reg.c 57.4 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
40
#include <net/wireless.h>
41
#include <net/cfg80211.h>
42
#include "core.h"
43
#include "reg.h"
44

45
/* Receipt of information from last regulatory request */
46
static struct regulatory_request *last_request;
47

48 49
/* To trigger userspace events */
static struct platform_device *reg_pdev;
50

51 52 53 54
/* Keep the ordering from large to small */
static u32 supported_bandwidths[] = {
	MHZ_TO_KHZ(40),
	MHZ_TO_KHZ(20),
55 56
};

57 58
/*
 * Central wireless core regulatory domains, we only need two,
59
 * the current one and a world regulatory domain in case we have no
60 61
 * information to give us an alpha2
 */
62
const struct ieee80211_regdomain *cfg80211_regdomain;
63

64 65
/*
 * We use this as a place for the rd structure built from the
66
 * last parsed country IE to rest until CRDA gets back to us with
67 68
 * what it thinks should apply for the same country
 */
69 70
static const struct ieee80211_regdomain *country_ie_regdomain;

71
/* Used to queue up regulatory hints */
72 73 74
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

75 76 77 78 79 80 81 82 83 84 85 86
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

87 88
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
89
	.n_reg_rules = 5,
90 91
	.alpha2 =  "00",
	.reg_rules = {
92 93
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
94 95 96
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
97 98
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
99 100 101 102 103 104 105
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
106
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
107 108
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
109 110 111 112

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
113
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
114 115
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
116 117 118
	}
};

119 120
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
121 122 123 124 125 126

#ifdef CONFIG_WIRELESS_OLD_REGULATORY
static char *ieee80211_regdom = "US";
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

127 128
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
129
 * We make emphasis we are using the exact same frequencies
130 131
 * as before
 */
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
170 171 172 173
	/*
	 * This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility
	 */
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

210
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
211 212 213 214 215
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
216 217
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
218
{
219
	return false;
220
}
221 222
#endif

223 224
static void reset_regdomains(void)
{
225 226 227 228 229 230 231 232 233 234 235 236
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
237

238
	cfg80211_world_regdom = &world_regdom;
239 240 241
	cfg80211_regdomain = NULL;
}

242 243 244 245
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
246
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
247
{
248
	BUG_ON(!last_request);
249 250 251 252 253 254 255

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

256
bool is_world_regdom(const char *alpha2)
257 258 259 260 261 262 263
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
264

265
static bool is_alpha2_set(const char *alpha2)
266 267 268 269 270 271 272
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
273

274 275 276 277 278 279 280
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
281

282
static bool is_unknown_alpha2(const char *alpha2)
283 284 285
{
	if (!alpha2)
		return false;
286 287 288 289
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
290 291 292 293
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
294

295 296 297 298
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
299 300
	/*
	 * Special case where regulatory domain is the
301
	 * result of an intersection between two regulatory domain
302 303
	 * structures
	 */
304 305 306 307 308
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

309
static bool is_an_alpha2(const char *alpha2)
310 311 312 313 314 315 316
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
317

318
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
319 320 321 322 323 324 325 326 327
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

328
static bool regdom_changes(const char *alpha2)
329
{
330 331
	assert_cfg80211_lock();

332 333 334 335 336 337 338
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

358 359 360 361
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
384
bool reg_is_valid_request(const char *alpha2)
385
{
386 387 388 389
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
390
}
391

392
/* Sanity check on a regulatory rule */
393
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
394
{
395
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
396 397
	u32 freq_diff;

398
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
399 400 401 402 403 404 405
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

406 407
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
408 409 410 411 412
		return false;

	return true;
}

413
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
414
{
415
	const struct ieee80211_reg_rule *reg_rule = NULL;
416
	unsigned int i;
417

418 419
	if (!rd->n_reg_rules)
		return false;
420

421 422 423
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

424 425 426 427 428 429 430
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
431 432
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446
/* Returns value in KHz */
static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
	u32 freq)
{
	unsigned int i;
	for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
		u32 start_freq_khz = freq - supported_bandwidths[i]/2;
		u32 end_freq_khz = freq + supported_bandwidths[i]/2;
		if (start_freq_khz >= freq_range->start_freq_khz &&
			end_freq_khz <= freq_range->end_freq_khz)
			return supported_bandwidths[i];
	}
	return 0;
}
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

473 474
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
475 476
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
477 478
 * with our userspace regulatory agent to get lower bounds.
 */
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

523 524
	/*
	 * We need to build a reg rule for each triplet, but first we must
525
	 * calculate the number of reg rules we will need. We will need one
526 527
	 * for each channel subband
	 */
528
	while (country_ie_len >= 3) {
529
		int end_channel = 0;
530 531 532 533 534 535 536 537 538 539 540
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

558
		cur_channel = triplet->chans.first_channel;
559
		cur_sub_max_channel = end_channel;
560 561 562 563 564

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

565 566
		/*
		 * Do not allow overlapping channels. Also channels
567
		 * passed in each subband must be monotonically
568 569
		 * increasing
		 */
570 571 572 573 574 575 576
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

577 578
		/*
		 * When dot11RegulatoryClassesRequired is supported
579 580
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
581 582
		 * don't support them
		 */
583 584 585 586 587 588 589 590 591 592
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

593 594 595 596
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
617
		int end_channel = 0;
618 619 620 621 622 623
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

624 625 626 627
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
628 629 630 631 632 633 634 635 636 637 638 639 640
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

641 642 643 644 645 646 647 648
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

649 650
		/*
		 * The +10 is since the regulatory domain expects
651 652
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
653 654
		 * the channels passed
		 */
655 656 657 658 659
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
660
				end_channel) + 10);
661

662 663 664 665 666
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


682 683 684 685
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

763 764
	/*
	 * First we get a count of the rules we'll need, then we actually
765 766 767
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
768 769
	 * All rules that do check out OK are valid.
	 */
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
797 798
			/*
			 * This time around instead of using the stack lets
799
			 * write to the target rule directly saving ourselves
800 801
			 * a memcpy()
			 */
802 803 804
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
805 806 807 808
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

827 828 829 830
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
831 832 833 834 835 836 837 838 839 840 841 842
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

843 844 845 846 847
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
			      u32 *bandwidth,
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
848 849
{
	int i;
850
	bool band_rule_found = false;
851
	const struct ieee80211_regdomain *regd;
852
	u32 max_bandwidth = 0;
853

854
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
855

856 857 858 859
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
860
	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE &&
861
	    last_request->initiator != REGDOM_SET_BY_USER &&
862 863 864 865
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
866 867
		return -EINVAL;

868
	for (i = 0; i < regd->n_reg_rules; i++) {
869 870 871 872
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

873
		rr = &regd->reg_rules[i];
874 875
		fr = &rr->freq_range;
		pr = &rr->power_rule;
876

877 878
		/*
		 * We only need to know if one frequency rule was
879
		 * was in center_freq's band, that's enough, so lets
880 881
		 * not overwrite it once found
		 */
882 883 884
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

885
		max_bandwidth = freq_max_bandwidth(fr, center_freq);
886

887 888 889
		if (max_bandwidth && *bandwidth <= max_bandwidth) {
			*reg_rule = rr;
			*bandwidth = max_bandwidth;
890 891 892 893
			break;
		}
	}

894 895 896
	if (!band_rule_found)
		return -ERANGE;

897 898
	return !max_bandwidth;
}
899
EXPORT_SYMBOL(freq_reg_info);
900

901
int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
902 903 904 905 906
			 const struct ieee80211_reg_rule **reg_rule)
{
	return freq_reg_info_regd(wiphy, center_freq,
		bandwidth, reg_rule, NULL);
}
907

908 909
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
910 911
{
	int r;
912
	u32 flags;
913 914 915
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
916 917
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
918
	struct wiphy *request_wiphy = NULL;
919

920 921
	assert_cfg80211_lock();

922 923
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

924 925 926 927 928
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
929

930
	r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
931 932 933
		&max_bandwidth, &reg_rule);

	if (r) {
934 935
		/*
		 * This means no regulatory rule was found in the country IE
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
		    last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
954 955 956 957
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
958 959 960 961 962 963 964 965 966 967
#ifdef CONFIG_CFG80211_REG_DEBUG
			if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
968 969 970
		return;
	}

971 972
	power_rule = &reg_rule->power_rule;

973
	if (last_request->initiator == REGDOM_SET_BY_DRIVER &&
974 975
	    request_wiphy && request_wiphy == wiphy &&
	    request_wiphy->strict_regulatory) {
976 977
		/*
		 * This gaurantees the driver's requested regulatory domain
978
		 * will always be used as a base for further regulatory
979 980
		 * settings
		 */
981 982 983 984 985 986 987 988 989 990
		chan->flags = chan->orig_flags =
			map_regdom_flags(reg_rule->flags);
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

991
	chan->flags = flags | map_regdom_flags(reg_rule->flags);
992
	chan->max_antenna_gain = min(chan->orig_mag,
993 994
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
995
	if (chan->orig_mpwr)
996 997
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
998
	else
999
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1000 1001
}

1002
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1003
{
1004 1005 1006 1007 1008
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1009 1010

	for (i = 0; i < sband->n_channels; i++)
1011
		handle_channel(wiphy, band, i);
1012 1013
}

1014 1015 1016 1017 1018
static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby)
{
	if (!last_request)
		return true;
	if (setby == REGDOM_SET_BY_CORE &&
1019
		  wiphy->custom_regulatory)
1020
		return true;
1021 1022 1023 1024
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
1025 1026
	if (wiphy->strict_regulatory && !wiphy->regd &&
	    !is_world_regdom(last_request->alpha2))
1027 1028 1029 1030
		return true;
	return false;
}

1031
static void update_all_wiphy_regulatory(enum reg_set_by setby)
1032
{
1033
	struct cfg80211_registered_device *drv;
1034

1035
	list_for_each_entry(drv, &cfg80211_drv_list, list)
1036
		wiphy_update_regulatory(&drv->wiphy, setby);
1037 1038
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
#ifdef CONFIG_CFG80211_REG_DEBUG
#define REG_DEBUG_BEACON_FLAG(desc) \
	printk(KERN_DEBUG "cfg80211: Enabling " desc " on " \
		"frequency: %d MHz (Ch %d) on %s\n", \
		reg_beacon->chan.center_freq, \
		ieee80211_frequency_to_channel(reg_beacon->chan.center_freq), \
		wiphy_name(wiphy));
#else
#define REG_DEBUG_BEACON_FLAG(desc) do {} while (0)
#endif
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
		REG_DEBUG_BEACON_FLAG("active scanning");
	}

	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
		REG_DEBUG_BEACON_FLAG("beaconing");
	}

	chan->beacon_found = true;
#undef REG_DEBUG_BEACON_FLAG
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE &&
	    wiphy->custom_regulatory)
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1141 1142 1143
void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
{
	enum ieee80211_band band;
1144 1145

	if (ignore_reg_update(wiphy, setby))
1146
		goto out;
1147
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1148
		if (wiphy->bands[band])
1149
			handle_band(wiphy, band);
1150
	}
1151 1152
out:
	reg_process_beacons(wiphy);
1153
	if (wiphy->reg_notifier)
1154
		wiphy->reg_notifier(wiphy, last_request);
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
		&max_bandwidth, &reg_rule, regd);

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;

	chan->flags |= map_regdom_flags(reg_rule->flags);
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			handle_band_custom(wiphy, band, regd);
1210 1211
	}
}
1212 1213
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1237

1238 1239 1240 1241
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1242 1243
#define REG_INTERSECT	1

1244 1245
/* This has the logic which determines when a new request
 * should be ignored. */
1246 1247
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1248
{
1249
	struct wiphy *last_wiphy = NULL;
1250 1251 1252

	assert_cfg80211_lock();

1253 1254 1255 1256
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1257
	switch (pending_request->initiator) {
1258
	case REGDOM_SET_BY_CORE:
1259
		return -EINVAL;
1260
	case REGDOM_SET_BY_COUNTRY_IE:
1261 1262 1263

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1264
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1265 1266
			return -EINVAL;
		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1267
			if (last_wiphy != wiphy) {
1268 1269 1270 1271 1272 1273
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1274
				if (regdom_changes(pending_request->alpha2))
1275 1276 1277
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1278 1279 1280 1281
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1282
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1283 1284 1285
				return 0;
			return -EALREADY;
		}
1286
		return REG_INTERSECT;
1287
	case REGDOM_SET_BY_DRIVER:
1288 1289 1290
		if (last_request->initiator == REGDOM_SET_BY_CORE) {
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
1291
			if (regdom_changes(pending_request->alpha2))
1292
				return 0;
1293
			return -EALREADY;
1294
		}
1295 1296 1297 1298 1299 1300 1301

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
		if (last_request->initiator == REGDOM_SET_BY_DRIVER &&
1302
		    !regdom_changes(pending_request->alpha2))
1303 1304
			return -EALREADY;

1305
		return REG_INTERSECT;
1306 1307
	case REGDOM_SET_BY_USER:
		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
1308
			return REG_INTERSECT;
1309 1310 1311 1312
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1313 1314 1315
		if (last_request->initiator == REGDOM_SET_BY_USER &&
			  last_request->intersect)
			return -EOPNOTSUPP;
1316 1317 1318 1319
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1320 1321 1322
		if (last_request->initiator == REGDOM_SET_BY_CORE ||
		    last_request->initiator == REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == REGDOM_SET_BY_USER) {
1323
			if (regdom_changes(last_request->alpha2))
1324 1325 1326
				return -EAGAIN;
		}

1327
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1328
		    !regdom_changes(pending_request->alpha2))
1329 1330
			return -EALREADY;

1331 1332 1333 1334 1335 1336
		return 0;
	}

	return -EINVAL;
}

1337 1338 1339 1340
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1341
 * @pending_request: the regulatory request currently being processed
1342 1343
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1344
 * what it believes should be the current regulatory domain.
1345 1346 1347 1348 1349 1350
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
 * Caller must hold &cfg80211_mutex
 */
1351 1352
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1353
{
1354
	bool intersect = false;
1355 1356
	int r = 0;

1357 1358
	assert_cfg80211_lock();

1359
	r = ignore_request(wiphy, pending_request);
1360

1361
	if (r == REG_INTERSECT) {
1362
		if (pending_request->initiator == REGDOM_SET_BY_DRIVER) {
1363
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1364 1365
			if (r) {
				kfree(pending_request);
1366
				return r;
1367
			}
1368
		}
1369
		intersect = true;
1370
	} else if (r) {
1371 1372
		/*
		 * If the regulatory domain being requested by the
1373
		 * driver has already been set just copy it to the
1374 1375
		 * wiphy
		 */
1376 1377
		if (r == -EALREADY &&
		    pending_request->initiator == REGDOM_SET_BY_DRIVER) {
1378
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1379 1380
			if (r) {
				kfree(pending_request);
1381
				return r;
1382
			}
1383 1384 1385
			r = -EALREADY;
			goto new_request;
		}
1386
		kfree(pending_request);
1387
		return r;
1388
	}
1389

1390
new_request:
1391
	kfree(last_request);
1392

1393 1394
	last_request = pending_request;
	last_request->intersect = intersect;
1395

1396
	pending_request = NULL;
1397 1398 1399 1400 1401

	/* When r == REG_INTERSECT we do need to call CRDA */
	if (r < 0)
		return r;

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	/*
	 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
	 * AND if CRDA is NOT present nothing will happen, if someone
	 * wants to bother with 11d with OLD_REG you can add a timer.
	 * If after x amount of time nothing happens you can call:
	 *
	 * return set_regdom(country_ie_regdomain);
	 *
	 * to intersect with the static rd
	 */
1412
	return call_crda(last_request->alpha2);
1413 1414
}

1415
/* This currently only processes user and driver regulatory hints */
1416
static void reg_process_hint(struct regulatory_request *reg_request)
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

	if (reg_request->initiator == REGDOM_SET_BY_DRIVER &&
	    !wiphy) {
1430
		kfree(reg_request);
1431 1432 1433
		goto out;
	}

1434
	r = __regulatory_hint(wiphy, reg_request);
1435 1436 1437 1438 1439 1440 1441
	/* This is required so that the orig_* parameters are saved */
	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
	mutex_unlock(&cfg80211_mutex);
}

1442
/* Processes regulatory hints, this is all the REGDOM_SET_BY_* */
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1454 1455
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1456 1457 1458 1459 1460
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
	struct cfg80211_registered_device *drv;
	struct reg_beacon *pending_beacon, *tmp;

	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
		list_for_each_entry(drv, &cfg80211_drv_list, list)
			wiphy_update_new_beacon(&drv->wiphy, pending_beacon);

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1495 1496 1497
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1498
	reg_process_pending_beacon_hints();
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = REGDOM_SET_BY_CORE;

1528
	queue_regulatory_request(request);
1529

1530
	return 0;
1531 1532
}

1533 1534
/* User hints */
int regulatory_hint_user(const char *alpha2)
1535
{
1536 1537
	struct regulatory_request *request;

1538
	BUG_ON(!alpha2);
1539

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = REGDOM_SET_BY_USER,

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = REGDOM_SET_BY_DRIVER;

	queue_regulatory_request(request);

	return 0;
1578 1579 1580
}
EXPORT_SYMBOL(regulatory_hint);

1581 1582 1583
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1584 1585
	struct wiphy *request_wiphy;

1586 1587
	assert_cfg80211_lock();

1588 1589 1590
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1591
		return false;
1592 1593

	if (likely(request_wiphy != wiphy))
1594
		return !country_ie_integrity_changes(country_ie_checksum);
1595 1596
	/*
	 * We should not have let these through at this point, they
1597
	 * should have been picked up earlier by the first alpha2 check
1598 1599
	 * on the device
	 */
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1613
	struct regulatory_request *request;
1614

1615
	mutex_lock(&cfg80211_mutex);
1616

1617 1618 1619 1620 1621
	if (unlikely(!last_request)) {
		mutex_unlock(&cfg80211_mutex);
		return;
	}

1622 1623 1624 1625 1626 1627 1628
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1629 1630
	/*
	 * Pending country IE processing, this can happen after we
1631
	 * call CRDA and wait for a response if a beacon was received before
1632 1633
	 * we were able to process the last regulatory_hint_11d() call
	 */
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1645 1646
	/*
	 * We will run this for *every* beacon processed for the BSSID, so
1647
	 * we optimize an early check to exit out early if we don't have to
1648 1649
	 * do anything
	 */
1650
	if (likely(wiphy_idx_valid(last_request->wiphy_idx))) {
1651 1652
		struct cfg80211_registered_device *drv_last_ie;

1653 1654
		drv_last_ie =
			cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1655

1656 1657 1658 1659
		/*
		 * Lets keep this simple -- we trust the first AP
		 * after we intersect with CRDA
		 */
1660
		if (likely(&drv_last_ie->wiphy == wiphy)) {
1661 1662 1663 1664
			/*
			 * Ignore IEs coming in on this wiphy with
			 * the same alpha2 and environment cap
			 */
1665 1666 1667 1668 1669
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
1670 1671
			/*
			 * the wiphy moved on to another BSSID or the AP
1672 1673 1674
			 * was reconfigured. XXX: We need to deal with the
			 * case where the user suspends and goes to goes
			 * to another country, and then gets IEs from an
1675 1676
			 * AP with different settings
			 */
1677 1678
			goto out;
		} else {
1679 1680 1681 1682
			/*
			 * Ignore IEs coming in on two separate wiphys with
			 * the same alpha2 and environment cap
			 */
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
			/* We could potentially intersect though */
			goto out;
		}
	}

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1697 1698
	/*
	 * This will not happen right now but we leave it here for the
1699 1700
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1701 1702 1703 1704 1705 1706
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1707
		goto free_rd_out;
1708

1709 1710 1711 1712
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1713 1714 1715 1716
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1717 1718
	country_ie_regdomain = rd;

1719 1720 1721 1722 1723 1724 1725 1726
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
	request->initiator = REGDOM_SET_BY_COUNTRY_IE;
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

	mutex_unlock(&cfg80211_mutex);
1727

1728 1729 1730
	queue_regulatory_request(request);

	return;
1731 1732 1733

free_rd_out:
	kfree(rd);
1734
out:
1735
	mutex_unlock(&cfg80211_mutex);
1736 1737
}
EXPORT_SYMBOL(regulatory_hint_11d);
1738

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1788
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1789 1790
{
	unsigned int i;
1791 1792 1793
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1794 1795 1796 1797 1798 1799 1800 1801 1802

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1803 1804 1805 1806
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1825
static void print_regdomain(const struct ieee80211_regdomain *rd)
1826 1827
{

1828 1829 1830
	if (is_intersected_alpha2(rd->alpha2)) {

		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1831 1832 1833 1834
			struct cfg80211_registered_device *drv;
			drv = cfg80211_drv_by_wiphy_idx(
				last_request->wiphy_idx);
			if (drv) {
1835 1836 1837 1838 1839 1840 1841 1842 1843
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
					drv->country_ie_alpha2[0],
					drv->country_ie_alpha2[1]);
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1844
					"domain intersected: \n");
1845
	} else if (is_world_regdom(rd->alpha2))
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1861
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1862 1863 1864 1865 1866 1867
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
1881
		print_regdomain_info(intersected_rd);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

1895
/* Takes ownership of rd only if it doesn't fail */
1896
static int __set_regdom(const struct ieee80211_regdomain *rd)
1897
{
1898
	const struct ieee80211_regdomain *intersected_rd = NULL;
1899
	struct cfg80211_registered_device *drv = NULL;
1900
	struct wiphy *request_wiphy;
1901 1902 1903
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1904
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1905 1906 1907 1908 1909 1910 1911 1912 1913
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1914
	if (!last_request)
1915 1916
		return -EINVAL;

1917 1918
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1919
	 * rd is non static (it means CRDA was present and was used last)
1920 1921
	 * and the pending request came in from a country IE
	 */
1922
	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1923 1924 1925 1926
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1927
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1928
		    !regdom_changes(rd->alpha2))
1929 1930 1931
			return -EINVAL;
	}

1932 1933
	/*
	 * Now lets set the regulatory domain, update all driver channels
1934 1935
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1936 1937
	 * internal EEPROM data
	 */
1938

1939
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1940 1941
		return -EINVAL;

1942 1943 1944 1945 1946
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1947 1948
	}

1949 1950
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1951
	if (!last_request->intersect) {
1952 1953 1954 1955 1956 1957 1958 1959
		int r;

		if (last_request->initiator != REGDOM_SET_BY_DRIVER) {
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1960 1961 1962 1963
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1964

1965
		BUG_ON(request_wiphy->regd);
1966

1967
		r = reg_copy_regd(&request_wiphy->regd, rd);
1968 1969 1970
		if (r)
			return r;

1971 1972 1973 1974 1975 1976 1977 1978 1979
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {

1980 1981 1982
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
1983

1984 1985
		/*
		 * We can trash what CRDA provided now.
1986
		 * However if a driver requested this specific regulatory
1987 1988
		 * domain we keep it for its private use
		 */
1989
		if (last_request->initiator == REGDOM_SET_BY_DRIVER)
1990
			request_wiphy->regd = rd;
1991 1992 1993
		else
			kfree(rd);

1994 1995 1996 1997 1998 1999
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2000 2001
	}

2002 2003 2004 2005 2006 2007 2008 2009
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

	BUG_ON(!country_ie_regdomain);

	if (rd != country_ie_regdomain) {
2010 2011 2012 2013
		/*
		 * Intersect what CRDA returned and our what we
		 * had built from the Country IE received
		 */
2014 2015 2016 2017 2018 2019 2020 2021 2022

		intersected_rd = regdom_intersect(rd, country_ie_regdomain);

		reg_country_ie_process_debug(rd, country_ie_regdomain,
			intersected_rd);

		kfree(country_ie_regdomain);
		country_ie_regdomain = NULL;
	} else {
2023 2024
		/*
		 * This would happen when CRDA was not present and
2025
		 * OLD_REGULATORY was enabled. We intersect our Country
2026 2027
		 * IE rd and what was set on cfg80211 originally
		 */
2028 2029 2030 2031 2032 2033
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
	}

	if (!intersected_rd)
		return -EINVAL;

2034
	drv = wiphy_to_dev(request_wiphy);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

	drv->country_ie_alpha2[0] = rd->alpha2[0];
	drv->country_ie_alpha2[1] = rd->alpha2[1];
	drv->env = last_request->country_ie_env;

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2045
	reset_regdomains();
2046
	cfg80211_regdomain = intersected_rd;
2047 2048 2049 2050 2051

	return 0;
}


2052 2053
/*
 * Use this call to set the current regulatory domain. Conflicts with
2054
 * multiple drivers can be ironed out later. Caller must've already
2055 2056
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2057
int set_regdom(const struct ieee80211_regdomain *rd)
2058 2059 2060
{
	int r;

2061 2062
	assert_cfg80211_lock();

2063 2064
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2065 2066
	if (r) {
		kfree(rd);
2067
		return r;
2068
	}
2069 2070

	/* This would make this whole thing pointless */
2071 2072
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2073 2074

	/* update all wiphys now with the new established regulatory domain */
2075
	update_all_wiphy_regulatory(last_request->initiator);
2076

2077
	print_regdomain(cfg80211_regdomain);
2078 2079 2080 2081

	return r;
}

2082
/* Caller must hold cfg80211_mutex */
2083 2084
void reg_device_remove(struct wiphy *wiphy)
{
2085 2086
	struct wiphy *request_wiphy;

2087 2088
	assert_cfg80211_lock();

2089 2090
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2091
	kfree(wiphy->regd);
2092
	if (!last_request || !request_wiphy)
2093
		return;
2094
	if (request_wiphy != wiphy)
2095
		return;
2096
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2097 2098 2099
	last_request->country_ie_env = ENVIRON_ANY;
}

2100 2101
int regulatory_init(void)
{
2102
	int err = 0;
2103

2104 2105 2106
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2107

2108
	spin_lock_init(&reg_requests_lock);
2109
	spin_lock_init(&reg_pending_beacons_lock);
2110

2111
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2112
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2113

2114
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2115
	print_regdomain_info(cfg80211_regdomain);
2116 2117
	/*
	 * The old code still requests for a new regdomain and if
2118 2119
	 * you have CRDA you get it updated, otherwise you get
	 * stuck with the static values. We ignore "EU" code as
2120 2121
	 * that is not a valid ISO / IEC 3166 alpha2
	 */
J
Johannes Berg 已提交
2122
	if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
2123
		err = regulatory_hint_core(ieee80211_regdom);
2124
#else
2125
	cfg80211_regdomain = cfg80211_world_regdom;
2126

2127
	err = regulatory_hint_core("00");
2128
#endif
2129
	if (err) {
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2144
#endif
2145
	}
2146

2147 2148 2149 2150 2151
	return 0;
}

void regulatory_exit(void)
{
2152
	struct regulatory_request *reg_request, *tmp;
2153
	struct reg_beacon *reg_beacon, *btmp;
2154 2155 2156

	cancel_work_sync(&reg_work);

2157
	mutex_lock(&cfg80211_mutex);
2158

2159
	reset_regdomains();
2160

2161 2162 2163
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2164 2165
	kfree(last_request);

2166
	platform_device_unregister(reg_pdev);
2167

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2196
	mutex_unlock(&cfg80211_mutex);
2197
}