reg.c 60.5 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "nl80211.h"
44

45
/* Receipt of information from last regulatory request */
46
static struct regulatory_request *last_request;
47

48 49
/* To trigger userspace events */
static struct platform_device *reg_pdev;
50

51 52
/*
 * Central wireless core regulatory domains, we only need two,
53
 * the current one and a world regulatory domain in case we have no
54 55
 * information to give us an alpha2
 */
56
const struct ieee80211_regdomain *cfg80211_regdomain;
57

58 59
/*
 * We use this as a place for the rd structure built from the
60
 * last parsed country IE to rest until CRDA gets back to us with
61 62
 * what it thinks should apply for the same country
 */
63 64
static const struct ieee80211_regdomain *country_ie_regdomain;

65 66 67 68 69 70 71 72 73 74
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - country_ie_regdomain
 *     - last_request
 */
DEFINE_MUTEX(reg_mutex);
#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))

75
/* Used to queue up regulatory hints */
76 77 78
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

79 80 81 82 83 84 85 86 87 88 89 90
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

91 92
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
93
	.n_reg_rules = 5,
94 95
	.alpha2 =  "00",
	.reg_rules = {
96 97
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
98 99 100
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
101 102
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
103 104 105 106 107 108 109
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
110
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
111 112
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
113 114 115 116

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
117
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
118 119
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
120 121 122
	}
};

123 124
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
125

126 127
static char *ieee80211_regdom = "00";

128 129 130
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

131
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 133
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
134
 * We make emphasis we are using the exact same frequencies
135 136
 * as before
 */
137 138 139 140 141 142 143

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144 145
		/* IEEE 802.11a, channel 36..48 */
		REG_RULE(5180-10, 5240+10, 40, 6, 17, 0),
146
		/* IEEE 802.11a, channels 48..64 */
147 148 149 150 151
		REG_RULE(5260-10, 5320+10, 40, 6, 20, NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..124 */
		REG_RULE(5500-10, 5590+10, 40, 6, 20, NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 132..144 */
		REG_RULE(5660-10, 5700+10, 40, 6, 20, NL80211_RRF_DFS),
152 153 154 155 156 157
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
158
	.n_reg_rules = 6,
159 160
	.alpha2 =  "JP",
	.reg_rules = {
161 162 163 164 165 166 167 168
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
		/* IEEE 802.11b/g, channels 12..13 */
		REG_RULE(2467-10, 2472+10, 20, 6, 20, 0),
		/* IEEE 802.11b/g, channel 14 */
		REG_RULE(2484-10, 2484+10, 20, 6, 20, NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channels 36..48 */
		REG_RULE(5180-10, 5240+10, 40, 6, 20, 0),
169
		/* IEEE 802.11a, channels 52..64 */
170 171 172
		REG_RULE(5260-10, 5320+10, 40, 6, 20, NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..144 */
		REG_RULE(5500-10, 5700+10, 40, 6, 23, NL80211_RRF_DFS),
173 174 175 176 177 178 179 180 181
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
182 183
	/* Use world roaming rules for "EU", since it was a pseudo
	   domain anyway... */
184
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
185 186 187
		return &world_regdom;
	/* Default, world roaming rules */
	return &world_regdom;
188 189
}

190
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
191
{
192
	if (rd == &us_regdom || rd == &jp_regdom || rd == &world_regdom)
193 194 195
		return true;
	return false;
}
196 197
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
198
{
199
	return false;
200
}
201 202
#endif

203 204
static void reset_regdomains(void)
{
205 206 207 208 209 210 211 212 213 214 215 216
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
217

218
	cfg80211_world_regdom = &world_regdom;
219 220 221
	cfg80211_regdomain = NULL;
}

222 223 224 225
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
226
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
227
{
228
	BUG_ON(!last_request);
229 230 231 232 233 234 235

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

236
bool is_world_regdom(const char *alpha2)
237 238 239 240 241 242 243
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
244

245
static bool is_alpha2_set(const char *alpha2)
246 247 248 249 250 251 252
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
253

254 255 256 257 258 259 260
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
261

262
static bool is_unknown_alpha2(const char *alpha2)
263 264 265
{
	if (!alpha2)
		return false;
266 267 268 269
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
270 271 272 273
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
274

275 276 277 278
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
279 280
	/*
	 * Special case where regulatory domain is the
281
	 * result of an intersection between two regulatory domain
282 283
	 * structures
	 */
284 285 286 287 288
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

289
static bool is_an_alpha2(const char *alpha2)
290 291 292 293 294 295 296
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
297

298
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
299 300 301 302 303 304 305 306 307
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

308
static bool regdom_changes(const char *alpha2)
309
{
310 311
	assert_cfg80211_lock();

312 313 314 315 316 317 318
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

338 339 340 341
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
364
bool reg_is_valid_request(const char *alpha2)
365
{
366 367
	assert_cfg80211_lock();

368 369 370 371
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
372
}
373

374
/* Sanity check on a regulatory rule */
375
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
376
{
377
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
378 379
	u32 freq_diff;

380
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
381 382 383 384 385 386 387
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

388 389
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
390 391 392 393 394
		return false;

	return true;
}

395
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
396
{
397
	const struct ieee80211_reg_rule *reg_rule = NULL;
398
	unsigned int i;
399

400 401
	if (!rd->n_reg_rules)
		return false;
402

403 404 405
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

406 407 408 409 410 411 412
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
413 414
}

415 416 417
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
418
{
419 420 421 422 423 424 425 426 427 428
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
429
}
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

456 457
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
458 459
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
460 461
 * with our userspace regulatory agent to get lower bounds.
 */
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

506 507
	/*
	 * We need to build a reg rule for each triplet, but first we must
508
	 * calculate the number of reg rules we will need. We will need one
509 510
	 * for each channel subband
	 */
511
	while (country_ie_len >= 3) {
512
		int end_channel = 0;
513 514 515 516 517 518 519 520 521 522 523
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

541
		cur_channel = triplet->chans.first_channel;
542
		cur_sub_max_channel = end_channel;
543 544 545 546 547

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

548 549
		/*
		 * Do not allow overlapping channels. Also channels
550
		 * passed in each subband must be monotonically
551 552
		 * increasing
		 */
553 554 555 556 557 558 559
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

560 561
		/*
		 * When dot11RegulatoryClassesRequired is supported
562 563
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
564 565
		 * don't support them
		 */
566 567 568 569 570 571 572 573 574 575
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

576 577 578 579
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
600
		int end_channel = 0;
601 602 603 604 605 606
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

607 608 609 610
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
611 612 613 614 615 616 617 618 619 620 621 622 623
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

624 625 626 627 628 629 630 631
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

632 633
		/*
		 * The +10 is since the regulatory domain expects
634 635
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
636 637
		 * the channels passed
		 */
638 639 640 641 642
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
643
				end_channel) + 10);
644

645 646 647 648 649
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


665 666 667 668
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

746 747
	/*
	 * First we get a count of the rules we'll need, then we actually
748 749 750
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
751 752
	 * All rules that do check out OK are valid.
	 */
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
780 781
			/*
			 * This time around instead of using the stack lets
782
			 * write to the target rule directly saving ourselves
783 784
			 * a memcpy()
			 */
785 786 787
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
788 789 790 791
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

810 811 812 813
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
814 815 816 817 818 819 820 821 822 823 824 825
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

826 827
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
828
			      u32 desired_bw_khz,
829 830
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
831 832
{
	int i;
833
	bool band_rule_found = false;
834
	const struct ieee80211_regdomain *regd;
835 836 837 838
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
839

840
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
841

842 843 844 845
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
846 847
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
848 849 850 851
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
852 853
		return -EINVAL;

854
	for (i = 0; i < regd->n_reg_rules; i++) {
855 856 857 858
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

859
		rr = &regd->reg_rules[i];
860 861
		fr = &rr->freq_range;
		pr = &rr->power_rule;
862

863 864
		/*
		 * We only need to know if one frequency rule was
865
		 * was in center_freq's band, that's enough, so lets
866 867
		 * not overwrite it once found
		 */
868 869 870
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

871 872 873
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
874

875
		if (band_rule_found && bw_fits) {
876
			*reg_rule = rr;
877
			return 0;
878 879 880
		}
	}

881 882 883
	if (!band_rule_found)
		return -ERANGE;

884
	return -EINVAL;
885
}
886
EXPORT_SYMBOL(freq_reg_info);
887

888 889 890 891
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
892
{
893
	assert_cfg80211_lock();
894 895 896 897 898
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
899
}
900

901 902 903 904 905 906 907 908 909
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
910 911
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
912 913
{
	int r;
914 915
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
916 917
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
918
	const struct ieee80211_freq_range *freq_range = NULL;
919 920
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
921
	struct wiphy *request_wiphy = NULL;
922

923 924
	assert_cfg80211_lock();

925 926
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

927 928 929 930 931
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
932

933 934 935 936
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
937 938

	if (r) {
939 940
		/*
		 * This means no regulatory rule was found in the country IE
941 942 943 944 945 946 947 948 949 950
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
951 952
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
953 954 955 956 957 958 959
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
960 961 962 963
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
964
#ifdef CONFIG_CFG80211_REG_DEBUG
965 966
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
967 968 969 970 971 972 973 974
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
975 976 977
		return;
	}

978
	power_rule = &reg_rule->power_rule;
979 980 981 982
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
983

984
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
985
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
986
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
987 988
		/*
		 * This gaurantees the driver's requested regulatory domain
989
		 * will always be used as a base for further regulatory
990 991
		 * settings
		 */
992
		chan->flags = chan->orig_flags =
993
			map_regdom_flags(reg_rule->flags) | bw_flags;
994 995 996 997 998 999 1000
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1001
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1002
	chan->max_antenna_gain = min(chan->orig_mag,
1003
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1004
	if (chan->orig_mpwr)
1005 1006
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1007
	else
1008
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1009 1010
}

1011
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1012
{
1013 1014 1015 1016 1017
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1018 1019

	for (i = 0; i < sband->n_channels; i++)
1020
		handle_channel(wiphy, band, i);
1021 1022
}

1023 1024
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1025 1026 1027
{
	if (!last_request)
		return true;
1028
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
J
Johannes Berg 已提交
1029
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1030
		return true;
1031 1032 1033 1034
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
1035
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1036
	    !is_world_regdom(last_request->alpha2))
1037 1038 1039 1040
		return true;
	return false;
}

1041
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1042
{
1043
	struct cfg80211_registered_device *rdev;
1044

1045 1046
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
1047 1048
}

1049 1050 1051 1052 1053 1054
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1055 1056
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1057 1058 1059 1060 1061 1062 1063 1064 1065

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1066 1067 1068 1069 1070
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
1071
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1072 1073
		return;

1074 1075 1076
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1077
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1078
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1079
		channel_changed = true;
1080 1081
	}

1082
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1083
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1084
		channel_changed = true;
1085 1086
	}

1087 1088
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1140 1141
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1142
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1143 1144 1145 1146 1147 1148 1149
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1150 1151 1152 1153 1154 1155
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1156 1157 1158 1159 1160
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1211
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1212
	else
1213
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1214 1215

	if (is_ht40_not_allowed(channel_after))
1216
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1217
	else
1218
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1248 1249
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1250 1251
{
	enum ieee80211_band band;
1252

1253
	if (ignore_reg_update(wiphy, initiator))
1254
		goto out;
1255
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1256
		if (wiphy->bands[band])
1257
			handle_band(wiphy, band);
1258
	}
1259 1260
out:
	reg_process_beacons(wiphy);
1261
	reg_process_ht_flags(wiphy);
1262
	if (wiphy->reg_notifier)
1263
		wiphy->reg_notifier(wiphy, last_request);
1264 1265
}

1266 1267 1268 1269 1270 1271
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1272 1273
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1274 1275
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1276
	const struct ieee80211_freq_range *freq_range = NULL;
1277 1278 1279
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1280
	assert_reg_lock();
1281

1282 1283 1284 1285
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1286 1287 1288 1289 1290
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1291 1292 1293 1294 1295 1296 1297

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1298 1299 1300 1301
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1302

1303
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1326
	unsigned int bands_set = 0;
1327

1328
	mutex_lock(&reg_mutex);
1329
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1330 1331 1332 1333
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1334
	}
1335
	mutex_unlock(&reg_mutex);
1336 1337 1338 1339 1340 1341

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1342
}
1343 1344
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1368

1369 1370 1371 1372
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1373 1374
#define REG_INTERSECT	1

1375 1376
/* This has the logic which determines when a new request
 * should be ignored. */
1377 1378
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1379
{
1380
	struct wiphy *last_wiphy = NULL;
1381 1382 1383

	assert_cfg80211_lock();

1384 1385 1386 1387
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1388
	switch (pending_request->initiator) {
1389
	case NL80211_REGDOM_SET_BY_CORE:
1390
		return -EINVAL;
1391
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1392 1393 1394

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1395
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1396
			return -EINVAL;
1397 1398
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1399
			if (last_wiphy != wiphy) {
1400 1401
				/*
				 * Two cards with two APs claiming different
1402
				 * Country IE alpha2s. We could
1403 1404 1405
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1406
				if (regdom_changes(pending_request->alpha2))
1407 1408 1409
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1410 1411 1412 1413
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1414
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1415 1416 1417
				return 0;
			return -EALREADY;
		}
1418
		return REG_INTERSECT;
1419 1420
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1421 1422
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
1423
			if (regdom_changes(pending_request->alpha2))
1424
				return 0;
1425
			return -EALREADY;
1426
		}
1427 1428 1429 1430 1431 1432

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1433
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1434
		    !regdom_changes(pending_request->alpha2))
1435 1436
			return -EALREADY;

1437
		return REG_INTERSECT;
1438 1439
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1440
			return REG_INTERSECT;
1441 1442 1443 1444
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1445
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1446 1447
			  last_request->intersect)
			return -EOPNOTSUPP;
1448 1449 1450 1451
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1452 1453 1454
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1455
			if (regdom_changes(last_request->alpha2))
1456 1457 1458
				return -EAGAIN;
		}

1459
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1460
		    !regdom_changes(pending_request->alpha2))
1461 1462
			return -EALREADY;

1463 1464 1465 1466 1467 1468
		return 0;
	}

	return -EINVAL;
}

1469 1470 1471 1472
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1473
 * @pending_request: the regulatory request currently being processed
1474 1475
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1476
 * what it believes should be the current regulatory domain.
1477 1478 1479 1480
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1481
 * Caller must hold &cfg80211_mutex and &reg_mutex
1482
 */
1483 1484
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1485
{
1486
	bool intersect = false;
1487 1488
	int r = 0;

1489 1490
	assert_cfg80211_lock();

1491
	r = ignore_request(wiphy, pending_request);
1492

1493
	if (r == REG_INTERSECT) {
1494 1495
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1496
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1497 1498
			if (r) {
				kfree(pending_request);
1499
				return r;
1500
			}
1501
		}
1502
		intersect = true;
1503
	} else if (r) {
1504 1505
		/*
		 * If the regulatory domain being requested by the
1506
		 * driver has already been set just copy it to the
1507 1508
		 * wiphy
		 */
1509
		if (r == -EALREADY &&
1510 1511
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1512
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1513 1514
			if (r) {
				kfree(pending_request);
1515
				return r;
1516
			}
1517 1518 1519
			r = -EALREADY;
			goto new_request;
		}
1520
		kfree(pending_request);
1521
		return r;
1522
	}
1523

1524
new_request:
1525
	kfree(last_request);
1526

1527 1528
	last_request = pending_request;
	last_request->intersect = intersect;
1529

1530
	pending_request = NULL;
1531 1532

	/* When r == REG_INTERSECT we do need to call CRDA */
1533 1534 1535 1536 1537 1538 1539 1540
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1541
		return r;
1542
	}
1543

1544
	return call_crda(last_request->alpha2);
1545 1546
}

1547
/* This processes *all* regulatory hints */
1548
static void reg_process_hint(struct regulatory_request *reg_request)
1549 1550 1551 1552 1553 1554 1555
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1556
	mutex_lock(&reg_mutex);
1557 1558 1559 1560

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1561
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1562
	    !wiphy) {
1563
		kfree(reg_request);
1564 1565 1566
		goto out;
	}

1567
	r = __regulatory_hint(wiphy, reg_request);
1568
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1569 1570
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1571 1572
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
1573
	mutex_unlock(&reg_mutex);
1574 1575 1576
	mutex_unlock(&cfg80211_mutex);
}

1577
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1589 1590
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1591 1592 1593 1594 1595
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1596 1597 1598
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1599
	struct cfg80211_registered_device *rdev;
1600 1601
	struct reg_beacon *pending_beacon, *tmp;

1602 1603 1604 1605
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1622 1623
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1634 1635 1636
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1637
	reg_process_pending_beacon_hints();
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1665
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1666

1667
	queue_regulatory_request(request);
1668

1669 1670 1671 1672 1673 1674 1675
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
	flush_scheduled_work();

1676
	return 0;
1677 1678
}

1679 1680
/* User hints */
int regulatory_hint_user(const char *alpha2)
1681
{
1682 1683
	struct regulatory_request *request;

1684
	BUG_ON(!alpha2);
1685

1686 1687 1688 1689 1690 1691 1692
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1693
	request->initiator = NL80211_REGDOM_SET_BY_USER,
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1719
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1720 1721 1722 1723

	queue_regulatory_request(request);

	return 0;
1724 1725 1726
}
EXPORT_SYMBOL(regulatory_hint);

1727
/* Caller must hold reg_mutex */
1728 1729 1730
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1731 1732
	struct wiphy *request_wiphy;

1733
	assert_reg_lock();
1734

1735 1736 1737 1738
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1739 1740 1741
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1742
		return false;
1743 1744

	if (likely(request_wiphy != wiphy))
1745
		return !country_ie_integrity_changes(country_ie_checksum);
1746 1747
	/*
	 * We should not have let these through at this point, they
1748
	 * should have been picked up earlier by the first alpha2 check
1749 1750
	 * on the device
	 */
1751 1752 1753 1754 1755
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

1756 1757 1758 1759
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1760 1761 1762 1763 1764 1765 1766 1767
void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1768
	struct regulatory_request *request;
1769

1770
	mutex_lock(&reg_mutex);
1771

1772 1773
	if (unlikely(!last_request))
		goto out;
1774

1775 1776 1777 1778 1779 1780 1781
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1782 1783
	/*
	 * Pending country IE processing, this can happen after we
1784
	 * call CRDA and wait for a response if a beacon was received before
1785 1786
	 * we were able to process the last regulatory_hint_11d() call
	 */
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1798
	/*
1799
	 * We will run this only upon a successful connection on cfg80211.
1800 1801
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1802
	 */
1803 1804
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1805 1806
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1807 1808 1809 1810 1811

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1812 1813
	/*
	 * This will not happen right now but we leave it here for the
1814 1815
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1816 1817 1818 1819 1820 1821
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1822
		goto free_rd_out;
1823

1824 1825 1826 1827
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1828 1829 1830 1831
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1832 1833
	country_ie_regdomain = rd;

1834 1835 1836
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
1837
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1838 1839 1840
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

1841
	mutex_unlock(&reg_mutex);
1842

1843 1844 1845
	queue_regulatory_request(request);

	return;
1846 1847 1848

free_rd_out:
	kfree(rd);
1849
out:
1850
	mutex_unlock(&reg_mutex);
1851
}
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1902
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1903 1904
{
	unsigned int i;
1905 1906 1907
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1908

1909
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1910 1911 1912 1913 1914 1915 1916
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1917 1918 1919 1920
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1921
		if (power_rule->max_antenna_gain)
1922
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1923 1924 1925 1926 1927 1928 1929
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1930
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1931 1932 1933 1934 1935 1936 1937 1938
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1939
static void print_regdomain(const struct ieee80211_regdomain *rd)
1940 1941
{

1942 1943
	if (is_intersected_alpha2(rd->alpha2)) {

1944 1945
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1946 1947
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1948
				last_request->wiphy_idx);
1949
			if (rdev) {
1950 1951
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
1952 1953
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1954 1955 1956 1957 1958
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1959
					"domain intersected: \n");
1960
	} else if (is_world_regdom(rd->alpha2))
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1976
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1977 1978 1979 1980 1981 1982
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
1996
		print_regdomain_info(intersected_rd);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2010
/* Takes ownership of rd only if it doesn't fail */
2011
static int __set_regdom(const struct ieee80211_regdomain *rd)
2012
{
2013
	const struct ieee80211_regdomain *intersected_rd = NULL;
2014
	struct cfg80211_registered_device *rdev = NULL;
2015
	struct wiphy *request_wiphy;
2016 2017 2018
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2019
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2020 2021 2022 2023 2024 2025 2026 2027 2028
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2029
	if (!last_request)
2030 2031
		return -EINVAL;

2032 2033
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2034
	 * rd is non static (it means CRDA was present and was used last)
2035 2036
	 * and the pending request came in from a country IE
	 */
2037
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2038 2039 2040 2041
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2042
		if (!is_old_static_regdom(cfg80211_regdomain) &&
2043
		    !regdom_changes(rd->alpha2))
2044 2045 2046
			return -EINVAL;
	}

2047 2048
	/*
	 * Now lets set the regulatory domain, update all driver channels
2049 2050
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2051 2052
	 * internal EEPROM data
	 */
2053

2054
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2055 2056
		return -EINVAL;

2057 2058 2059 2060 2061
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2062 2063
	}

2064 2065
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2066
	if (!last_request->intersect) {
2067 2068
		int r;

2069
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2070 2071 2072 2073 2074
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2075 2076 2077 2078
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2079

2080 2081 2082 2083 2084 2085
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2086

2087
		r = reg_copy_regd(&request_wiphy->regd, rd);
2088 2089 2090
		if (r)
			return r;

2091 2092 2093 2094 2095 2096 2097
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2098
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2099

2100 2101 2102
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2103

2104 2105
		/*
		 * We can trash what CRDA provided now.
2106
		 * However if a driver requested this specific regulatory
2107 2108
		 * domain we keep it for its private use
		 */
2109
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2110
			request_wiphy->regd = rd;
2111 2112 2113
		else
			kfree(rd);

2114 2115 2116 2117 2118 2119
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2120 2121
	}

2122 2123 2124 2125 2126
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

2127 2128 2129 2130 2131 2132 2133
	/*
	 * Userspace could have sent two replies with only
	 * one kernel request. By the second reply we would have
	 * already processed and consumed the country_ie_regdomain.
	 */
	if (!country_ie_regdomain)
		return -EALREADY;
2134
	BUG_ON(rd == country_ie_regdomain);
2135

2136 2137 2138 2139
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2140

2141
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2142

2143 2144 2145
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2146

2147 2148
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2149 2150 2151 2152

	if (!intersected_rd)
		return -EINVAL;

2153
	rdev = wiphy_to_dev(request_wiphy);
2154

2155 2156 2157
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2158 2159 2160 2161 2162 2163

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2164
	reset_regdomains();
2165
	cfg80211_regdomain = intersected_rd;
2166 2167 2168 2169 2170

	return 0;
}


2171 2172
/*
 * Use this call to set the current regulatory domain. Conflicts with
2173
 * multiple drivers can be ironed out later. Caller must've already
2174 2175
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2176
int set_regdom(const struct ieee80211_regdomain *rd)
2177 2178 2179
{
	int r;

2180 2181
	assert_cfg80211_lock();

2182 2183
	mutex_lock(&reg_mutex);

2184 2185
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2186 2187
	if (r) {
		kfree(rd);
2188
		mutex_unlock(&reg_mutex);
2189
		return r;
2190
	}
2191 2192

	/* This would make this whole thing pointless */
2193 2194
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2195 2196

	/* update all wiphys now with the new established regulatory domain */
2197
	update_all_wiphy_regulatory(last_request->initiator);
2198

2199
	print_regdomain(cfg80211_regdomain);
2200

2201 2202
	nl80211_send_reg_change_event(last_request);

2203 2204
	mutex_unlock(&reg_mutex);

2205 2206 2207
	return r;
}

2208
/* Caller must hold cfg80211_mutex */
2209 2210
void reg_device_remove(struct wiphy *wiphy)
{
2211
	struct wiphy *request_wiphy = NULL;
2212

2213 2214
	assert_cfg80211_lock();

2215 2216
	mutex_lock(&reg_mutex);

2217 2218
	kfree(wiphy->regd);

2219 2220
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2221

2222
	if (!request_wiphy || request_wiphy != wiphy)
2223
		goto out;
2224

2225
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2226
	last_request->country_ie_env = ENVIRON_ANY;
2227 2228
out:
	mutex_unlock(&reg_mutex);
2229 2230
}

2231 2232
int regulatory_init(void)
{
2233
	int err = 0;
2234

2235 2236 2237
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2238

2239
	spin_lock_init(&reg_requests_lock);
2240
	spin_lock_init(&reg_pending_beacons_lock);
2241

2242
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2243
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2244

2245
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2246 2247
	print_regdomain_info(cfg80211_regdomain);
#else
2248
	cfg80211_regdomain = cfg80211_world_regdom;
2249

2250
#endif
2251 2252
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2253
	if (err) {
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2268
#endif
2269
	}
2270

2271 2272 2273 2274 2275 2276 2277
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2278 2279 2280 2281 2282
	return 0;
}

void regulatory_exit(void)
{
2283
	struct regulatory_request *reg_request, *tmp;
2284
	struct reg_beacon *reg_beacon, *btmp;
2285 2286 2287

	cancel_work_sync(&reg_work);

2288
	mutex_lock(&cfg80211_mutex);
2289
	mutex_lock(&reg_mutex);
2290

2291
	reset_regdomains();
2292

2293 2294 2295
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2296 2297
	kfree(last_request);

2298
	platform_device_unregister(reg_pdev);
2299

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2328
	mutex_unlock(&reg_mutex);
2329
	mutex_unlock(&cfg80211_mutex);
2330
}