct omap_dmadev *od;
1098
	struct resource *res;
1099
	int rc, i, irq;
1100

1101
	od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1102 1103 1104
	if (!od)
		return -ENOMEM;

1105 1106 1107 1108 1109
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	od->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(od->base))
		return PTR_ERR(od->base);

1110 1111 1112 1113
	od->plat = omap_get_plat_info();
	if (!od->plat)
		return -EPROBE_DEFER;

1114 1115
	od->reg_map = od->plat->reg_map;

1116
	dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1117
	dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1118
	dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
1119 1120 1121 1122 1123
	od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
	od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
	od->ddev.device_tx_status = omap_dma_tx_status;
	od->ddev.device_issue_pending = omap_dma_issue_pending;
	od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1124
	od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1125
	od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
1126
	od->ddev.device_config = omap_dma_slave_config;
1127 1128 1129
	od->ddev.device_pause = omap_dma_pause;
	od->ddev.device_resume = omap_dma_resume;
	od->ddev.device_terminate_all = omap_dma_terminate_all;
1130
	od->ddev.device_synchronize = omap_dma_synchronize;
1131 1132 1133 1134
	od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
	od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
	od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1135 1136 1137
	od->ddev.dev = &pdev->dev;
	INIT_LIST_HEAD(&od->ddev.channels);
	spin_lock_init(&od->lock);
1138
	spin_lock_init(&od->irq_lock);
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148
	od->dma_requests = OMAP_SDMA_REQUESTS;
	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
						      "dma-requests",
						      &od->dma_requests)) {
		dev_info(&pdev->dev,
			 "Missing dma-requests property, using %u.\n",
			 OMAP_SDMA_REQUESTS);
	}

1149
	for (i = 0; i < OMAP_SDMA_CHANNELS; i++) {
1150
		rc = omap_dma_chan_init(od);
1151 1152 1153 1154 1155 1156
		if (rc) {
			omap_dma_free(od);
			return rc;
		}
	}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	irq = platform_get_irq(pdev, 1);
	if (irq <= 0) {
		dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
		od->legacy = true;
	} else {
		/* Disable all interrupts */
		od->irq_enable_mask = 0;
		omap_dma_glbl_write(od, IRQENABLE_L1, 0);

		rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
				      IRQF_SHARED, "omap-dma-engine", od);
		if (rc)
			return rc;
	}

1172 1173 1174 1175
	od->ddev.filter.map = od->plat->slave_map;
	od->ddev.filter.mapcnt = od->plat->slavecnt;
	od->ddev.filter.fn = omap_dma_filter_fn;

1176 1177 1178 1179 1180
	rc = dma_async_device_register(&od->ddev);
	if (rc) {
		pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
			rc);
		omap_dma_free(od);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		return rc;
	}

	platform_set_drvdata(pdev, od);

	if (pdev->dev.of_node) {
		omap_dma_info.dma_cap = od->ddev.cap_mask;

		/* Device-tree DMA controller registration */
		rc = of_dma_controller_register(pdev->dev.of_node,
				of_dma_simple_xlate, &omap_dma_info);
		if (rc) {
			pr_warn("OMAP-DMA: failed to register DMA controller\n");
			dma_async_device_unregister(&od->ddev);
			omap_dma_free(od);
		}
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	}

	dev_info(&pdev->dev, "OMAP DMA engine driver\n");

	return rc;
}

static int omap_dma_remove(struct platform_device *pdev)
{
	struct omap_dmadev *od = platform_get_drvdata(pdev);

1208 1209 1210
	if (pdev->dev.of_node)
		of_dma_controller_free(pdev->dev.of_node);

1211
	dma_async_device_unregister(&od->ddev);
1212 1213 1214 1215 1216 1217

	if (!od->legacy) {
		/* Disable all interrupts */
		omap_dma_glbl_write(od, IRQENABLE_L0, 0);
	}

1218 1219 1220 1221 1222
	omap_dma_free(od);

	return 0;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
static const struct of_device_id omap_dma_match[] = {
	{ .compatible = "ti,omap2420-sdma", },
	{ .compatible = "ti,omap2430-sdma", },
	{ .compatible = "ti,omap3430-sdma", },
	{ .compatible = "ti,omap3630-sdma", },
	{ .compatible = "ti,omap4430-sdma", },
	{},
};
MODULE_DEVICE_TABLE(of, omap_dma_match);

1233 1234 1235 1236 1237
static struct platform_driver omap_dma_driver = {
	.probe	= omap_dma_probe,
	.remove	= omap_dma_remove,
	.driver = {
		.name = "omap-dma-engine",
1238
		.of_match_table = of_match_ptr(omap_dma_match),
1239 1240 1241 1242 1243 1244
	},
};

bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &omap_dma_driver.driver) {
1245
		struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1246 1247 1248
		struct omap_chan *c = to_omap_dma_chan(chan);
		unsigned req = *(unsigned *)param;

1249 1250 1251 1252
		if (req <= od->dma_requests) {
			c->dma_sig = req;
			return true;
		}
1253 1254 1255 1256 1257 1258 1259
	}
	return false;
}
EXPORT_SYMBOL_GPL(omap_dma_filter_fn);

static int omap_dma_init(void)
{
1260
	return platform_driver_register(&omap_dma_driver);
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
}
subsys_initcall(omap_dma_init);

static void __exit omap_dma_exit(void)
{
	platform_driver_unregister(&omap_dma_driver);
}
module_exit(omap_dma_exit);

MODULE_AUTHOR("Russell King");
MODULE_LICENSE("GPL");