rcutree_plugin.h 71.2 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include <linux/tick.h>
32

33 34 35 36 37 38 39 40
#define RCU_KTHREAD_PRIO 1

#ifdef CONFIG_RCU_BOOST
#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
#else
#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
#endif

P
Paul E. McKenney 已提交
41 42 43
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
44
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
45 46 47
static char __initdata nocb_buf[NR_CPUS * 5];
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

48 49 50 51 52 53 54 55
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
56
	pr_info("\tRCU debugfs-based tracing is enabled.\n");
57 58
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59
	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60 61 62
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
63
	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64 65
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
66
	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67 68
#endif
#ifdef CONFIG_PROVE_RCU
69
	pr_info("\tRCU lockdep checking is enabled.\n");
70 71
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72
	pr_info("\tRCU torture testing starts during boot.\n");
73
#endif
74
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75
	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76 77
#endif
#if defined(CONFIG_RCU_CPU_STALL_INFO)
78
	pr_info("\tAdditional per-CPU info printed with stalls.\n");
79 80
#endif
#if NUM_RCU_LVL_4 != 0
81
	pr_info("\tFour-level hierarchy is enabled.\n");
82
#endif
83
	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85
	if (nr_cpu_ids != NR_CPUS)
86
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
P
Paul E. McKenney 已提交
87
#ifdef CONFIG_RCU_NOCB_CPU
88 89
#ifndef CONFIG_RCU_NOCB_CPU_NONE
	if (!have_rcu_nocb_mask) {
90
		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91 92 93
		have_rcu_nocb_mask = true;
	}
#ifdef CONFIG_RCU_NOCB_CPU_ZERO
94
	pr_info("\tOffload RCU callbacks from CPU 0\n");
95 96 97
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
98
	pr_info("\tOffload RCU callbacks from all CPUs\n");
99 100 101
	cpumask_setall(rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
P
Paul E. McKenney 已提交
102 103
	if (have_rcu_nocb_mask) {
		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
104
		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
P
Paul E. McKenney 已提交
105
		if (rcu_nocb_poll)
106
			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
P
Paul E. McKenney 已提交
107 108
	}
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
109 110
}

111 112
#ifdef CONFIG_TREE_PREEMPT_RCU

113
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
114
static struct rcu_state *rcu_state = &rcu_preempt_state;
115

116 117
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

118 119 120
/*
 * Tell them what RCU they are running.
 */
121
static void __init rcu_bootup_announce(void)
122
{
123
	pr_info("Preemptible hierarchical RCU implementation.\n");
124
	rcu_bootup_announce_oddness();
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

146 147 148 149 150
/*
 * Force a quiescent state for preemptible RCU.
 */
void rcu_force_quiescent_state(void)
{
151
	force_quiescent_state(&rcu_preempt_state);
152 153 154
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

155
/*
P
Paul E. McKenney 已提交
156
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
157 158 159
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
160 161 162 163
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
164
 */
165
static void rcu_preempt_qs(int cpu)
166 167
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
168

169
	if (rdp->passed_quiesce == 0)
170
		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
171
	rdp->passed_quiesce = 1;
172
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
173 174 175
}

/*
176 177 178
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
179 180 181 182 183 184
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
185 186
 *
 * Caller must disable preemption.
187
 */
188
static void rcu_preempt_note_context_switch(int cpu)
189 190
{
	struct task_struct *t = current;
191
	unsigned long flags;
192 193 194
	struct rcu_data *rdp;
	struct rcu_node *rnp;

195
	if (t->rcu_read_lock_nesting > 0 &&
196 197 198
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
199
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
200
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
201
		raw_spin_lock_irqsave(&rnp->lock, flags);
202
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
203
		t->rcu_blocked_node = rnp;
204 205 206 207 208 209 210 211 212

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
213 214 215 216 217 218
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
219 220 221
		 *
		 * But first, note that the current CPU must still be
		 * on line!
222
		 */
223
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
224
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
225 226 227
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
228 229 230 231
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
232 233 234 235 236
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
237 238 239 240 241
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
242
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
243 244 245 246 247 248 249 250
	} else if (t->rcu_read_lock_nesting < 0 &&
		   t->rcu_read_unlock_special) {

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
251 252 253 254 255 256 257 258 259 260 261
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
262
	local_irq_save(flags);
263
	rcu_preempt_qs(cpu);
264
	local_irq_restore(flags);
265 266
}

267 268 269 270 271
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
272
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
273
{
274
	return rnp->gp_tasks != NULL;
275 276
}

277 278 279 280 281 282 283
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
284
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
285 286 287 288 289
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

290
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
P
Paul E. McKenney 已提交
291
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
292 293 294 295 296 297 298 299 300 301
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
302
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
303 304 305 306 307
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
308 309
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
P
Paul E. McKenney 已提交
310
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
311 312
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

328 329 330 331 332
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
333
void rcu_read_unlock_special(struct task_struct *t)
334 335
{
	int empty;
336
	int empty_exp;
337
	int empty_exp_now;
338
	unsigned long flags;
339
	struct list_head *np;
340 341 342
#ifdef CONFIG_RCU_BOOST
	struct rt_mutex *rbmp = NULL;
#endif /* #ifdef CONFIG_RCU_BOOST */
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
358
		rcu_preempt_qs(smp_processor_id());
359 360 361
	}

	/* Hardware IRQ handlers cannot block. */
362
	if (in_irq() || in_serving_softirq()) {
363 364 365 366 367 368 369 370
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

371 372 373 374 375 376
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
377
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
378
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
379
			if (rnp == t->rcu_blocked_node)
380
				break;
P
Paul E. McKenney 已提交
381
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
382
		}
383
		empty = !rcu_preempt_blocked_readers_cgp(rnp);
384 385
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
386
		np = rcu_next_node_entry(t, rnp);
387
		list_del_init(&t->rcu_node_entry);
388
		t->rcu_blocked_node = NULL;
389
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
390
						rnp->gpnum, t->pid);
391 392 393 394
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
395 396 397
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
398 399 400 401
		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
		if (t->rcu_boost_mutex) {
			rbmp = t->rcu_boost_mutex;
			t->rcu_boost_mutex = NULL;
402
		}
403
#endif /* #ifdef CONFIG_RCU_BOOST */
404 405 406 407

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
408 409
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
410
		 */
411
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
412
		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
413
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
414 415 416 417 418 419
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
P
Paul E. McKenney 已提交
420
			rcu_report_unblock_qs_rnp(rnp, flags);
421
		} else {
422
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
423
		}
424

425 426
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
427 428
		if (rbmp)
			rt_mutex_unlock(rbmp);
429 430
#endif /* #ifdef CONFIG_RCU_BOOST */

431 432 433 434
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
435
		if (!empty_exp && empty_exp_now)
436
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
437 438
	} else {
		local_irq_restore(flags);
439 440 441
	}
}

442 443 444 445 446 447 448 449 450 451 452
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

453
	raw_spin_lock_irqsave(&rnp->lock, flags);
454 455 456 457
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
458 459 460 461 462
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

486 487 488 489
#ifdef CONFIG_RCU_CPU_STALL_INFO

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
490
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
491 492 493 494 495
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
496
	pr_cont("\n");
497 498 499 500 501 502 503 504 505 506 507 508 509 510
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
}

static void rcu_print_task_stall_end(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

511 512 513 514
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
515
static int rcu_print_task_stall(struct rcu_node *rnp)
516 517
{
	struct task_struct *t;
518
	int ndetected = 0;
519

520
	if (!rcu_preempt_blocked_readers_cgp(rnp))
521
		return 0;
522
	rcu_print_task_stall_begin(rnp);
523 524
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
525
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
526
		pr_cont(" P%d", t->pid);
527 528
		ndetected++;
	}
529
	rcu_print_task_stall_end();
530
	return ndetected;
531 532
}

533 534 535 536 537 538
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
539 540 541
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
542 543 544
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
545
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
546 547
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
548
	WARN_ON_ONCE(rnp->qsmask);
549 550
}

551 552
#ifdef CONFIG_HOTPLUG_CPU

553 554 555 556 557 558
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
559 560
 * Returns true if there were tasks blocking the current RCU grace
 * period.
561
 *
562 563 564
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
565 566
 * The caller must hold rnp->lock with irqs disabled.
 */
567 568 569
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
570 571 572
{
	struct list_head *lp;
	struct list_head *lp_root;
573
	int retval = 0;
574
	struct rcu_node *rnp_root = rcu_get_root(rsp);
575
	struct task_struct *t;
576

577 578
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
579
		return 0;  /* Shouldn't happen: at least one CPU online. */
580
	}
581 582 583

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);
584 585

	/*
586 587 588 589 590 591 592
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
593
	 */
594
	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
595 596 597
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
598 599 600 601 602 603 604 605 606 607 608 609
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
610 611 612 613
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
614
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
615
	}
616

617 618
	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
619
#ifdef CONFIG_RCU_BOOST
620
	rnp->boost_tasks = NULL;
621 622 623 624 625
	/*
	 * In case root is being boosted and leaf was not.  Make sure
	 * that we boost the tasks blocking the current grace period
	 * in this case.
	 */
626 627
	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
	if (rnp_root->boost_tasks != NULL &&
628 629
	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
	    rnp_root->boost_tasks != rnp_root->exp_tasks)
630 631 632 633
		rnp_root->boost_tasks = rnp_root->gp_tasks;
	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */

634
	return retval;
635 636
}

637 638
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

639 640 641 642 643 644 645 646 647 648 649 650
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
651
		rcu_preempt_qs(cpu);
652 653
		return;
	}
654 655
	if (t->rcu_read_lock_nesting > 0 &&
	    per_cpu(rcu_preempt_data, cpu).qs_pending)
656
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
657 658
}

659 660
#ifdef CONFIG_RCU_BOOST

661 662 663 664 665
static void rcu_preempt_do_callbacks(void)
{
	rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
}

666 667
#endif /* #ifdef CONFIG_RCU_BOOST */

668
/*
P
Paul E. McKenney 已提交
669
 * Queue a preemptible-RCU callback for invocation after a grace period.
670 671 672
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
673
	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
674 675 676
}
EXPORT_SYMBOL_GPL(call_rcu);

677 678 679 680 681 682 683 684 685 686
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
687
	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
688 689 690
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

691 692 693 694 695
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
696 697 698 699 700
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
701 702 703
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
704 705 706
 */
void synchronize_rcu(void)
{
707 708 709 710
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
711 712
	if (!rcu_scheduler_active)
		return;
713 714 715 716
	if (rcu_expedited)
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
717 718 719
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

720
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
721
static unsigned long sync_rcu_preempt_exp_count;
722 723 724 725 726 727 728 729 730 731
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
732
	return rnp->exp_tasks != NULL;
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
758 759 760
 * Most callers will set the "wake" flag, but the task initiating the
 * expedited grace period need not wake itself.
 *
761 762
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
763 764
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
765 766 767 768
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
769
	raw_spin_lock_irqsave(&rnp->lock, flags);
770
	for (;;) {
771 772
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
773
			break;
774
		}
775
		if (rnp->parent == NULL) {
776
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
777 778
			if (wake)
				wake_up(&sync_rcu_preempt_exp_wq);
779 780 781
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
782
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
783
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
784
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
785 786 787 788 789 790 791 792 793
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
794 795
 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
 * CPU hotplug operations.
796 797 798 799
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
800
	unsigned long flags;
801
	int must_wait = 0;
802

803
	raw_spin_lock_irqsave(&rnp->lock, flags);
804
	if (list_empty(&rnp->blkd_tasks)) {
805
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
806
	} else {
807
		rnp->exp_tasks = rnp->blkd_tasks.next;
808
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
809 810
		must_wait = 1;
	}
811
	if (!must_wait)
812
		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
813 814
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
 *
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
831 832 833
 */
void synchronize_rcu_expedited(void)
{
834 835 836
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
837
	unsigned long snap;
838 839 840 841 842 843
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

844 845 846 847 848 849 850 851 852 853
	/*
	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
	 * operation that finds an rcu_node structure with tasks in the
	 * process of being boosted will know that all tasks blocking
	 * this expedited grace period will already be in the process of
	 * being boosted.  This simplifies the process of moving tasks
	 * from leaf to root rcu_node structures.
	 */
	get_online_cpus();

854 855 856 857 858 859
	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
860 861 862 863 864
		if (ULONG_CMP_LT(snap,
		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
			put_online_cpus();
			goto mb_ret; /* Others did our work for us. */
		}
865
		if (trycount++ < 10) {
866
			udelay(trycount * num_online_cpus());
867
		} else {
868
			put_online_cpus();
869
			wait_rcu_gp(call_rcu);
870 871 872
			return;
		}
	}
873 874
	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
		put_online_cpus();
875
		goto unlock_mb_ret; /* Others did our work for us. */
876
	}
877

878
	/* force all RCU readers onto ->blkd_tasks lists. */
879 880 881 882
	synchronize_sched_expedited();

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
883
		raw_spin_lock_irqsave(&rnp->lock, flags);
884
		rnp->expmask = rnp->qsmaskinit;
885
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
886 887
	}

888
	/* Snapshot current state of ->blkd_tasks lists. */
889 890 891 892 893
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

894
	put_online_cpus();
895

896
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
897 898 899 900 901 902 903 904 905 906 907
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
908 909 910
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

911 912
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
913 914 915 916 917
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
918 919 920
 */
void rcu_barrier(void)
{
921
	_rcu_barrier(&rcu_preempt_state);
922 923 924
}
EXPORT_SYMBOL_GPL(rcu_barrier);

925
/*
P
Paul E. McKenney 已提交
926
 * Initialize preemptible RCU's state structures.
927 928 929
 */
static void __init __rcu_init_preempt(void)
{
930
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
931 932
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
	__rcu_read_unlock();
}

951 952
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

953 954
static struct rcu_state *rcu_state = &rcu_sched_state;

955 956 957
/*
 * Tell them what RCU they are running.
 */
958
static void __init rcu_bootup_announce(void)
959
{
960
	pr_info("Hierarchical RCU implementation.\n");
961
	rcu_bootup_announce_oddness();
962 963 964 965 966 967 968 969 970 971 972
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

973 974 975 976 977 978 979 980 981 982
/*
 * Force a quiescent state for RCU, which, because there is no preemptible
 * RCU, becomes the same as rcu-sched.
 */
void rcu_force_quiescent_state(void)
{
	rcu_sched_force_quiescent_state();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

983 984 985 986 987 988 989 990
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
static void rcu_preempt_note_context_switch(int cpu)
{
}

991
/*
P
Paul E. McKenney 已提交
992
 * Because preemptible RCU does not exist, there are never any preempted
993 994
 * RCU readers.
 */
995
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
996 997 998 999
{
	return 0;
}

1000 1001 1002
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
1003
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1004
{
P
Paul E. McKenney 已提交
1005
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1006 1007 1008 1009
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1010
/*
P
Paul E. McKenney 已提交
1011
 * Because preemptible RCU does not exist, we never have to check for
1012 1013 1014 1015 1016 1017
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

1018
/*
P
Paul E. McKenney 已提交
1019
 * Because preemptible RCU does not exist, we never have to check for
1020 1021
 * tasks blocked within RCU read-side critical sections.
 */
1022
static int rcu_print_task_stall(struct rcu_node *rnp)
1023
{
1024
	return 0;
1025 1026
}

1027
/*
P
Paul E. McKenney 已提交
1028
 * Because there is no preemptible RCU, there can be no readers blocked,
1029 1030
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
1031 1032 1033
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
1034
	WARN_ON_ONCE(rnp->qsmask);
1035 1036
}

1037 1038
#ifdef CONFIG_HOTPLUG_CPU

1039
/*
P
Paul E. McKenney 已提交
1040
 * Because preemptible RCU does not exist, it never needs to migrate
1041 1042 1043
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
1044
 */
1045 1046 1047
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
1048
{
1049
	return 0;
1050 1051
}

1052 1053
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1054
/*
P
Paul E. McKenney 已提交
1055
 * Because preemptible RCU does not exist, it never has any callbacks
1056 1057
 * to check.
 */
1058
static void rcu_preempt_check_callbacks(int cpu)
1059 1060 1061
{
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 *
 * Because there is no preemptible RCU, we use RCU-sched instead.
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
1074
	__call_rcu(head, func, &rcu_sched_state, -1, 1);
1075 1076 1077
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

1078 1079
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
1080
 * But because preemptible RCU does not exist, map to rcu-sched.
1081 1082 1083 1084 1085 1086 1087
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

1088 1089 1090
#ifdef CONFIG_HOTPLUG_CPU

/*
P
Paul E. McKenney 已提交
1091
 * Because preemptible RCU does not exist, there is never any need to
1092 1093 1094
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
1095 1096
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
1097 1098 1099 1100 1101
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1102
/*
P
Paul E. McKenney 已提交
1103
 * Because preemptible RCU does not exist, rcu_barrier() is just
1104 1105 1106 1107 1108 1109 1110 1111
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

1112
/*
P
Paul E. McKenney 已提交
1113
 * Because preemptible RCU does not exist, it need not be initialized.
1114 1115 1116 1117 1118
 */
static void __init __rcu_init_preempt(void)
{
}

1119 1120 1121 1122 1123 1124 1125 1126
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

1127
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1128

1129 1130 1131 1132
#ifdef CONFIG_RCU_BOOST

#include "rtmutex_common.h"

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
	if (list_empty(&rnp->blkd_tasks))
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
1146
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct rt_mutex mtx;
	struct task_struct *t;
	struct list_head *tb;

	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1205
	if (rnp->exp_tasks != NULL) {
1206
		tb = rnp->exp_tasks;
1207 1208
		rnp->n_exp_boosts++;
	} else {
1209
		tb = rnp->boost_tasks;
1210 1211 1212
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
	rt_mutex_init_proxy_locked(&mtx, t);
	t->rcu_boost_mutex = &mtx;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */

1237 1238
	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1251
	trace_rcu_utilization(TPS("Start boost kthread@init"));
1252
	for (;;) {
1253
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1254
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1255
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1256
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1257
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1258 1259 1260 1261 1262 1263
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1264
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1265
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
1266
			schedule_timeout_interruptible(2);
1267
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1268 1269 1270
			spincnt = 0;
		}
	}
1271
	/* NOTREACHED */
1272
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1273 1274 1275 1276 1277 1278 1279 1280 1281
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1282 1283 1284
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1285
 */
1286
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1287 1288 1289
{
	struct task_struct *t;

1290 1291
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1292
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1293
		return;
1294
	}
1295 1296 1297 1298 1299 1300 1301
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1302
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1303
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1304 1305
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1306
	} else {
1307
		rcu_initiate_boost_trace(rnp);
1308 1309
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1310 1311
}

1312 1313 1314 1315 1316 1317 1318 1319 1320
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1321
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1322 1323 1324 1325
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1326 1327 1328
	local_irq_restore(flags);
}

1329 1330 1331 1332 1333 1334 1335 1336 1337
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
	return __get_cpu_var(rcu_cpu_kthread_task) == current;
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1353
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
T
Thomas Gleixner 已提交
1354
						 struct rcu_node *rnp)
1355
{
T
Thomas Gleixner 已提交
1356
	int rnp_index = rnp - &rsp->node[0];
1357 1358 1359 1360 1361 1362
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
T
Thomas Gleixner 已提交
1363 1364 1365 1366

	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
		return 0;

1367
	rsp->boost = 1;
1368 1369 1370
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1371
			   "rcub/%d", rnp_index);
1372 1373 1374 1375 1376
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1377
	sp.sched_priority = RCU_BOOST_PRIO;
1378
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1379
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1380 1381 1382
	return 0;
}

1383 1384 1385 1386 1387 1388 1389
static void rcu_kthread_do_work(void)
{
	rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
	rcu_preempt_do_callbacks();
}

1390
static void rcu_cpu_kthread_setup(unsigned int cpu)
1391 1392 1393
{
	struct sched_param sp;

1394 1395
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1396 1397
}

1398
static void rcu_cpu_kthread_park(unsigned int cpu)
1399
{
1400
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1401 1402
}

1403
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1404
{
1405
	return __get_cpu_var(rcu_cpu_has_work);
1406 1407 1408 1409
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1410 1411
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1412
 */
1413
static void rcu_cpu_kthread(unsigned int cpu)
1414
{
1415 1416 1417
	unsigned int *statusp = &__get_cpu_var(rcu_cpu_kthread_status);
	char work, *workp = &__get_cpu_var(rcu_cpu_has_work);
	int spincnt;
1418

1419
	for (spincnt = 0; spincnt < 10; spincnt++) {
1420
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1421 1422
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1423 1424
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1425 1426
		work = *workp;
		*workp = 0;
1427
		local_irq_enable();
1428 1429 1430
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1431
		if (*workp == 0) {
1432
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1433 1434
			*statusp = RCU_KTHREAD_WAITING;
			return;
1435 1436
		}
	}
1437
	*statusp = RCU_KTHREAD_YIELDING;
1438
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1439
	schedule_timeout_interruptible(2);
1440
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1441
	*statusp = RCU_KTHREAD_WAITING;
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1453
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1454
{
T
Thomas Gleixner 已提交
1455 1456
	struct task_struct *t = rnp->boost_kthread_task;
	unsigned long mask = rnp->qsmaskinit;
1457 1458 1459
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1460
	if (!t)
1461
		return;
T
Thomas Gleixner 已提交
1462
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
T
Thomas Gleixner 已提交
1473
	set_cpus_allowed_ptr(t, cm);
1474 1475 1476
	free_cpumask_var(cm);
}

1477 1478 1479 1480 1481 1482 1483 1484
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1485 1486 1487 1488 1489 1490 1491

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1492
	int cpu;
1493

1494
	rcu_scheduler_fully_active = 1;
1495
	for_each_possible_cpu(cpu)
1496
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1497
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1498
	rnp = rcu_get_root(rcu_state);
T
Thomas Gleixner 已提交
1499
	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1500 1501
	if (NUM_RCU_NODES > 1) {
		rcu_for_each_leaf_node(rcu_state, rnp)
T
Thomas Gleixner 已提交
1502
			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1503 1504 1505 1506 1507
	}
	return 0;
}
early_initcall(rcu_spawn_kthreads);

1508
static void rcu_prepare_kthreads(int cpu)
1509 1510 1511 1512 1513
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1514
	if (rcu_scheduler_fully_active)
T
Thomas Gleixner 已提交
1515
		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1516 1517
}

1518 1519
#else /* #ifdef CONFIG_RCU_BOOST */

1520
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1521
{
1522
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1523 1524
}

1525
static void invoke_rcu_callbacks_kthread(void)
1526
{
1527
	WARN_ON_ONCE(1);
1528 1529
}

1530 1531 1532 1533 1534
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1535 1536 1537 1538
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1539
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1540 1541 1542
{
}

1543 1544 1545 1546 1547 1548 1549
static int __init rcu_scheduler_really_started(void)
{
	rcu_scheduler_fully_active = 1;
	return 0;
}
early_initcall(rcu_scheduler_really_started);

1550
static void rcu_prepare_kthreads(int cpu)
1551 1552 1553
{
}

1554 1555
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1556 1557 1558 1559 1560 1561 1562 1563
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1564 1565
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1566
 */
1567
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1568
{
1569
	*delta_jiffies = ULONG_MAX;
1570
	return rcu_cpu_has_callbacks(cpu, NULL);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
static void rcu_cleanup_after_idle(int cpu)
{
}

1581
/*
1582
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1583 1584 1585 1586 1587 1588
 * is nothing.
 */
static void rcu_prepare_for_idle(int cpu)
{
}

1589 1590 1591 1592 1593 1594 1595 1596
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1597 1598
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1614 1615 1616
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1617 1618 1619 1620 1621
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1622
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1623
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1624

1625 1626 1627 1628
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1629

1630
extern int tick_nohz_enabled;
1631 1632

/*
1633 1634 1635
 * Try to advance callbacks for all flavors of RCU on the current CPU.
 * Afterwards, if there are any callbacks ready for immediate invocation,
 * return true.
1636
 */
1637
static bool rcu_try_advance_all_cbs(void)
1638
{
1639 1640 1641 1642
	bool cbs_ready = false;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1643

1644 1645 1646
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1647

1648 1649 1650 1651 1652 1653 1654
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
		if (rdp->completed != rnp->completed &&
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1655
			note_gp_changes(rsp, rdp);
1656

1657 1658 1659 1660
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1661 1662
}

1663
/*
1664 1665 1666 1667
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1668
 *
1669
 * The caller must have disabled interrupts.
1670
 */
1671
int rcu_needs_cpu(int cpu, unsigned long *dj)
1672 1673 1674
{
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

1675 1676 1677
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1678
	/* If no callbacks, RCU doesn't need the CPU. */
1679 1680
	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
		*dj = ULONG_MAX;
1681 1682
		return 0;
	}
1683 1684 1685 1686 1687

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1688 1689
		return 1;
	}
1690 1691 1692
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1693
	if (!rdtp->all_lazy) {
1694 1695
		*dj = round_up(rcu_idle_gp_delay + jiffies,
			       rcu_idle_gp_delay) - jiffies;
1696
	} else {
1697
		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1698
	}
1699 1700 1701
	return 0;
}

1702
/*
1703 1704 1705 1706 1707 1708
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1709 1710
 *
 * The caller must have disabled interrupts.
1711
 */
1712
static void rcu_prepare_for_idle(int cpu)
1713
{
1714
	struct rcu_data *rdp;
1715
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1716 1717
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1718 1719 1720 1721 1722
	int tne;

	/* Handle nohz enablement switches conservatively. */
	tne = ACCESS_ONCE(tick_nohz_enabled);
	if (tne != rdtp->tick_nohz_enabled_snap) {
1723
		if (rcu_cpu_has_callbacks(cpu, NULL))
1724 1725 1726 1727 1728 1729
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1730

1731
	/* If this is a no-CBs CPU, no callbacks, just return. */
1732
	if (rcu_is_nocb_cpu(cpu))
1733 1734
		return;

1735
	/*
1736 1737 1738
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1739
	 */
1740 1741 1742
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
		invoke_rcu_core();
1743 1744 1745
		return;
	}

1746
	/*
1747 1748
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1749
	 */
1750
	if (rdtp->last_accelerate == jiffies)
1751
		return;
1752 1753 1754 1755 1756 1757 1758 1759 1760
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
		rcu_accelerate_cbs(rsp, rnp, rdp);
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1761
	}
1762
}
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
static void rcu_cleanup_after_idle(int cpu)
{
	struct rcu_data *rdp;
	struct rcu_state *rsp;
1773

1774
	if (rcu_is_nocb_cpu(cpu))
1775
		return;
1776 1777 1778 1779 1780
	rcu_try_advance_all_cbs();
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			invoke_rcu_core();
1781
	}
1782 1783
}

1784
/*
1785 1786 1787 1788 1789 1790
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1791 1792 1793
 */
static void rcu_idle_count_callbacks_posted(void)
{
1794
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1795 1796
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
		rdp = __this_cpu_ptr(rsp->rda);
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
		cond_resched();
	}
	put_online_cpus();

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1879
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1880 1881 1882 1883 1884 1885 1886

#ifdef CONFIG_RCU_CPU_STALL_INFO

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1887
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1888
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1889

1890 1891 1892 1893 1894
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1895 1896 1897 1898 1899 1900
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1901
	*cp = '\0';
1902 1903 1904 1905 1906 1907 1908
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1909
	pr_cont("\n");
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1940
	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1941 1942 1943
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1944
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1945 1946 1947 1948 1949 1950
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1951
	pr_err("\t");
1952 1953 1954 1955 1956 1957
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1958
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1959 1960 1961 1962 1963
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1964 1965 1966 1967
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
1968 1969 1970 1971 1972 1973
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void print_cpu_stall_info_begin(void)
{
1974
	pr_cont(" {");
1975 1976 1977 1978
}

static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
1979
	pr_cont(" %d", cpu);
1980 1981 1982 1983
}

static void print_cpu_stall_info_end(void)
{
1984
	pr_cont("} ");
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
}

static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
}

static void increment_cpu_stall_ticks(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
P
Paul E. McKenney 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

2030 2031 2032 2033 2034 2035 2036
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

2037
/*
2038 2039 2040 2041 2042 2043 2044 2045 2046
 * Do any no-CBs CPUs need another grace period?
 *
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_nocb_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

2047
	return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
2048 2049 2050
}

/*
2051 2052
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
2053
 */
2054
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2055
{
2056
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2057 2058 2059
}

/*
2060
 * Set the root rcu_node structure's ->need_future_gp field
2061 2062 2063 2064 2065
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
2066
 */
2067 2068
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
2069
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2070 2071 2072
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
2073
{
2074 2075
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2076 2077
}

P
Paul E. McKenney 已提交
2078
/* Is the specified CPU a no-CPUs CPU? */
2079
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}

/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
				    int rhcount, int rhcount_lazy)
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
	ACCESS_ONCE(*old_rhpp) = rhp;
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);

	/* If we are not being polled and there is a kthread, awaken it ... */
	t = ACCESS_ONCE(rdp->nocb_kthread);
	if (rcu_nocb_poll | !t)
		return;
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
		wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
		wake_up_process(t); /* ... or if many callbacks queued. */
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
			    bool lazy)
{

2137
	if (!rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2138 2139
		return 0;
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
2140 2141 2142 2143 2144 2145 2146
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
					 rdp->qlen_lazy, rdp->qlen);
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
				   rdp->qlen_lazy, rdp->qlen);
P
Paul E. McKenney 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	return 1;
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
						     struct rcu_data *rdp)
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2161
	if (!rcu_is_nocb_cpu(smp_processor_id()))
P
Paul E. McKenney 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
		return 0;
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
					rsp->orphan_donetail, ql, qll);
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
					rsp->orphan_nxttail, ql, qll);
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
	return 1;
}

/*
2185 2186
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2187
 */
2188
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2189
{
2190
	unsigned long c;
2191
	bool d;
2192 2193 2194 2195
	unsigned long flags;
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
2196 2197
	c = rcu_start_future_gp(rnp, rdp);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
2198 2199

	/*
2200 2201
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2202
	 */
2203
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2204
	for (;;) {
2205 2206 2207 2208
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
		if (likely(d))
2209
			break;
2210
		flush_signals(current);
2211
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2212
	}
2213
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2214
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
}

/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
 * callbacks queued by the corresponding no-CBs CPU.
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
		/* If not polling, wait for next batch of callbacks. */
		if (!rcu_nocb_poll)
2233
			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
P
Paul E. McKenney 已提交
2234 2235 2236
		list = ACCESS_ONCE(rdp->nocb_head);
		if (!list) {
			schedule_timeout_interruptible(1);
2237
			flush_signals(current);
P
Paul E. McKenney 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
			continue;
		}

		/*
		 * Extract queued callbacks, update counts, and wait
		 * for a grace period to elapse.
		 */
		ACCESS_ONCE(rdp->nocb_head) = NULL;
		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
		ACCESS_ONCE(rdp->nocb_p_count) += c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2251
		rcu_nocb_wait_gp(rdp);
P
Paul E. McKenney 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

		/* Each pass through the following loop invokes a callback. */
		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
				schedule_timeout_interruptible(1);
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
		ACCESS_ONCE(rdp->nocb_p_count) -= c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2274
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	}
	return 0;
}

/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
}

/* Create a kthread for each RCU flavor for each no-CBs CPU. */
static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
	int cpu;
	struct rcu_data *rdp;
	struct task_struct *t;

	if (rcu_nocb_mask == NULL)
		return;
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2297 2298
		t = kthread_run(rcu_nocb_kthread, rdp,
				"rcuo%c/%d", rsp->abbr, cpu);
P
Paul E. McKenney 已提交
2299 2300 2301 2302 2303 2304
		BUG_ON(IS_ERR(t));
		ACCESS_ONCE(rdp->nocb_kthread) = t;
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2305
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2306 2307 2308
{
	if (rcu_nocb_mask == NULL ||
	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2309
		return false;
P
Paul E. McKenney 已提交
2310
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2311
	return true;
P
Paul E. McKenney 已提交
2312 2313
}

2314 2315
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2316 2317 2318
static int rcu_nocb_needs_gp(struct rcu_state *rsp)
{
	return 0;
P
Paul E. McKenney 已提交
2319 2320
}

2321
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2322 2323 2324
{
}

2325 2326 2327 2328 2329 2330 2331
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
			    bool lazy)
{
	return 0;
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
						     struct rcu_data *rdp)
{
	return 0;
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
}

2353
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2354
{
2355
	return false;
P
Paul E. McKenney 已提交
2356 2357 2358
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
static void rcu_kick_nohz_cpu(int cpu)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2376 2377 2378 2379


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
	unsigned long j;

	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
	smp_mb__before_atomic_inc();
	atomic_inc(&rdtp->dynticks_idle);
	smp_mb__after_atomic_inc();
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
	smp_mb__before_atomic_inc();
	atomic_inc(&rdtp->dynticks_idle);
	smp_mb__after_atomic_inc();
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

2461 2462 2463 2464 2465 2466 2467 2468
static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
}

static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
}

2469 2470 2471 2472 2473
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */