rcutree_plugin.h 73.5 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31

32 33 34 35 36 37 38 39
#define RCU_KTHREAD_PRIO 1

#ifdef CONFIG_RCU_BOOST
#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
#else
#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
#endif

P
Paul E. McKenney 已提交
40 41 42 43 44 45 46 47
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
static bool rcu_nocb_poll;	    /* Offload kthread are to poll. */
module_param(rcu_nocb_poll, bool, 0444);
static char __initdata nocb_buf[NR_CPUS * 5];
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
	printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
	printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
	printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
	printk(KERN_INFO
	       "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
#endif
#ifdef CONFIG_PROVE_RCU
	printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
	printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
#endif
75
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76 77 78 79
	printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
#endif
#if defined(CONFIG_RCU_CPU_STALL_INFO)
	printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
80 81
#endif
#if NUM_RCU_LVL_4 != 0
82
	printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
83
#endif
84 85
	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
		printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86 87
	if (nr_cpu_ids != NR_CPUS)
		printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
P
Paul E. McKenney 已提交
88 89 90 91 92 93 94 95 96 97 98 99
#ifdef CONFIG_RCU_NOCB_CPU
	if (have_rcu_nocb_mask) {
		if (cpumask_test_cpu(0, rcu_nocb_mask)) {
			cpumask_clear_cpu(0, rcu_nocb_mask);
			pr_info("\tCPU 0: illegal no-CBs CPU (cleared).\n");
		}
		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
		pr_info("\tExperimental no-CBs CPUs: %s.\n", nocb_buf);
		if (rcu_nocb_poll)
			pr_info("\tExperimental polled no-CBs CPUs.\n");
	}
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
100 101
}

102 103
#ifdef CONFIG_TREE_PREEMPT_RCU

104 105
struct rcu_state rcu_preempt_state =
	RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
106
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
107
static struct rcu_state *rcu_state = &rcu_preempt_state;
108

109 110
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

111 112 113
/*
 * Tell them what RCU they are running.
 */
114
static void __init rcu_bootup_announce(void)
115
{
P
Paul E. McKenney 已提交
116
	printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
117
	rcu_bootup_announce_oddness();
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

139 140 141 142 143
/*
 * Force a quiescent state for preemptible RCU.
 */
void rcu_force_quiescent_state(void)
{
144
	force_quiescent_state(&rcu_preempt_state);
145 146 147
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

148
/*
P
Paul E. McKenney 已提交
149
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
150 151 152
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
153 154 155 156
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
157
 */
158
static void rcu_preempt_qs(int cpu)
159 160
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
161

162
	if (rdp->passed_quiesce == 0)
163
		trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
164
	rdp->passed_quiesce = 1;
165
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
166 167 168
}

/*
169 170 171
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
172 173 174 175 176 177
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
178 179
 *
 * Caller must disable preemption.
180
 */
181
static void rcu_preempt_note_context_switch(int cpu)
182 183
{
	struct task_struct *t = current;
184
	unsigned long flags;
185 186 187
	struct rcu_data *rdp;
	struct rcu_node *rnp;

188
	if (t->rcu_read_lock_nesting > 0 &&
189 190 191
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
192
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
193
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
194
		raw_spin_lock_irqsave(&rnp->lock, flags);
195
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
196
		t->rcu_blocked_node = rnp;
197 198 199 200 201 202 203 204 205

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
206 207 208 209 210 211
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
212 213 214
		 *
		 * But first, note that the current CPU must still be
		 * on line!
215
		 */
216
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
217
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
218 219 220
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
221 222 223 224
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
225 226 227 228 229
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
230 231 232 233 234
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
235
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
236 237 238 239 240 241 242 243
	} else if (t->rcu_read_lock_nesting < 0 &&
		   t->rcu_read_unlock_special) {

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
244 245 246 247 248 249 250 251 252 253 254
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
255
	local_irq_save(flags);
256
	rcu_preempt_qs(cpu);
257
	local_irq_restore(flags);
258 259
}

260 261 262 263 264
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
265
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
266
{
267
	return rnp->gp_tasks != NULL;
268 269
}

270 271 272 273 274 275 276
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
277
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
278 279 280 281 282
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

283
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
P
Paul E. McKenney 已提交
284
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
285 286 287 288 289 290 291 292 293 294
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
295
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
296 297 298 299 300
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
301 302
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
P
Paul E. McKenney 已提交
303
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
304 305
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

321 322 323 324 325
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
326
void rcu_read_unlock_special(struct task_struct *t)
327 328
{
	int empty;
329
	int empty_exp;
330
	int empty_exp_now;
331
	unsigned long flags;
332
	struct list_head *np;
333 334 335
#ifdef CONFIG_RCU_BOOST
	struct rt_mutex *rbmp = NULL;
#endif /* #ifdef CONFIG_RCU_BOOST */
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
351
		rcu_preempt_qs(smp_processor_id());
352 353 354
	}

	/* Hardware IRQ handlers cannot block. */
355
	if (in_irq() || in_serving_softirq()) {
356 357 358 359 360 361 362 363
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

364 365 366 367 368 369
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
370
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
371
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
372
			if (rnp == t->rcu_blocked_node)
373
				break;
P
Paul E. McKenney 已提交
374
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
375
		}
376
		empty = !rcu_preempt_blocked_readers_cgp(rnp);
377 378
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
379
		np = rcu_next_node_entry(t, rnp);
380
		list_del_init(&t->rcu_node_entry);
381
		t->rcu_blocked_node = NULL;
382 383
		trace_rcu_unlock_preempted_task("rcu_preempt",
						rnp->gpnum, t->pid);
384 385 386 387
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
388 389 390
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
391 392 393 394
		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
		if (t->rcu_boost_mutex) {
			rbmp = t->rcu_boost_mutex;
			t->rcu_boost_mutex = NULL;
395
		}
396
#endif /* #ifdef CONFIG_RCU_BOOST */
397 398 399 400

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
401 402
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
403
		 */
404
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
405 406 407 408 409 410 411 412
		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
			trace_rcu_quiescent_state_report("preempt_rcu",
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
P
Paul E. McKenney 已提交
413
			rcu_report_unblock_qs_rnp(rnp, flags);
414
		} else {
415
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
416
		}
417

418 419
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
420 421
		if (rbmp)
			rt_mutex_unlock(rbmp);
422 423
#endif /* #ifdef CONFIG_RCU_BOOST */

424 425 426 427
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
428
		if (!empty_exp && empty_exp_now)
429
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
430 431
	} else {
		local_irq_restore(flags);
432 433 434
	}
}

435 436 437 438 439 440 441 442 443 444 445
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

446
	raw_spin_lock_irqsave(&rnp->lock, flags);
447 448 449 450
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
451 452 453 454 455
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#ifdef CONFIG_RCU_CPU_STALL_INFO

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
	printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
	printk(KERN_CONT "\n");
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
}

static void rcu_print_task_stall_end(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

504 505 506 507
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
508
static int rcu_print_task_stall(struct rcu_node *rnp)
509 510
{
	struct task_struct *t;
511
	int ndetected = 0;
512

513
	if (!rcu_preempt_blocked_readers_cgp(rnp))
514
		return 0;
515
	rcu_print_task_stall_begin(rnp);
516 517
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
518
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
519
		printk(KERN_CONT " P%d", t->pid);
520 521
		ndetected++;
	}
522
	rcu_print_task_stall_end();
523
	return ndetected;
524 525
}

526 527 528 529 530 531
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
532 533 534
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
535 536 537
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
538
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
539 540
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
541
	WARN_ON_ONCE(rnp->qsmask);
542 543
}

544 545
#ifdef CONFIG_HOTPLUG_CPU

546 547 548 549 550 551
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
552 553
 * Returns true if there were tasks blocking the current RCU grace
 * period.
554
 *
555 556 557
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
558 559
 * The caller must hold rnp->lock with irqs disabled.
 */
560 561 562
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
563 564 565
{
	struct list_head *lp;
	struct list_head *lp_root;
566
	int retval = 0;
567
	struct rcu_node *rnp_root = rcu_get_root(rsp);
568
	struct task_struct *t;
569

570 571
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
572
		return 0;  /* Shouldn't happen: at least one CPU online. */
573
	}
574 575 576

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);
577 578

	/*
579 580 581 582 583 584 585
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
586
	 */
587
	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
588 589 590
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
591 592 593 594 595 596 597 598 599 600 601 602
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
603 604 605 606
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
607
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
608
	}
609

610 611
	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
612
#ifdef CONFIG_RCU_BOOST
613
	rnp->boost_tasks = NULL;
614 615 616 617 618
	/*
	 * In case root is being boosted and leaf was not.  Make sure
	 * that we boost the tasks blocking the current grace period
	 * in this case.
	 */
619 620
	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
	if (rnp_root->boost_tasks != NULL &&
621 622
	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
	    rnp_root->boost_tasks != rnp_root->exp_tasks)
623 624 625 626
		rnp_root->boost_tasks = rnp_root->gp_tasks;
	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */

627
	return retval;
628 629
}

630 631
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

632 633 634 635 636 637 638 639 640 641 642 643
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
644
		rcu_preempt_qs(cpu);
645 646
		return;
	}
647 648
	if (t->rcu_read_lock_nesting > 0 &&
	    per_cpu(rcu_preempt_data, cpu).qs_pending)
649
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
650 651
}

652 653
#ifdef CONFIG_RCU_BOOST

654 655 656 657 658
static void rcu_preempt_do_callbacks(void)
{
	rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
}

659 660
#endif /* #ifdef CONFIG_RCU_BOOST */

661
/*
P
Paul E. McKenney 已提交
662
 * Queue a preemptible-RCU callback for invocation after a grace period.
663 664 665
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
666
	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
667 668 669
}
EXPORT_SYMBOL_GPL(call_rcu);

670 671 672 673 674 675 676 677 678 679
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
680
	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
681 682 683
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

684 685 686 687 688
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
689 690 691 692 693
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
694 695 696
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
697 698 699
 */
void synchronize_rcu(void)
{
700 701 702 703
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
704 705
	if (!rcu_scheduler_active)
		return;
706 707 708 709
	if (rcu_expedited)
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
710 711 712
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

713
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
714
static unsigned long sync_rcu_preempt_exp_count;
715 716 717 718 719 720 721 722 723 724
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
725
	return rnp->exp_tasks != NULL;
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
751 752 753
 * Most callers will set the "wake" flag, but the task initiating the
 * expedited grace period need not wake itself.
 *
754 755
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
756 757
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
758 759 760 761
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
762
	raw_spin_lock_irqsave(&rnp->lock, flags);
763
	for (;;) {
764 765
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
766
			break;
767
		}
768
		if (rnp->parent == NULL) {
769
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
770 771
			if (wake)
				wake_up(&sync_rcu_preempt_exp_wq);
772 773 774
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
775
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
776
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
777
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
778 779 780 781 782 783 784 785 786
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
787 788
 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
 * CPU hotplug operations.
789 790 791 792
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
793
	unsigned long flags;
794
	int must_wait = 0;
795

796
	raw_spin_lock_irqsave(&rnp->lock, flags);
797
	if (list_empty(&rnp->blkd_tasks)) {
798
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
799
	} else {
800
		rnp->exp_tasks = rnp->blkd_tasks.next;
801
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
802 803
		must_wait = 1;
	}
804
	if (!must_wait)
805
		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
806 807
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
 *
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
824 825 826
 */
void synchronize_rcu_expedited(void)
{
827 828 829
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
830
	unsigned long snap;
831 832 833 834 835 836
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

837 838 839 840 841 842 843 844 845 846
	/*
	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
	 * operation that finds an rcu_node structure with tasks in the
	 * process of being boosted will know that all tasks blocking
	 * this expedited grace period will already be in the process of
	 * being boosted.  This simplifies the process of moving tasks
	 * from leaf to root rcu_node structures.
	 */
	get_online_cpus();

847 848 849 850 851 852
	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
853 854 855 856 857
		if (ULONG_CMP_LT(snap,
		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
			put_online_cpus();
			goto mb_ret; /* Others did our work for us. */
		}
858
		if (trycount++ < 10) {
859
			udelay(trycount * num_online_cpus());
860
		} else {
861
			put_online_cpus();
862
			wait_rcu_gp(call_rcu);
863 864 865
			return;
		}
	}
866 867
	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
		put_online_cpus();
868
		goto unlock_mb_ret; /* Others did our work for us. */
869
	}
870

871
	/* force all RCU readers onto ->blkd_tasks lists. */
872 873 874 875
	synchronize_sched_expedited();

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
876
		raw_spin_lock_irqsave(&rnp->lock, flags);
877
		rnp->expmask = rnp->qsmaskinit;
878
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
879 880
	}

881
	/* Snapshot current state of ->blkd_tasks lists. */
882 883 884 885 886
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

887
	put_online_cpus();
888

889
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
890 891 892 893 894 895 896 897 898 899 900
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
901 902 903
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

904 905
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
906 907 908 909 910
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
911 912 913
 */
void rcu_barrier(void)
{
914
	_rcu_barrier(&rcu_preempt_state);
915 916 917
}
EXPORT_SYMBOL_GPL(rcu_barrier);

918
/*
P
Paul E. McKenney 已提交
919
 * Initialize preemptible RCU's state structures.
920 921 922
 */
static void __init __rcu_init_preempt(void)
{
923
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
924 925
}

926 927
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

928 929
static struct rcu_state *rcu_state = &rcu_sched_state;

930 931 932
/*
 * Tell them what RCU they are running.
 */
933
static void __init rcu_bootup_announce(void)
934 935
{
	printk(KERN_INFO "Hierarchical RCU implementation.\n");
936
	rcu_bootup_announce_oddness();
937 938 939 940 941 942 943 944 945 946 947
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

948 949 950 951 952 953 954 955 956 957
/*
 * Force a quiescent state for RCU, which, because there is no preemptible
 * RCU, becomes the same as rcu-sched.
 */
void rcu_force_quiescent_state(void)
{
	rcu_sched_force_quiescent_state();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

958 959 960 961 962 963 964 965
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
static void rcu_preempt_note_context_switch(int cpu)
{
}

966
/*
P
Paul E. McKenney 已提交
967
 * Because preemptible RCU does not exist, there are never any preempted
968 969
 * RCU readers.
 */
970
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
971 972 973 974
{
	return 0;
}

975 976 977
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
978
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
979
{
P
Paul E. McKenney 已提交
980
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
981 982 983 984
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

985
/*
P
Paul E. McKenney 已提交
986
 * Because preemptible RCU does not exist, we never have to check for
987 988 989 990 991 992
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

993
/*
P
Paul E. McKenney 已提交
994
 * Because preemptible RCU does not exist, we never have to check for
995 996
 * tasks blocked within RCU read-side critical sections.
 */
997
static int rcu_print_task_stall(struct rcu_node *rnp)
998
{
999
	return 0;
1000 1001
}

1002
/*
P
Paul E. McKenney 已提交
1003
 * Because there is no preemptible RCU, there can be no readers blocked,
1004 1005
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
1006 1007 1008
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
1009
	WARN_ON_ONCE(rnp->qsmask);
1010 1011
}

1012 1013
#ifdef CONFIG_HOTPLUG_CPU

1014
/*
P
Paul E. McKenney 已提交
1015
 * Because preemptible RCU does not exist, it never needs to migrate
1016 1017 1018
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
1019
 */
1020 1021 1022
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
1023
{
1024
	return 0;
1025 1026
}

1027 1028
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1029
/*
P
Paul E. McKenney 已提交
1030
 * Because preemptible RCU does not exist, it never has any callbacks
1031 1032
 * to check.
 */
1033
static void rcu_preempt_check_callbacks(int cpu)
1034 1035 1036
{
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 *
 * Because there is no preemptible RCU, we use RCU-sched instead.
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
1049
	__call_rcu(head, func, &rcu_sched_state, -1, 1);
1050 1051 1052
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

1053 1054
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
1055
 * But because preemptible RCU does not exist, map to rcu-sched.
1056 1057 1058 1059 1060 1061 1062
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

1063 1064 1065
#ifdef CONFIG_HOTPLUG_CPU

/*
P
Paul E. McKenney 已提交
1066
 * Because preemptible RCU does not exist, there is never any need to
1067 1068 1069
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
1070 1071
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
1072 1073 1074 1075 1076
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1077
/*
P
Paul E. McKenney 已提交
1078
 * Because preemptible RCU does not exist, rcu_barrier() is just
1079 1080 1081 1082 1083 1084 1085 1086
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

1087
/*
P
Paul E. McKenney 已提交
1088
 * Because preemptible RCU does not exist, it need not be initialized.
1089 1090 1091 1092 1093
 */
static void __init __rcu_init_preempt(void)
{
}

1094
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1095

1096 1097 1098 1099
#ifdef CONFIG_RCU_BOOST

#include "rtmutex_common.h"

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
	if (list_empty(&rnp->blkd_tasks))
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
1113
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct rt_mutex mtx;
	struct task_struct *t;
	struct list_head *tb;

	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1172
	if (rnp->exp_tasks != NULL) {
1173
		tb = rnp->exp_tasks;
1174 1175
		rnp->n_exp_boosts++;
	} else {
1176
		tb = rnp->boost_tasks;
1177 1178 1179
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
	rt_mutex_init_proxy_locked(&mtx, t);
	t->rcu_boost_mutex = &mtx;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */

1204 1205
	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1218
	trace_rcu_utilization("Start boost kthread@init");
1219
	for (;;) {
1220
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1221
		trace_rcu_utilization("End boost kthread@rcu_wait");
1222
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1223
		trace_rcu_utilization("Start boost kthread@rcu_wait");
1224
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1225 1226 1227 1228 1229 1230
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1231
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1232
			trace_rcu_utilization("End boost kthread@rcu_yield");
T
Thomas Gleixner 已提交
1233
			schedule_timeout_interruptible(2);
1234
			trace_rcu_utilization("Start boost kthread@rcu_yield");
1235 1236 1237
			spincnt = 0;
		}
	}
1238
	/* NOTREACHED */
1239
	trace_rcu_utilization("End boost kthread@notreached");
1240 1241 1242 1243 1244 1245 1246 1247 1248
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1249 1250 1251
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1252
 */
1253
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1254 1255 1256
{
	struct task_struct *t;

1257 1258
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1259
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1260
		return;
1261
	}
1262 1263 1264 1265 1266 1267 1268
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1269
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1270
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1271 1272
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1273
	} else {
1274
		rcu_initiate_boost_trace(rnp);
1275 1276
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1277 1278
}

1279 1280 1281 1282 1283 1284 1285 1286 1287
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1288
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1289 1290 1291 1292
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1293 1294 1295
	local_irq_restore(flags);
}

1296 1297 1298 1299 1300 1301 1302 1303 1304
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
	return __get_cpu_var(rcu_cpu_kthread_task) == current;
}

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
T
Thomas Gleixner 已提交
1321
						 struct rcu_node *rnp)
1322
{
T
Thomas Gleixner 已提交
1323
	int rnp_index = rnp - &rsp->node[0];
1324 1325 1326 1327 1328 1329
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
T
Thomas Gleixner 已提交
1330 1331 1332 1333

	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
		return 0;

1334
	rsp->boost = 1;
1335 1336 1337
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1338
			   "rcub/%d", rnp_index);
1339 1340 1341 1342 1343
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1344
	sp.sched_priority = RCU_BOOST_PRIO;
1345
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1346
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1347 1348 1349
	return 0;
}

1350 1351 1352 1353 1354 1355 1356
static void rcu_kthread_do_work(void)
{
	rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
	rcu_preempt_do_callbacks();
}

1357
static void rcu_cpu_kthread_setup(unsigned int cpu)
1358 1359 1360
{
	struct sched_param sp;

1361 1362
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1363 1364
}

1365
static void rcu_cpu_kthread_park(unsigned int cpu)
1366
{
1367
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1368 1369
}

1370
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1371
{
1372
	return __get_cpu_var(rcu_cpu_has_work);
1373 1374 1375 1376
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1377 1378
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1379
 */
1380
static void rcu_cpu_kthread(unsigned int cpu)
1381
{
1382 1383 1384
	unsigned int *statusp = &__get_cpu_var(rcu_cpu_kthread_status);
	char work, *workp = &__get_cpu_var(rcu_cpu_has_work);
	int spincnt;
1385

1386
	for (spincnt = 0; spincnt < 10; spincnt++) {
1387
		trace_rcu_utilization("Start CPU kthread@rcu_wait");
1388 1389
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1390 1391
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1392 1393
		work = *workp;
		*workp = 0;
1394
		local_irq_enable();
1395 1396 1397
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1398 1399 1400 1401
		if (*workp == 0) {
			trace_rcu_utilization("End CPU kthread@rcu_wait");
			*statusp = RCU_KTHREAD_WAITING;
			return;
1402 1403
		}
	}
1404 1405 1406 1407 1408
	*statusp = RCU_KTHREAD_YIELDING;
	trace_rcu_utilization("Start CPU kthread@rcu_yield");
	schedule_timeout_interruptible(2);
	trace_rcu_utilization("End CPU kthread@rcu_yield");
	*statusp = RCU_KTHREAD_WAITING;
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1420
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1421
{
T
Thomas Gleixner 已提交
1422 1423
	struct task_struct *t = rnp->boost_kthread_task;
	unsigned long mask = rnp->qsmaskinit;
1424 1425 1426
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1427
	if (!t)
1428
		return;
T
Thomas Gleixner 已提交
1429
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
T
Thomas Gleixner 已提交
1440
	set_cpus_allowed_ptr(t, cm);
1441 1442 1443
	free_cpumask_var(cm);
}

1444 1445 1446 1447 1448 1449 1450 1451
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1452 1453 1454 1455 1456 1457 1458

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1459
	int cpu;
1460

1461
	rcu_scheduler_fully_active = 1;
1462
	for_each_possible_cpu(cpu)
1463
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1464
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1465
	rnp = rcu_get_root(rcu_state);
T
Thomas Gleixner 已提交
1466
	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1467 1468
	if (NUM_RCU_NODES > 1) {
		rcu_for_each_leaf_node(rcu_state, rnp)
T
Thomas Gleixner 已提交
1469
			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	}
	return 0;
}
early_initcall(rcu_spawn_kthreads);

static void __cpuinit rcu_prepare_kthreads(int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1481
	if (rcu_scheduler_fully_active)
T
Thomas Gleixner 已提交
1482
		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1483 1484
}

1485 1486
#else /* #ifdef CONFIG_RCU_BOOST */

1487
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1488
{
1489
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1490 1491
}

1492
static void invoke_rcu_callbacks_kthread(void)
1493
{
1494
	WARN_ON_ONCE(1);
1495 1496
}

1497 1498 1499 1500 1501
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1502 1503 1504 1505
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1506
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1507 1508 1509
{
}

1510 1511 1512 1513 1514 1515 1516
static int __init rcu_scheduler_really_started(void)
{
	rcu_scheduler_fully_active = 1;
	return 0;
}
early_initcall(rcu_scheduler_really_started);

1517 1518 1519 1520
static void __cpuinit rcu_prepare_kthreads(int cpu)
{
}

1521 1522
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1523 1524 1525 1526 1527 1528 1529 1530
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1531 1532
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1533
 */
1534
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1535
{
1536
	*delta_jiffies = ULONG_MAX;
1537 1538 1539
	return rcu_cpu_has_callbacks(cpu);
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
 */
static void rcu_prepare_for_idle_init(int cpu)
{
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
static void rcu_cleanup_after_idle(int cpu)
{
}

1555
/*
1556
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1557 1558 1559 1560 1561 1562
 * is nothing.
 */
static void rcu_prepare_for_idle(int cpu)
{
}

1563 1564 1565 1566 1567 1568 1569 1570
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1571 1572
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
 *	to satisfy RCU.  Beyond this point, it is better to incur a periodic
 *	scheduling-clock interrupt than to loop through the state machine
 *	at full power.
 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
 *	optional if RCU does not need anything immediately from this
 *	CPU, even if this CPU still has RCU callbacks queued.  The first
 *	times through the state machine are mandatory: we need to give
 *	the state machine a chance to communicate a quiescent state
 *	to the RCU core.
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1598 1599 1600
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1601 1602 1603 1604 1605 1606 1607
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
#define RCU_IDLE_FLUSHES 5		/* Number of dyntick-idle tries. */
#define RCU_IDLE_OPT_FLUSHES 3		/* Optional dyntick-idle tries. */
1608
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1609
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1610

1611 1612
extern int tick_nohz_enabled;

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
/*
 * Does the specified flavor of RCU have non-lazy callbacks pending on
 * the specified CPU?  Both RCU flavor and CPU are specified by the
 * rcu_data structure.
 */
static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
{
	return rdp->qlen != rdp->qlen_lazy;
}

#ifdef CONFIG_TREE_PREEMPT_RCU

/*
 * Are there non-lazy RCU-preempt callbacks?  (There cannot be if there
 * is no RCU-preempt in the kernel.)
 */
static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);

	return __rcu_cpu_has_nonlazy_callbacks(rdp);
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
{
	return 0;
}

#endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */

/*
 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
 */
static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
{
	return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
	       __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/*
 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
 * enter dyntick-idle mode.  Otherwise, if we have recently tried and failed
 * to enter dyntick-idle mode, we refuse to try to enter it.  After all,
 * it is better to incur scheduling-clock interrupts than to spin
 * continuously for the same time duration!
 *
 * The delta_jiffies argument is used to store the time when RCU is
 * going to need the CPU again if it still has callbacks.  The reason
 * for this is that rcu_prepare_for_idle() might need to post a timer,
 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
 * the wakeup time for this CPU.  This means that RCU's timer can be
 * delayed until the wakeup time, which defeats the purpose of posting
 * a timer.
 */
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
{
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	/* Flag a new idle sojourn to the idle-entry state machine. */
	rdtp->idle_first_pass = 1;
	/* If no callbacks, RCU doesn't need the CPU. */
	if (!rcu_cpu_has_callbacks(cpu)) {
		*delta_jiffies = ULONG_MAX;
		return 0;
	}
	if (rdtp->dyntick_holdoff == jiffies) {
		/* RCU recently tried and failed, so don't try again. */
		*delta_jiffies = 1;
		return 1;
	}
	/* Set up for the possibility that RCU will post a timer. */
1689 1690 1691 1692 1693 1694 1695
	if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
		*delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies,
					  RCU_IDLE_GP_DELAY) - jiffies;
	} else {
		*delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY;
		*delta_jiffies = round_jiffies(*delta_jiffies) - jiffies;
	}
1696 1697 1698
	return 0;
}

1699 1700 1701 1702 1703 1704 1705 1706 1707
/*
 * Handler for smp_call_function_single().  The only point of this
 * handler is to wake the CPU up, so the handler does only tracing.
 */
void rcu_idle_demigrate(void *unused)
{
	trace_rcu_prep_idle("Demigrate");
}

1708 1709 1710 1711 1712 1713
/*
 * Timer handler used to force CPU to start pushing its remaining RCU
 * callbacks in the case where it entered dyntick-idle mode with callbacks
 * pending.  The hander doesn't really need to do anything because the
 * real work is done upon re-entry to idle, or by the next scheduling-clock
 * interrupt should idle not be re-entered.
1714 1715 1716 1717
 *
 * One special case: the timer gets migrated without awakening the CPU
 * on which the timer was scheduled on.  In this case, we must wake up
 * that CPU.  We do so with smp_call_function_single().
1718
 */
1719
static void rcu_idle_gp_timer_func(unsigned long cpu_in)
1720
{
1721 1722
	int cpu = (int)cpu_in;

1723
	trace_rcu_prep_idle("Timer");
1724 1725 1726 1727
	if (cpu != smp_processor_id())
		smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
	else
		WARN_ON_ONCE(1); /* Getting here can hang the system... */
1728 1729 1730 1731 1732 1733 1734
}

/*
 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
 */
static void rcu_prepare_for_idle_init(int cpu)
{
1735 1736 1737 1738 1739 1740
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	rdtp->dyntick_holdoff = jiffies - 1;
	setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
	rdtp->idle_gp_timer_expires = jiffies - 1;
	rdtp->idle_first_pass = 1;
1741 1742 1743 1744
}

/*
 * Clean up for exit from idle.  Because we are exiting from idle, there
1745
 * is no longer any point to ->idle_gp_timer, so cancel it.  This will
1746 1747 1748 1749
 * do nothing if this timer is not active, so just cancel it unconditionally.
 */
static void rcu_cleanup_after_idle(int cpu)
{
1750 1751 1752
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	del_timer(&rdtp->idle_gp_timer);
1753
	trace_rcu_prep_idle("Cleanup after idle");
1754
	rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled);
1755 1756
}

1757 1758 1759 1760
/*
 * Check to see if any RCU-related work can be done by the current CPU,
 * and if so, schedule a softirq to get it done.  This function is part
 * of the RCU implementation; it is -not- an exported member of the RCU API.
1761
 *
1762 1763 1764 1765 1766 1767
 * The idea is for the current CPU to clear out all work required by the
 * RCU core for the current grace period, so that this CPU can be permitted
 * to enter dyntick-idle mode.  In some cases, it will need to be awakened
 * at the end of the grace period by whatever CPU ends the grace period.
 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
 * number of wakeups by a modest integer factor.
1768 1769 1770
 *
 * Because it is not legal to invoke rcu_process_callbacks() with irqs
 * disabled, we do one pass of force_quiescent_state(), then do a
1771
 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1772
 * later.  The ->dyntick_drain field controls the sequencing.
1773 1774
 *
 * The caller must have disabled interrupts.
1775
 */
1776
static void rcu_prepare_for_idle(int cpu)
1777
{
1778
	struct timer_list *tp;
1779
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	int tne;

	/* Handle nohz enablement switches conservatively. */
	tne = ACCESS_ONCE(tick_nohz_enabled);
	if (tne != rdtp->tick_nohz_enabled_snap) {
		if (rcu_cpu_has_callbacks(cpu))
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1792

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	/* Adaptive-tick mode, where usermode execution is idle to RCU. */
	if (!is_idle_task(current)) {
		rdtp->dyntick_holdoff = jiffies - 1;
		if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
			trace_rcu_prep_idle("User dyntick with callbacks");
			rdtp->idle_gp_timer_expires =
				round_up(jiffies + RCU_IDLE_GP_DELAY,
					 RCU_IDLE_GP_DELAY);
		} else if (rcu_cpu_has_callbacks(cpu)) {
			rdtp->idle_gp_timer_expires =
				round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
			trace_rcu_prep_idle("User dyntick with lazy callbacks");
		} else {
			return;
		}
		tp = &rdtp->idle_gp_timer;
		mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
		return;
	}

1813 1814 1815 1816 1817
	/*
	 * If this is an idle re-entry, for example, due to use of
	 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
	 * loop, then don't take any state-machine actions, unless the
	 * momentary exit from idle queued additional non-lazy callbacks.
1818
	 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
1819 1820
	 * pending.
	 */
1821 1822
	if (!rdtp->idle_first_pass &&
	    (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
1823
		if (rcu_cpu_has_callbacks(cpu)) {
1824 1825
			tp = &rdtp->idle_gp_timer;
			mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
1826
		}
1827 1828
		return;
	}
1829 1830
	rdtp->idle_first_pass = 0;
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
1831

1832
	/*
1833 1834
	 * If there are no callbacks on this CPU, enter dyntick-idle mode.
	 * Also reset state to avoid prejudicing later attempts.
1835
	 */
1836
	if (!rcu_cpu_has_callbacks(cpu)) {
1837 1838
		rdtp->dyntick_holdoff = jiffies - 1;
		rdtp->dyntick_drain = 0;
1839
		trace_rcu_prep_idle("No callbacks");
1840
		return;
1841
	}
1842 1843 1844 1845 1846

	/*
	 * If in holdoff mode, just return.  We will presumably have
	 * refrained from disabling the scheduling-clock tick.
	 */
1847
	if (rdtp->dyntick_holdoff == jiffies) {
1848
		trace_rcu_prep_idle("In holdoff");
1849
		return;
1850
	}
1851

1852 1853
	/* Check and update the ->dyntick_drain sequencing. */
	if (rdtp->dyntick_drain <= 0) {
1854
		/* First time through, initialize the counter. */
1855 1856
		rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
	} else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
1857 1858
		   !rcu_pending(cpu) &&
		   !local_softirq_pending()) {
1859
		/* Can we go dyntick-idle despite still having callbacks? */
1860 1861
		rdtp->dyntick_drain = 0;
		rdtp->dyntick_holdoff = jiffies;
1862 1863
		if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
			trace_rcu_prep_idle("Dyntick with callbacks");
1864
			rdtp->idle_gp_timer_expires =
1865 1866
				round_up(jiffies + RCU_IDLE_GP_DELAY,
					 RCU_IDLE_GP_DELAY);
1867
		} else {
1868
			rdtp->idle_gp_timer_expires =
1869
				round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
1870 1871
			trace_rcu_prep_idle("Dyntick with lazy callbacks");
		}
1872 1873 1874
		tp = &rdtp->idle_gp_timer;
		mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1875
		return; /* Nothing more to do immediately. */
1876
	} else if (--(rdtp->dyntick_drain) <= 0) {
1877
		/* We have hit the limit, so time to give up. */
1878
		rdtp->dyntick_holdoff = jiffies;
1879
		trace_rcu_prep_idle("Begin holdoff");
1880 1881
		invoke_rcu_core();  /* Force the CPU out of dyntick-idle. */
		return;
1882 1883
	}

1884 1885 1886 1887 1888 1889 1890
	/*
	 * Do one step of pushing the remaining RCU callbacks through
	 * the RCU core state machine.
	 */
#ifdef CONFIG_TREE_PREEMPT_RCU
	if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
		rcu_preempt_qs(cpu);
1891
		force_quiescent_state(&rcu_preempt_state);
1892 1893
	}
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1894 1895
	if (per_cpu(rcu_sched_data, cpu).nxtlist) {
		rcu_sched_qs(cpu);
1896
		force_quiescent_state(&rcu_sched_state);
1897 1898 1899
	}
	if (per_cpu(rcu_bh_data, cpu).nxtlist) {
		rcu_bh_qs(cpu);
1900
		force_quiescent_state(&rcu_bh_state);
1901 1902
	}

1903 1904 1905 1906
	/*
	 * If RCU callbacks are still pending, RCU still needs this CPU.
	 * So try forcing the callbacks through the grace period.
	 */
1907
	if (rcu_cpu_has_callbacks(cpu)) {
1908
		trace_rcu_prep_idle("More callbacks");
1909
		invoke_rcu_core();
1910
	} else {
1911
		trace_rcu_prep_idle("Callbacks drained");
1912
	}
1913 1914
}

1915
/*
1916 1917 1918 1919 1920 1921
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1922 1923 1924
 */
static void rcu_idle_count_callbacks_posted(void)
{
1925
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1926 1927
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
		rdp = __this_cpu_ptr(rsp->rda);
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
		cond_resched();
	}
	put_online_cpus();

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

2010
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2011 2012 2013 2014 2015 2016 2017

#ifdef CONFIG_RCU_CPU_STALL_INFO

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
2018 2019
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
	struct timer_list *tltp = &rdtp->idle_gp_timer;
2020
	char c;
2021

2022 2023 2024 2025 2026 2027 2028
	c = rdtp->dyntick_holdoff == jiffies ? 'H' : '.';
	if (timer_pending(tltp))
		sprintf(cp, "drain=%d %c timer=%lu",
			rdtp->dyntick_drain, c, tltp->expires - jiffies);
	else
		sprintf(cp, "drain=%d %c timer not pending",
			rdtp->dyntick_drain, c);
2029 2030 2031 2032 2033 2034
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
2035
	*cp = '\0';
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
	printk(KERN_CONT "\n");
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
	printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
	printk(KERN_ERR "\t");
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
2096 2097 2098 2099
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void print_cpu_stall_info_begin(void)
{
	printk(KERN_CONT " {");
}

static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	printk(KERN_CONT " %d", cpu);
}

static void print_cpu_stall_info_end(void)
{
	printk(KERN_CONT "} ");
}

static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
}

static void increment_cpu_stall_ticks(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
P
Paul E. McKenney 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408

#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

/* Is the specified CPU a no-CPUs CPU? */
static bool is_nocb_cpu(int cpu)
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}

/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
				    int rhcount, int rhcount_lazy)
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
	ACCESS_ONCE(*old_rhpp) = rhp;
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);

	/* If we are not being polled and there is a kthread, awaken it ... */
	t = ACCESS_ONCE(rdp->nocb_kthread);
	if (rcu_nocb_poll | !t)
		return;
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
		wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
		wake_up_process(t); /* ... or if many callbacks queued. */
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
			    bool lazy)
{

	if (!is_nocb_cpu(rdp->cpu))
		return 0;
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
	return 1;
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
						     struct rcu_data *rdp)
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
	if (!is_nocb_cpu(smp_processor_id()))
		return 0;
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
					rsp->orphan_donetail, ql, qll);
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
					rsp->orphan_nxttail, ql, qll);
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
	return 1;
}

/*
 * There must be at least one non-no-CBs CPU in operation at any given
 * time, because no-CBs CPUs are not capable of initiating grace periods
 * independently.  This function therefore complains if the specified
 * CPU is the last non-no-CBs CPU, allowing the CPU-hotplug system to
 * avoid offlining the last such CPU.  (Recursion is a wonderful thing,
 * but you have to have a base case!)
 */
static bool nocb_cpu_expendable(int cpu)
{
	cpumask_var_t non_nocb_cpus;
	int ret;

	/*
	 * If there are no no-CB CPUs or if this CPU is not a no-CB CPU,
	 * then offlining this CPU is harmless.  Let it happen.
	 */
	if (!have_rcu_nocb_mask || is_nocb_cpu(cpu))
		return 1;

	/* If no memory, play it safe and keep the CPU around. */
	if (!alloc_cpumask_var(&non_nocb_cpus, GFP_NOIO))
		return 0;
	cpumask_andnot(non_nocb_cpus, cpu_online_mask, rcu_nocb_mask);
	cpumask_clear_cpu(cpu, non_nocb_cpus);
	ret = !cpumask_empty(non_nocb_cpus);
	free_cpumask_var(non_nocb_cpus);
	return ret;
}

/*
 * Helper structure for remote registry of RCU callbacks.
 * This is needed for when a no-CBs CPU needs to start a grace period.
 * If it just invokes call_rcu(), the resulting callback will be queued,
 * which can result in deadlock.
 */
struct rcu_head_remote {
	struct rcu_head *rhp;
	call_rcu_func_t *crf;
	void (*func)(struct rcu_head *rhp);
};

/*
 * Register a callback as specified by the rcu_head_remote struct.
 * This function is intended to be invoked via smp_call_function_single().
 */
static void call_rcu_local(void *arg)
{
	struct rcu_head_remote *rhrp =
		container_of(arg, struct rcu_head_remote, rhp);

	rhrp->crf(rhrp->rhp, rhrp->func);
}

/*
 * Set up an rcu_head_remote structure and the invoke call_rcu_local()
 * on CPU 0 (which is guaranteed to be a non-no-CBs CPU) via
 * smp_call_function_single().
 */
static void invoke_crf_remote(struct rcu_head *rhp,
			      void (*func)(struct rcu_head *rhp),
			      call_rcu_func_t crf)
{
	struct rcu_head_remote rhr;

	rhr.rhp = rhp;
	rhr.crf = crf;
	rhr.func = func;
	smp_call_function_single(0, call_rcu_local, &rhr, 1);
}

/*
 * Helper functions to be passed to wait_rcu_gp(), each of which
 * invokes invoke_crf_remote() to register a callback appropriately.
 */
static void __maybe_unused
call_rcu_preempt_remote(struct rcu_head *rhp,
			void (*func)(struct rcu_head *rhp))
{
	invoke_crf_remote(rhp, func, call_rcu);
}
static void call_rcu_bh_remote(struct rcu_head *rhp,
			       void (*func)(struct rcu_head *rhp))
{
	invoke_crf_remote(rhp, func, call_rcu_bh);
}
static void call_rcu_sched_remote(struct rcu_head *rhp,
				  void (*func)(struct rcu_head *rhp))
{
	invoke_crf_remote(rhp, func, call_rcu_sched);
}

/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
 * callbacks queued by the corresponding no-CBs CPU.
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
		/* If not polling, wait for next batch of callbacks. */
		if (!rcu_nocb_poll)
			wait_event(rdp->nocb_wq, rdp->nocb_head);
		list = ACCESS_ONCE(rdp->nocb_head);
		if (!list) {
			schedule_timeout_interruptible(1);
			continue;
		}

		/*
		 * Extract queued callbacks, update counts, and wait
		 * for a grace period to elapse.
		 */
		ACCESS_ONCE(rdp->nocb_head) = NULL;
		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
		ACCESS_ONCE(rdp->nocb_p_count) += c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
		wait_rcu_gp(rdp->rsp->call_remote);

		/* Each pass through the following loop invokes a callback. */
		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
				schedule_timeout_interruptible(1);
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
		ACCESS_ONCE(rdp->nocb_p_count) -= c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2409
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	}
	return 0;
}

/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
}

/* Create a kthread for each RCU flavor for each no-CBs CPU. */
static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
	int cpu;
	struct rcu_data *rdp;
	struct task_struct *t;

	if (rcu_nocb_mask == NULL)
		return;
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		t = kthread_run(rcu_nocb_kthread, rdp, "rcuo%d", cpu);
		BUG_ON(IS_ERR(t));
		ACCESS_ONCE(rdp->nocb_kthread) = t;
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
static void init_nocb_callback_list(struct rcu_data *rdp)
{
	if (rcu_nocb_mask == NULL ||
	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
		return;
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
}

/* Initialize the ->call_remote fields in the rcu_state structures. */
static void __init rcu_init_nocb(void)
{
#ifdef CONFIG_PREEMPT_RCU
	rcu_preempt_state.call_remote = call_rcu_preempt_remote;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
	rcu_bh_state.call_remote = call_rcu_bh_remote;
	rcu_sched_state.call_remote = call_rcu_sched_remote;
}

#else /* #ifdef CONFIG_RCU_NOCB_CPU */

static bool is_nocb_cpu(int cpu)
{
	return false;
}

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
			    bool lazy)
{
	return 0;
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
						     struct rcu_data *rdp)
{
	return 0;
}

static bool nocb_cpu_expendable(int cpu)
{
	return 1;
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
}

static void init_nocb_callback_list(struct rcu_data *rdp)
{
}

static void __init rcu_init_nocb(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */