rcutree_plugin.h 80.9 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include "time/tick-internal.h"
32

33 34 35 36 37 38 39 40
#define RCU_KTHREAD_PRIO 1

#ifdef CONFIG_RCU_BOOST
#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
#else
#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
#endif

P
Paul E. McKenney 已提交
41 42 43
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
44
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
45 46 47
static char __initdata nocb_buf[NR_CPUS * 5];
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

48 49 50 51 52 53 54 55
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
56
	pr_info("\tRCU debugfs-based tracing is enabled.\n");
57 58
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59
	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60 61 62
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
63
	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64 65
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
66
	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67 68
#endif
#ifdef CONFIG_PROVE_RCU
69
	pr_info("\tRCU lockdep checking is enabled.\n");
70 71
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72
	pr_info("\tRCU torture testing starts during boot.\n");
73
#endif
74
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75
	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76 77
#endif
#if defined(CONFIG_RCU_CPU_STALL_INFO)
78
	pr_info("\tAdditional per-CPU info printed with stalls.\n");
79 80
#endif
#if NUM_RCU_LVL_4 != 0
81
	pr_info("\tFour-level hierarchy is enabled.\n");
82
#endif
83
	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85
	if (nr_cpu_ids != NR_CPUS)
86
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
P
Paul E. McKenney 已提交
87
#ifdef CONFIG_RCU_NOCB_CPU
88 89
#ifndef CONFIG_RCU_NOCB_CPU_NONE
	if (!have_rcu_nocb_mask) {
90
		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91 92 93
		have_rcu_nocb_mask = true;
	}
#ifdef CONFIG_RCU_NOCB_CPU_ZERO
94
	pr_info("\tOffload RCU callbacks from CPU 0\n");
95 96 97
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
98
	pr_info("\tOffload RCU callbacks from all CPUs\n");
99
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100 101
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
P
Paul E. McKenney 已提交
102
	if (have_rcu_nocb_mask) {
103 104 105 106 107
		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
				    rcu_nocb_mask);
		}
P
Paul E. McKenney 已提交
108
		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109
		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
P
Paul E. McKenney 已提交
110
		if (rcu_nocb_poll)
111
			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
P
Paul E. McKenney 已提交
112 113
	}
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114 115
}

116 117
#ifdef CONFIG_TREE_PREEMPT_RCU

118
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119
static struct rcu_state *rcu_state = &rcu_preempt_state;
120

121 122
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

123 124 125
/*
 * Tell them what RCU they are running.
 */
126
static void __init rcu_bootup_announce(void)
127
{
128
	pr_info("Preemptible hierarchical RCU implementation.\n");
129
	rcu_bootup_announce_oddness();
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

151 152 153 154 155
/*
 * Force a quiescent state for preemptible RCU.
 */
void rcu_force_quiescent_state(void)
{
156
	force_quiescent_state(&rcu_preempt_state);
157 158 159
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

160
/*
P
Paul E. McKenney 已提交
161
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
162 163 164
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
165 166 167 168
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
169
 */
170
static void rcu_preempt_qs(int cpu)
171 172
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
173

174
	if (rdp->passed_quiesce == 0)
175
		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
176
	rdp->passed_quiesce = 1;
177
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
178 179 180
}

/*
181 182 183
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
184 185 186 187 188 189
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
190 191
 *
 * Caller must disable preemption.
192
 */
193
static void rcu_preempt_note_context_switch(int cpu)
194 195
{
	struct task_struct *t = current;
196
	unsigned long flags;
197 198 199
	struct rcu_data *rdp;
	struct rcu_node *rnp;

200
	if (t->rcu_read_lock_nesting > 0 &&
201 202 203
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
204
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
205
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
206
		raw_spin_lock_irqsave(&rnp->lock, flags);
207
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
208
		t->rcu_blocked_node = rnp;
209 210 211 212 213 214 215 216 217

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
218 219 220 221 222 223
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
224 225 226
		 *
		 * But first, note that the current CPU must still be
		 * on line!
227
		 */
228
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
229
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
230 231 232
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
233 234 235 236
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
237 238 239 240 241
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
242 243 244 245 246
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
247
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
248 249 250 251 252 253 254 255
	} else if (t->rcu_read_lock_nesting < 0 &&
		   t->rcu_read_unlock_special) {

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
256 257 258 259 260 261 262 263 264 265 266
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
267
	local_irq_save(flags);
268
	rcu_preempt_qs(cpu);
269
	local_irq_restore(flags);
270 271
}

272 273 274 275 276
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
277
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
278
{
279
	return rnp->gp_tasks != NULL;
280 281
}

282 283 284 285 286 287 288
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
289
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
290 291 292 293 294
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

295
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
P
Paul E. McKenney 已提交
296
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
297 298 299 300 301 302 303 304 305 306
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
307
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
308 309 310 311 312
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
313 314
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
P
Paul E. McKenney 已提交
315
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
316 317
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

333 334 335 336 337
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
338
void rcu_read_unlock_special(struct task_struct *t)
339 340
{
	int empty;
341
	int empty_exp;
342
	int empty_exp_now;
343
	unsigned long flags;
344
	struct list_head *np;
345 346 347
#ifdef CONFIG_RCU_BOOST
	struct rt_mutex *rbmp = NULL;
#endif /* #ifdef CONFIG_RCU_BOOST */
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
363
		rcu_preempt_qs(smp_processor_id());
364 365 366
	}

	/* Hardware IRQ handlers cannot block. */
367
	if (in_irq() || in_serving_softirq()) {
368 369 370 371 372 373 374 375
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

376 377 378 379 380 381
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
382
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
383
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
384
			if (rnp == t->rcu_blocked_node)
385
				break;
P
Paul E. McKenney 已提交
386
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
387
		}
388
		empty = !rcu_preempt_blocked_readers_cgp(rnp);
389 390
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
391
		np = rcu_next_node_entry(t, rnp);
392
		list_del_init(&t->rcu_node_entry);
393
		t->rcu_blocked_node = NULL;
394
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
395
						rnp->gpnum, t->pid);
396 397 398 399
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
400 401 402
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
403 404 405 406
		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
		if (t->rcu_boost_mutex) {
			rbmp = t->rcu_boost_mutex;
			t->rcu_boost_mutex = NULL;
407
		}
408
#endif /* #ifdef CONFIG_RCU_BOOST */
409 410 411 412

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
413 414
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
415
		 */
416
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
417
		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
418
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
419 420 421 422 423 424
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
P
Paul E. McKenney 已提交
425
			rcu_report_unblock_qs_rnp(rnp, flags);
426
		} else {
427
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
428
		}
429

430 431
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
432 433
		if (rbmp)
			rt_mutex_unlock(rbmp);
434 435
#endif /* #ifdef CONFIG_RCU_BOOST */

436 437 438 439
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
440
		if (!empty_exp && empty_exp_now)
441
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
442 443
	} else {
		local_irq_restore(flags);
444 445 446
	}
}

447 448 449 450 451 452 453 454 455 456 457
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

458
	raw_spin_lock_irqsave(&rnp->lock, flags);
459 460 461 462
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
463 464 465 466 467
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

491 492 493 494
#ifdef CONFIG_RCU_CPU_STALL_INFO

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
495
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
496 497 498 499 500
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
501
	pr_cont("\n");
502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
}

static void rcu_print_task_stall_end(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

516 517 518 519
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
520
static int rcu_print_task_stall(struct rcu_node *rnp)
521 522
{
	struct task_struct *t;
523
	int ndetected = 0;
524

525
	if (!rcu_preempt_blocked_readers_cgp(rnp))
526
		return 0;
527
	rcu_print_task_stall_begin(rnp);
528 529
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
530
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
531
		pr_cont(" P%d", t->pid);
532 533
		ndetected++;
	}
534
	rcu_print_task_stall_end();
535
	return ndetected;
536 537
}

538 539 540 541 542 543
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
544 545 546
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
547 548 549
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
550
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
551 552
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
553
	WARN_ON_ONCE(rnp->qsmask);
554 555
}

556 557
#ifdef CONFIG_HOTPLUG_CPU

558 559 560 561 562 563
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
564 565
 * Returns true if there were tasks blocking the current RCU grace
 * period.
566
 *
567 568 569
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
570 571
 * The caller must hold rnp->lock with irqs disabled.
 */
572 573 574
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
575 576 577
{
	struct list_head *lp;
	struct list_head *lp_root;
578
	int retval = 0;
579
	struct rcu_node *rnp_root = rcu_get_root(rsp);
580
	struct task_struct *t;
581

582 583
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
584
		return 0;  /* Shouldn't happen: at least one CPU online. */
585
	}
586 587 588

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);
589 590

	/*
591 592 593 594 595 596 597
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
598
	 */
599
	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
600 601 602
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
603 604 605 606 607 608 609 610 611 612 613 614
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
615 616 617 618
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
619
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
620
	}
621

622 623
	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
624
#ifdef CONFIG_RCU_BOOST
625
	rnp->boost_tasks = NULL;
626 627 628 629 630
	/*
	 * In case root is being boosted and leaf was not.  Make sure
	 * that we boost the tasks blocking the current grace period
	 * in this case.
	 */
631 632
	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
	if (rnp_root->boost_tasks != NULL &&
633 634
	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
	    rnp_root->boost_tasks != rnp_root->exp_tasks)
635 636 637 638
		rnp_root->boost_tasks = rnp_root->gp_tasks;
	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */

639
	return retval;
640 641
}

642 643
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

644 645 646 647 648 649 650 651 652 653 654 655
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
656
		rcu_preempt_qs(cpu);
657 658
		return;
	}
659 660
	if (t->rcu_read_lock_nesting > 0 &&
	    per_cpu(rcu_preempt_data, cpu).qs_pending)
661
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
662 663
}

664 665
#ifdef CONFIG_RCU_BOOST

666 667
static void rcu_preempt_do_callbacks(void)
{
668
	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
669 670
}

671 672
#endif /* #ifdef CONFIG_RCU_BOOST */

673
/*
P
Paul E. McKenney 已提交
674
 * Queue a preemptible-RCU callback for invocation after a grace period.
675 676 677
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
678
	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
679 680 681
}
EXPORT_SYMBOL_GPL(call_rcu);

682 683 684 685 686 687 688 689 690 691
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
692
	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
693 694 695
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

696 697 698 699 700
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
701 702 703 704 705
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
706 707 708
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
709 710 711
 */
void synchronize_rcu(void)
{
712 713 714 715
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
716 717
	if (!rcu_scheduler_active)
		return;
718 719 720 721
	if (rcu_expedited)
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
722 723 724
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

725
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
726
static unsigned long sync_rcu_preempt_exp_count;
727 728 729 730 731 732 733 734 735 736
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
737
	return rnp->exp_tasks != NULL;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
763 764 765
 * Most callers will set the "wake" flag, but the task initiating the
 * expedited grace period need not wake itself.
 *
766 767
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
768 769
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
770 771 772 773
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
774
	raw_spin_lock_irqsave(&rnp->lock, flags);
775
	for (;;) {
776 777
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
778
			break;
779
		}
780
		if (rnp->parent == NULL) {
781
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
782 783
			if (wake)
				wake_up(&sync_rcu_preempt_exp_wq);
784 785 786
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
787
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
788
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
789
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
790 791 792 793 794 795 796 797 798
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
799 800
 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
 * CPU hotplug operations.
801 802 803 804
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
805
	unsigned long flags;
806
	int must_wait = 0;
807

808
	raw_spin_lock_irqsave(&rnp->lock, flags);
809
	if (list_empty(&rnp->blkd_tasks)) {
810
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
811
	} else {
812
		rnp->exp_tasks = rnp->blkd_tasks.next;
813
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
814 815
		must_wait = 1;
	}
816
	if (!must_wait)
817
		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
818 819
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
 *
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
836 837 838
 */
void synchronize_rcu_expedited(void)
{
839 840 841
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
842
	unsigned long snap;
843 844 845 846 847 848
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

849 850 851 852 853 854 855 856 857 858
	/*
	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
	 * operation that finds an rcu_node structure with tasks in the
	 * process of being boosted will know that all tasks blocking
	 * this expedited grace period will already be in the process of
	 * being boosted.  This simplifies the process of moving tasks
	 * from leaf to root rcu_node structures.
	 */
	get_online_cpus();

859 860 861 862 863 864
	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
865 866 867 868 869
		if (ULONG_CMP_LT(snap,
		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
			put_online_cpus();
			goto mb_ret; /* Others did our work for us. */
		}
870
		if (trycount++ < 10) {
871
			udelay(trycount * num_online_cpus());
872
		} else {
873
			put_online_cpus();
874
			wait_rcu_gp(call_rcu);
875 876 877
			return;
		}
	}
878 879
	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
		put_online_cpus();
880
		goto unlock_mb_ret; /* Others did our work for us. */
881
	}
882

883
	/* force all RCU readers onto ->blkd_tasks lists. */
884 885 886 887
	synchronize_sched_expedited();

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
888
		raw_spin_lock_irqsave(&rnp->lock, flags);
889
		rnp->expmask = rnp->qsmaskinit;
890
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
891 892
	}

893
	/* Snapshot current state of ->blkd_tasks lists. */
894 895 896 897 898
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

899
	put_online_cpus();
900

901
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
902 903 904 905 906 907 908 909 910 911 912
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
913 914 915
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

916 917
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
918 919 920 921 922
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
923 924 925
 */
void rcu_barrier(void)
{
926
	_rcu_barrier(&rcu_preempt_state);
927 928 929
}
EXPORT_SYMBOL_GPL(rcu_barrier);

930
/*
P
Paul E. McKenney 已提交
931
 * Initialize preemptible RCU's state structures.
932 933 934
 */
static void __init __rcu_init_preempt(void)
{
935
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
936 937
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
	__rcu_read_unlock();
}

956 957
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

958 959
static struct rcu_state *rcu_state = &rcu_sched_state;

960 961 962
/*
 * Tell them what RCU they are running.
 */
963
static void __init rcu_bootup_announce(void)
964
{
965
	pr_info("Hierarchical RCU implementation.\n");
966
	rcu_bootup_announce_oddness();
967 968 969 970 971 972 973 974 975 976 977
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

978 979 980 981 982 983 984 985 986 987
/*
 * Force a quiescent state for RCU, which, because there is no preemptible
 * RCU, becomes the same as rcu-sched.
 */
void rcu_force_quiescent_state(void)
{
	rcu_sched_force_quiescent_state();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

988 989 990 991 992 993 994 995
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
static void rcu_preempt_note_context_switch(int cpu)
{
}

996
/*
P
Paul E. McKenney 已提交
997
 * Because preemptible RCU does not exist, there are never any preempted
998 999
 * RCU readers.
 */
1000
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1001 1002 1003 1004
{
	return 0;
}

1005 1006 1007
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
1008
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1009
{
P
Paul E. McKenney 已提交
1010
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1011 1012 1013 1014
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1015
/*
P
Paul E. McKenney 已提交
1016
 * Because preemptible RCU does not exist, we never have to check for
1017 1018 1019 1020 1021 1022
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

1023
/*
P
Paul E. McKenney 已提交
1024
 * Because preemptible RCU does not exist, we never have to check for
1025 1026
 * tasks blocked within RCU read-side critical sections.
 */
1027
static int rcu_print_task_stall(struct rcu_node *rnp)
1028
{
1029
	return 0;
1030 1031
}

1032
/*
P
Paul E. McKenney 已提交
1033
 * Because there is no preemptible RCU, there can be no readers blocked,
1034 1035
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
1036 1037 1038
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
1039
	WARN_ON_ONCE(rnp->qsmask);
1040 1041
}

1042 1043
#ifdef CONFIG_HOTPLUG_CPU

1044
/*
P
Paul E. McKenney 已提交
1045
 * Because preemptible RCU does not exist, it never needs to migrate
1046 1047 1048
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
1049
 */
1050 1051 1052
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
1053
{
1054
	return 0;
1055 1056
}

1057 1058
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1059
/*
P
Paul E. McKenney 已提交
1060
 * Because preemptible RCU does not exist, it never has any callbacks
1061 1062
 * to check.
 */
1063
static void rcu_preempt_check_callbacks(int cpu)
1064 1065 1066
{
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 *
 * Because there is no preemptible RCU, we use RCU-sched instead.
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
1079
	__call_rcu(head, func, &rcu_sched_state, -1, 1);
1080 1081 1082
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

1083 1084
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
1085
 * But because preemptible RCU does not exist, map to rcu-sched.
1086 1087 1088 1089 1090 1091 1092
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

1093 1094 1095
#ifdef CONFIG_HOTPLUG_CPU

/*
P
Paul E. McKenney 已提交
1096
 * Because preemptible RCU does not exist, there is never any need to
1097 1098 1099
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
1100 1101
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
1102 1103 1104 1105 1106
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1107
/*
P
Paul E. McKenney 已提交
1108
 * Because preemptible RCU does not exist, rcu_barrier() is just
1109 1110 1111 1112 1113 1114 1115 1116
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

1117
/*
P
Paul E. McKenney 已提交
1118
 * Because preemptible RCU does not exist, it need not be initialized.
1119 1120 1121 1122 1123
 */
static void __init __rcu_init_preempt(void)
{
}

1124 1125 1126 1127 1128 1129 1130 1131
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

1132
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1133

1134 1135 1136 1137
#ifdef CONFIG_RCU_BOOST

#include "rtmutex_common.h"

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
	if (list_empty(&rnp->blkd_tasks))
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
1151
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct rt_mutex mtx;
	struct task_struct *t;
	struct list_head *tb;

	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1210
	if (rnp->exp_tasks != NULL) {
1211
		tb = rnp->exp_tasks;
1212 1213
		rnp->n_exp_boosts++;
	} else {
1214
		tb = rnp->boost_tasks;
1215 1216 1217
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
	rt_mutex_init_proxy_locked(&mtx, t);
	t->rcu_boost_mutex = &mtx;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */

1242 1243
	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1256
	trace_rcu_utilization(TPS("Start boost kthread@init"));
1257
	for (;;) {
1258
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1259
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1260
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1261
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1262
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1263 1264 1265 1266 1267 1268
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1269
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1270
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
1271
			schedule_timeout_interruptible(2);
1272
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1273 1274 1275
			spincnt = 0;
		}
	}
1276
	/* NOTREACHED */
1277
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1278 1279 1280 1281 1282 1283 1284 1285 1286
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1287 1288 1289
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1290
 */
1291
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1292 1293 1294
{
	struct task_struct *t;

1295 1296
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1297
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1298
		return;
1299
	}
1300 1301 1302 1303 1304 1305 1306
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1307
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1308
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1309 1310
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1311
	} else {
1312
		rcu_initiate_boost_trace(rnp);
1313 1314
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1315 1316
}

1317 1318 1319 1320 1321 1322 1323 1324 1325
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1326
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1327 1328 1329 1330
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1331 1332 1333
	local_irq_restore(flags);
}

1334 1335 1336 1337 1338 1339
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1340
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1341 1342
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1358
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
T
Thomas Gleixner 已提交
1359
						 struct rcu_node *rnp)
1360
{
T
Thomas Gleixner 已提交
1361
	int rnp_index = rnp - &rsp->node[0];
1362 1363 1364 1365 1366 1367
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
T
Thomas Gleixner 已提交
1368 1369 1370 1371

	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
		return 0;

1372
	rsp->boost = 1;
1373 1374 1375
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1376
			   "rcub/%d", rnp_index);
1377 1378 1379 1380 1381
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1382
	sp.sched_priority = RCU_BOOST_PRIO;
1383
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1384
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1385 1386 1387
	return 0;
}

1388 1389
static void rcu_kthread_do_work(void)
{
1390 1391
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1392 1393 1394
	rcu_preempt_do_callbacks();
}

1395
static void rcu_cpu_kthread_setup(unsigned int cpu)
1396 1397 1398
{
	struct sched_param sp;

1399 1400
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1401 1402
}

1403
static void rcu_cpu_kthread_park(unsigned int cpu)
1404
{
1405
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1406 1407
}

1408
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1409
{
1410
	return __this_cpu_read(rcu_cpu_has_work);
1411 1412 1413 1414
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1415 1416
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1417
 */
1418
static void rcu_cpu_kthread(unsigned int cpu)
1419
{
1420 1421
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1422
	int spincnt;
1423

1424
	for (spincnt = 0; spincnt < 10; spincnt++) {
1425
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1426 1427
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1428 1429
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1430 1431
		work = *workp;
		*workp = 0;
1432
		local_irq_enable();
1433 1434 1435
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1436
		if (*workp == 0) {
1437
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1438 1439
			*statusp = RCU_KTHREAD_WAITING;
			return;
1440 1441
		}
	}
1442
	*statusp = RCU_KTHREAD_YIELDING;
1443
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1444
	schedule_timeout_interruptible(2);
1445
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1446
	*statusp = RCU_KTHREAD_WAITING;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1458
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1459
{
T
Thomas Gleixner 已提交
1460 1461
	struct task_struct *t = rnp->boost_kthread_task;
	unsigned long mask = rnp->qsmaskinit;
1462 1463 1464
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1465
	if (!t)
1466
		return;
T
Thomas Gleixner 已提交
1467
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
T
Thomas Gleixner 已提交
1478
	set_cpus_allowed_ptr(t, cm);
1479 1480 1481
	free_cpumask_var(cm);
}

1482 1483 1484 1485 1486 1487 1488 1489
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1490 1491 1492 1493 1494 1495 1496

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1497
	int cpu;
1498

1499
	rcu_scheduler_fully_active = 1;
1500
	for_each_possible_cpu(cpu)
1501
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1502
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1503
	rnp = rcu_get_root(rcu_state);
T
Thomas Gleixner 已提交
1504
	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1505 1506
	if (NUM_RCU_NODES > 1) {
		rcu_for_each_leaf_node(rcu_state, rnp)
T
Thomas Gleixner 已提交
1507
			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1508 1509 1510 1511 1512
	}
	return 0;
}
early_initcall(rcu_spawn_kthreads);

1513
static void rcu_prepare_kthreads(int cpu)
1514 1515 1516 1517 1518
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1519
	if (rcu_scheduler_fully_active)
T
Thomas Gleixner 已提交
1520
		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1521 1522
}

1523 1524
#else /* #ifdef CONFIG_RCU_BOOST */

1525
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1526
{
1527
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1528 1529
}

1530
static void invoke_rcu_callbacks_kthread(void)
1531
{
1532
	WARN_ON_ONCE(1);
1533 1534
}

1535 1536 1537 1538 1539
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1540 1541 1542 1543
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1544
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1545 1546 1547
{
}

1548 1549 1550 1551 1552 1553 1554
static int __init rcu_scheduler_really_started(void)
{
	rcu_scheduler_fully_active = 1;
	return 0;
}
early_initcall(rcu_scheduler_really_started);

1555
static void rcu_prepare_kthreads(int cpu)
1556 1557 1558
{
}

1559 1560
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1561 1562 1563 1564 1565 1566 1567 1568
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1569 1570
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1571
 */
1572
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1573
{
1574
	*delta_jiffies = ULONG_MAX;
1575
	return rcu_cpu_has_callbacks(cpu, NULL);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
static void rcu_cleanup_after_idle(int cpu)
{
}

1586
/*
1587
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1588 1589 1590 1591 1592 1593
 * is nothing.
 */
static void rcu_prepare_for_idle(int cpu)
{
}

1594 1595 1596 1597 1598 1599 1600 1601
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1602 1603
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1619 1620 1621
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1622 1623 1624 1625 1626
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1627
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1628
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1629

1630 1631 1632 1633
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1634

1635
extern int tick_nohz_enabled;
1636 1637

/*
1638 1639 1640
 * Try to advance callbacks for all flavors of RCU on the current CPU.
 * Afterwards, if there are any callbacks ready for immediate invocation,
 * return true.
1641
 */
1642
static bool rcu_try_advance_all_cbs(void)
1643
{
1644 1645 1646 1647
	bool cbs_ready = false;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1648

1649 1650 1651
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1652

1653 1654 1655 1656 1657 1658 1659
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
		if (rdp->completed != rnp->completed &&
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1660
			note_gp_changes(rsp, rdp);
1661

1662 1663 1664 1665
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1666 1667
}

1668
/*
1669 1670 1671 1672
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1673
 *
1674
 * The caller must have disabled interrupts.
1675
 */
1676
int rcu_needs_cpu(int cpu, unsigned long *dj)
1677 1678 1679
{
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

1680 1681 1682
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1683
	/* If no callbacks, RCU doesn't need the CPU. */
1684 1685
	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
		*dj = ULONG_MAX;
1686 1687
		return 0;
	}
1688 1689 1690 1691 1692

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1693 1694
		return 1;
	}
1695 1696 1697
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1698
	if (!rdtp->all_lazy) {
1699 1700
		*dj = round_up(rcu_idle_gp_delay + jiffies,
			       rcu_idle_gp_delay) - jiffies;
1701
	} else {
1702
		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1703
	}
1704 1705 1706
	return 0;
}

1707
/*
1708 1709 1710 1711 1712 1713
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1714 1715
 *
 * The caller must have disabled interrupts.
1716
 */
1717
static void rcu_prepare_for_idle(int cpu)
1718
{
1719
	struct rcu_data *rdp;
1720
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1721 1722
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1723 1724 1725 1726 1727
	int tne;

	/* Handle nohz enablement switches conservatively. */
	tne = ACCESS_ONCE(tick_nohz_enabled);
	if (tne != rdtp->tick_nohz_enabled_snap) {
1728
		if (rcu_cpu_has_callbacks(cpu, NULL))
1729 1730 1731 1732 1733 1734
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1735

1736
	/* If this is a no-CBs CPU, no callbacks, just return. */
1737
	if (rcu_is_nocb_cpu(cpu))
1738 1739
		return;

1740
	/*
1741 1742 1743
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1744
	 */
1745 1746 1747
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
		invoke_rcu_core();
1748 1749 1750
		return;
	}

1751
	/*
1752 1753
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1754
	 */
1755
	if (rdtp->last_accelerate == jiffies)
1756
		return;
1757 1758 1759 1760 1761 1762 1763 1764 1765
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
		rcu_accelerate_cbs(rsp, rnp, rdp);
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1766
	}
1767
}
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
static void rcu_cleanup_after_idle(int cpu)
{
	struct rcu_data *rdp;
	struct rcu_state *rsp;
1778

1779
	if (rcu_is_nocb_cpu(cpu))
1780
		return;
1781 1782 1783 1784 1785
	rcu_try_advance_all_cbs();
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			invoke_rcu_core();
1786
	}
1787 1788
}

1789
/*
1790 1791 1792 1793 1794 1795
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1796 1797 1798
 */
static void rcu_idle_count_callbacks_posted(void)
{
1799
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1800 1801
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
		rdp = __this_cpu_ptr(rsp->rda);
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
		cond_resched();
	}
	put_online_cpus();

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1884
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1885 1886 1887 1888 1889 1890 1891

#ifdef CONFIG_RCU_CPU_STALL_INFO

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1892
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1893
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1894

1895 1896 1897 1898 1899
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1900 1901 1902 1903 1904 1905
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1906
	*cp = '\0';
1907 1908 1909 1910 1911 1912 1913
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1914
	pr_cont("\n");
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1945
	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1946 1947 1948
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1949
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1950 1951 1952 1953 1954 1955
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1956
	pr_err("\t");
1957 1958 1959 1960 1961 1962
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1963
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1964 1965 1966 1967 1968
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1969 1970 1971 1972
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
1973 1974 1975 1976 1977 1978
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void print_cpu_stall_info_begin(void)
{
1979
	pr_cont(" {");
1980 1981 1982 1983
}

static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
1984
	pr_cont(" %d", cpu);
1985 1986 1987 1988
}

static void print_cpu_stall_info_end(void)
{
1989
	pr_cont("} ");
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
}

static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
}

static void increment_cpu_stall_ticks(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
P
Paul E. McKenney 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

2035 2036 2037 2038 2039 2040 2041
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

2042
/*
2043 2044 2045 2046 2047 2048 2049 2050 2051
 * Do any no-CBs CPUs need another grace period?
 *
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_nocb_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

2052
	return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
2053 2054 2055
}

/*
2056 2057
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
2058
 */
2059
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2060
{
2061
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2062 2063 2064
}

/*
2065
 * Set the root rcu_node structure's ->need_future_gp field
2066 2067 2068 2069 2070
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
2071
 */
2072 2073
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
2074
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2075 2076 2077
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
2078
{
2079 2080
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2081 2082
}

P
Paul E. McKenney 已提交
2083
/* Is the specified CPU a no-CPUs CPU? */
2084
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}

/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
				    int rhcount, int rhcount_lazy)
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
	ACCESS_ONCE(*old_rhpp) = rhp;
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);

	/* If we are not being polled and there is a kthread, awaken it ... */
	t = ACCESS_ONCE(rdp->nocb_kthread);
2116
	if (rcu_nocb_poll || !t)
P
Paul E. McKenney 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
		return;
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
		wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
		wake_up_process(t); /* ... or if many callbacks queued. */
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
			    bool lazy)
{

2142
	if (!rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2143 2144
		return 0;
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
2145 2146 2147 2148 2149 2150 2151
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
					 rdp->qlen_lazy, rdp->qlen);
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
				   rdp->qlen_lazy, rdp->qlen);
P
Paul E. McKenney 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	return 1;
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
						     struct rcu_data *rdp)
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2166
	if (!rcu_is_nocb_cpu(smp_processor_id()))
P
Paul E. McKenney 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
		return 0;
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
					rsp->orphan_donetail, ql, qll);
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
					rsp->orphan_nxttail, ql, qll);
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
	return 1;
}

/*
2190 2191
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2192
 */
2193
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2194
{
2195
	unsigned long c;
2196
	bool d;
2197 2198 2199 2200
	unsigned long flags;
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
2201 2202
	c = rcu_start_future_gp(rnp, rdp);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
2203 2204

	/*
2205 2206
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2207
	 */
2208
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2209
	for (;;) {
2210 2211 2212 2213
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
		if (likely(d))
2214
			break;
2215
		flush_signals(current);
2216
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2217
	}
2218
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2219
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
}

/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
 * callbacks queued by the corresponding no-CBs CPU.
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
		/* If not polling, wait for next batch of callbacks. */
		if (!rcu_nocb_poll)
2238
			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
P
Paul E. McKenney 已提交
2239 2240 2241
		list = ACCESS_ONCE(rdp->nocb_head);
		if (!list) {
			schedule_timeout_interruptible(1);
2242
			flush_signals(current);
P
Paul E. McKenney 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
			continue;
		}

		/*
		 * Extract queued callbacks, update counts, and wait
		 * for a grace period to elapse.
		 */
		ACCESS_ONCE(rdp->nocb_head) = NULL;
		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
		ACCESS_ONCE(rdp->nocb_p_count) += c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2256
		rcu_nocb_wait_gp(rdp);
P
Paul E. McKenney 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

		/* Each pass through the following loop invokes a callback. */
		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
				schedule_timeout_interruptible(1);
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
		ACCESS_ONCE(rdp->nocb_p_count) -= c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2279
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	}
	return 0;
}

/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
}

/* Create a kthread for each RCU flavor for each no-CBs CPU. */
static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
	int cpu;
	struct rcu_data *rdp;
	struct task_struct *t;

	if (rcu_nocb_mask == NULL)
		return;
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2302 2303
		t = kthread_run(rcu_nocb_kthread, rdp,
				"rcuo%c/%d", rsp->abbr, cpu);
P
Paul E. McKenney 已提交
2304 2305 2306 2307 2308 2309
		BUG_ON(IS_ERR(t));
		ACCESS_ONCE(rdp->nocb_kthread) = t;
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2310
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2311 2312 2313
{
	if (rcu_nocb_mask == NULL ||
	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2314
		return false;
P
Paul E. McKenney 已提交
2315
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2316
	return true;
P
Paul E. McKenney 已提交
2317 2318
}

2319 2320
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2321 2322 2323
static int rcu_nocb_needs_gp(struct rcu_state *rsp)
{
	return 0;
P
Paul E. McKenney 已提交
2324 2325
}

2326
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2327 2328 2329
{
}

2330 2331 2332 2333 2334 2335 2336
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
			    bool lazy)
{
	return 0;
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
						     struct rcu_data *rdp)
{
	return 0;
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
}

2358
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2359
{
2360
	return false;
P
Paul E. McKenney 已提交
2361 2362 2363
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
static void rcu_kick_nohz_cpu(int cpu)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2381 2382 2383 2384


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2385 2386 2387 2388 2389
/*
 * Define RCU flavor that holds sysidle state.  This needs to be the
 * most active flavor of RCU.
 */
#ifdef CONFIG_PREEMPT_RCU
2390
static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2391
#else /* #ifdef CONFIG_PREEMPT_RCU */
2392
static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2393 2394
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

2395
static int full_sysidle_state;		/* Current system-idle state. */
2396 2397 2398 2399 2400 2401
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
	unsigned long j;

	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
	smp_mb__before_atomic_inc();
	atomic_inc(&rdtp->dynticks_idle);
	smp_mb__after_atomic_inc();
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
	int oldstate = ACCESS_ONCE(full_sysidle_state);
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
	smp_mb__before_atomic_inc();
	atomic_inc(&rdtp->dynticks_idle);
	smp_mb__after_atomic_inc();
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
 * does not count as idle.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
2539 2540
	if (rcu_gp_in_progress(rdp->rsp))
		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return rsp == rcu_sysidle_state;
}

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
	int cpu = ACCESS_ONCE(tick_do_timer_cpu);

	if (cpu < 0 || cpu >= nr_cpu_ids)
		return;
	if (raw_smp_processor_id() != cpu)
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
}

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
	switch (ACCESS_ONCE(full_sysidle_state)) {
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
	ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
	if (rsp != rcu_sysidle_state)
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
	ACCESS_ONCE(rshp->inuse) = 0;
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
 * The caller must have disabled interrupts.
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
	int rss = ACCESS_ONCE(full_sysidle_state);

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
			rcu_sysidle_report(rcu_sysidle_state,
					   isidle, maxj, false);
			oldrss = rss;
			rss = ACCESS_ONCE(full_sysidle_state);
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
	    !rcu_gp_in_progress(rcu_sysidle_state) &&
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
2759 2760
}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

2771 2772 2773 2774 2775 2776 2777 2778
static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
}

static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

2789 2790 2791 2792
static void rcu_bind_gp_kthread(void)
{
}

2793 2794 2795 2796 2797
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

2798 2799 2800 2801 2802
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */