reg.c 57.9 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "nl80211.h"
44

45
/* Receipt of information from last regulatory request */
46
static struct regulatory_request *last_request;
47

48 49
/* To trigger userspace events */
static struct platform_device *reg_pdev;
50

51 52 53 54
/* Keep the ordering from large to small */
static u32 supported_bandwidths[] = {
	MHZ_TO_KHZ(40),
	MHZ_TO_KHZ(20),
55 56
};

57 58
/*
 * Central wireless core regulatory domains, we only need two,
59
 * the current one and a world regulatory domain in case we have no
60 61
 * information to give us an alpha2
 */
62
const struct ieee80211_regdomain *cfg80211_regdomain;
63

64 65
/*
 * We use this as a place for the rd structure built from the
66
 * last parsed country IE to rest until CRDA gets back to us with
67 68
 * what it thinks should apply for the same country
 */
69 70
static const struct ieee80211_regdomain *country_ie_regdomain;

71
/* Used to queue up regulatory hints */
72 73 74
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

75 76 77 78 79 80 81 82 83 84 85 86
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

87 88
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
89
	.n_reg_rules = 5,
90 91
	.alpha2 =  "00",
	.reg_rules = {
92 93
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
94 95 96
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
97 98
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
99 100 101 102 103 104 105
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
106
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
107 108
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
109 110 111 112

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
113
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
114 115
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
116 117 118
	}
};

119 120
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
121 122 123

#ifdef CONFIG_WIRELESS_OLD_REGULATORY
static char *ieee80211_regdom = "US";
124 125 126 127
#else
static char *ieee80211_regdom = "00";
#endif

128 129 130
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

131
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 133
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
134
 * We make emphasis we are using the exact same frequencies
135 136
 * as before
 */
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
175 176 177 178
	/*
	 * This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility
	 */
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

215
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
216 217 218 219 220
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
221 222
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
223
{
224
	return false;
225
}
226 227
#endif

228 229
static void reset_regdomains(void)
{
230 231 232 233 234 235 236 237 238 239 240 241
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
242

243
	cfg80211_world_regdom = &world_regdom;
244 245 246
	cfg80211_regdomain = NULL;
}

247 248 249 250
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
251
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
252
{
253
	BUG_ON(!last_request);
254 255 256 257 258 259 260

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

261
bool is_world_regdom(const char *alpha2)
262 263 264 265 266 267 268
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
269

270
static bool is_alpha2_set(const char *alpha2)
271 272 273 274 275 276 277
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
278

279 280 281 282 283 284 285
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
286

287
static bool is_unknown_alpha2(const char *alpha2)
288 289 290
{
	if (!alpha2)
		return false;
291 292 293 294
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
295 296 297 298
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
299

300 301 302 303
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
304 305
	/*
	 * Special case where regulatory domain is the
306
	 * result of an intersection between two regulatory domain
307 308
	 * structures
	 */
309 310 311 312 313
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

314
static bool is_an_alpha2(const char *alpha2)
315 316 317 318 319 320 321
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
322

323
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
324 325 326 327 328 329 330 331 332
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

333
static bool regdom_changes(const char *alpha2)
334
{
335 336
	assert_cfg80211_lock();

337 338 339 340 341 342 343
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

363 364 365 366
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
389
bool reg_is_valid_request(const char *alpha2)
390
{
391 392 393 394
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
395
}
396

397
/* Sanity check on a regulatory rule */
398
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
399
{
400
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
401 402
	u32 freq_diff;

403
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
404 405 406 407 408 409 410
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

411 412
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
413 414 415 416 417
		return false;

	return true;
}

418
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
419
{
420
	const struct ieee80211_reg_rule *reg_rule = NULL;
421
	unsigned int i;
422

423 424
	if (!rd->n_reg_rules)
		return false;
425

426 427 428
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

429 430 431 432 433 434 435
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
436 437
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451
/* Returns value in KHz */
static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
	u32 freq)
{
	unsigned int i;
	for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
		u32 start_freq_khz = freq - supported_bandwidths[i]/2;
		u32 end_freq_khz = freq + supported_bandwidths[i]/2;
		if (start_freq_khz >= freq_range->start_freq_khz &&
			end_freq_khz <= freq_range->end_freq_khz)
			return supported_bandwidths[i];
	}
	return 0;
}
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

478 479
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
480 481
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
482 483
 * with our userspace regulatory agent to get lower bounds.
 */
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

528 529
	/*
	 * We need to build a reg rule for each triplet, but first we must
530
	 * calculate the number of reg rules we will need. We will need one
531 532
	 * for each channel subband
	 */
533
	while (country_ie_len >= 3) {
534
		int end_channel = 0;
535 536 537 538 539 540 541 542 543 544 545
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

563
		cur_channel = triplet->chans.first_channel;
564
		cur_sub_max_channel = end_channel;
565 566 567 568 569

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

570 571
		/*
		 * Do not allow overlapping channels. Also channels
572
		 * passed in each subband must be monotonically
573 574
		 * increasing
		 */
575 576 577 578 579 580 581
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

582 583
		/*
		 * When dot11RegulatoryClassesRequired is supported
584 585
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
586 587
		 * don't support them
		 */
588 589 590 591 592 593 594 595 596 597
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

598 599 600 601
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
622
		int end_channel = 0;
623 624 625 626 627 628
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

629 630 631 632
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
633 634 635 636 637 638 639 640 641 642 643 644 645
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

646 647 648 649 650 651 652 653
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

654 655
		/*
		 * The +10 is since the regulatory domain expects
656 657
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
658 659
		 * the channels passed
		 */
660 661 662 663 664
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665
				end_channel) + 10);
666

667 668 669 670 671
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


687 688 689 690
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

768 769
	/*
	 * First we get a count of the rules we'll need, then we actually
770 771 772
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
773 774
	 * All rules that do check out OK are valid.
	 */
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
802 803
			/*
			 * This time around instead of using the stack lets
804
			 * write to the target rule directly saving ourselves
805 806
			 * a memcpy()
			 */
807 808 809
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
810 811 812 813
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

832 833 834 835
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
836 837 838 839 840 841 842 843 844 845 846 847
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

848 849 850 851 852
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
			      u32 *bandwidth,
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
853 854
{
	int i;
855
	bool band_rule_found = false;
856
	const struct ieee80211_regdomain *regd;
857
	u32 max_bandwidth = 0;
858

859
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
860

861 862 863 864
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
865 866
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
867 868 869 870
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
871 872
		return -EINVAL;

873
	for (i = 0; i < regd->n_reg_rules; i++) {
874 875 876 877
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

878
		rr = &regd->reg_rules[i];
879 880
		fr = &rr->freq_range;
		pr = &rr->power_rule;
881

882 883
		/*
		 * We only need to know if one frequency rule was
884
		 * was in center_freq's band, that's enough, so lets
885 886
		 * not overwrite it once found
		 */
887 888 889
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

890
		max_bandwidth = freq_max_bandwidth(fr, center_freq);
891

892 893 894
		if (max_bandwidth && *bandwidth <= max_bandwidth) {
			*reg_rule = rr;
			*bandwidth = max_bandwidth;
895 896 897 898
			break;
		}
	}

899 900 901
	if (!band_rule_found)
		return -ERANGE;

902 903
	return !max_bandwidth;
}
904
EXPORT_SYMBOL(freq_reg_info);
905

906
int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
907 908 909 910 911
			 const struct ieee80211_reg_rule **reg_rule)
{
	return freq_reg_info_regd(wiphy, center_freq,
		bandwidth, reg_rule, NULL);
}
912

913 914
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
915 916
{
	int r;
917
	u32 flags;
918 919 920
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
921 922
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
923
	struct wiphy *request_wiphy = NULL;
924

925 926
	assert_cfg80211_lock();

927 928
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

929 930 931 932 933
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
934

935
	r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
936 937 938
		&max_bandwidth, &reg_rule);

	if (r) {
939 940
		/*
		 * This means no regulatory rule was found in the country IE
941 942 943 944 945 946 947 948 949 950
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
951 952
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
953 954 955 956 957 958 959
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
960 961 962 963
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
964
#ifdef CONFIG_CFG80211_REG_DEBUG
965 966
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
967 968 969 970 971 972 973 974
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
975 976 977
		return;
	}

978 979
	power_rule = &reg_rule->power_rule;

980
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
981 982
	    request_wiphy && request_wiphy == wiphy &&
	    request_wiphy->strict_regulatory) {
983 984
		/*
		 * This gaurantees the driver's requested regulatory domain
985
		 * will always be used as a base for further regulatory
986 987
		 * settings
		 */
988 989 990 991 992 993 994 995 996 997
		chan->flags = chan->orig_flags =
			map_regdom_flags(reg_rule->flags);
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

998
	chan->flags = flags | map_regdom_flags(reg_rule->flags);
999
	chan->max_antenna_gain = min(chan->orig_mag,
1000 1001
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1002
	if (chan->orig_mpwr)
1003 1004
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1005
	else
1006
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1007 1008
}

1009
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1010
{
1011 1012 1013 1014 1015
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1016 1017

	for (i = 0; i < sband->n_channels; i++)
1018
		handle_channel(wiphy, band, i);
1019 1020
}

1021 1022
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1023 1024 1025
{
	if (!last_request)
		return true;
1026
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1027
		  wiphy->custom_regulatory)
1028
		return true;
1029 1030 1031 1032
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
1033 1034
	if (wiphy->strict_regulatory && !wiphy->regd &&
	    !is_world_regdom(last_request->alpha2))
1035 1036 1037 1038
		return true;
	return false;
}

1039
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1040
{
1041
	struct cfg80211_registered_device *drv;
1042

1043
	list_for_each_entry(drv, &cfg80211_drv_list, list)
1044
		wiphy_update_regulatory(&drv->wiphy, initiator);
1045 1046
}

1047 1048 1049 1050 1051 1052
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1053 1054
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1055 1056 1057 1058 1059 1060 1061 1062 1063

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1064 1065 1066 1067 1068 1069 1070 1071
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1072 1073
	if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
	    !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1074
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1075
		channel_changed = true;
1076 1077
	}

1078 1079
	if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
	    !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1080
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1081
		channel_changed = true;
1082 1083
	}

1084 1085
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1137
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	    wiphy->custom_regulatory)
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1151 1152
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1153 1154
{
	enum ieee80211_band band;
1155

1156
	if (ignore_reg_update(wiphy, initiator))
1157
		goto out;
1158
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1159
		if (wiphy->bands[band])
1160
			handle_band(wiphy, band);
1161
	}
1162 1163
out:
	reg_process_beacons(wiphy);
1164
	if (wiphy->reg_notifier)
1165
		wiphy->reg_notifier(wiphy, last_request);
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
		&max_bandwidth, &reg_rule, regd);

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;

	chan->flags |= map_regdom_flags(reg_rule->flags);
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			handle_band_custom(wiphy, band, regd);
1221 1222
	}
}
1223 1224
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1248

1249 1250 1251 1252
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1253 1254
#define REG_INTERSECT	1

1255 1256
/* This has the logic which determines when a new request
 * should be ignored. */
1257 1258
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1259
{
1260
	struct wiphy *last_wiphy = NULL;
1261 1262 1263

	assert_cfg80211_lock();

1264 1265 1266 1267
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1268
	switch (pending_request->initiator) {
1269
	case NL80211_REGDOM_SET_BY_CORE:
1270
		return -EINVAL;
1271
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1272 1273 1274

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1275
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1276
			return -EINVAL;
1277 1278
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1279
			if (last_wiphy != wiphy) {
1280 1281 1282 1283 1284 1285
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1286
				if (regdom_changes(pending_request->alpha2))
1287 1288 1289
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1290 1291 1292 1293
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1294
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1295 1296 1297
				return 0;
			return -EALREADY;
		}
1298
		return REG_INTERSECT;
1299 1300
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1301 1302
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
1303
			if (regdom_changes(pending_request->alpha2))
1304
				return 0;
1305
			return -EALREADY;
1306
		}
1307 1308 1309 1310 1311 1312

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1313
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1314
		    !regdom_changes(pending_request->alpha2))
1315 1316
			return -EALREADY;

1317
		return REG_INTERSECT;
1318 1319
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1320
			return REG_INTERSECT;
1321 1322 1323 1324
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1325
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1326 1327
			  last_request->intersect)
			return -EOPNOTSUPP;
1328 1329 1330 1331
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1332 1333 1334
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1335
			if (regdom_changes(last_request->alpha2))
1336 1337 1338
				return -EAGAIN;
		}

1339
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1340
		    !regdom_changes(pending_request->alpha2))
1341 1342
			return -EALREADY;

1343 1344 1345 1346 1347 1348
		return 0;
	}

	return -EINVAL;
}

1349 1350 1351 1352
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1353
 * @pending_request: the regulatory request currently being processed
1354 1355
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1356
 * what it believes should be the current regulatory domain.
1357 1358 1359 1360 1361 1362
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
 * Caller must hold &cfg80211_mutex
 */
1363 1364
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1365
{
1366
	bool intersect = false;
1367 1368
	int r = 0;

1369 1370
	assert_cfg80211_lock();

1371
	r = ignore_request(wiphy, pending_request);
1372

1373
	if (r == REG_INTERSECT) {
1374 1375
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1376
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1377 1378
			if (r) {
				kfree(pending_request);
1379
				return r;
1380
			}
1381
		}
1382
		intersect = true;
1383
	} else if (r) {
1384 1385
		/*
		 * If the regulatory domain being requested by the
1386
		 * driver has already been set just copy it to the
1387 1388
		 * wiphy
		 */
1389
		if (r == -EALREADY &&
1390 1391
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1392
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1393 1394
			if (r) {
				kfree(pending_request);
1395
				return r;
1396
			}
1397 1398 1399
			r = -EALREADY;
			goto new_request;
		}
1400
		kfree(pending_request);
1401
		return r;
1402
	}
1403

1404
new_request:
1405
	kfree(last_request);
1406

1407 1408
	last_request = pending_request;
	last_request->intersect = intersect;
1409

1410
	pending_request = NULL;
1411 1412

	/* When r == REG_INTERSECT we do need to call CRDA */
1413 1414 1415 1416 1417 1418 1419 1420
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1421
		return r;
1422
	}
1423

1424
	return call_crda(last_request->alpha2);
1425 1426
}

1427
/* This currently only processes user and driver regulatory hints */
1428
static void reg_process_hint(struct regulatory_request *reg_request)
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1440
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1441
	    !wiphy) {
1442
		kfree(reg_request);
1443 1444 1445
		goto out;
	}

1446
	r = __regulatory_hint(wiphy, reg_request);
1447 1448 1449 1450 1451 1452 1453
	/* This is required so that the orig_* parameters are saved */
	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
	mutex_unlock(&cfg80211_mutex);
}

1454
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1466 1467
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1468 1469 1470 1471 1472
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
	struct cfg80211_registered_device *drv;
	struct reg_beacon *pending_beacon, *tmp;

	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
		list_for_each_entry(drv, &cfg80211_drv_list, list)
			wiphy_update_new_beacon(&drv->wiphy, pending_beacon);

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1507 1508 1509
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1510
	reg_process_pending_beacon_hints();
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1538
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1539

1540
	queue_regulatory_request(request);
1541

1542
	return 0;
1543 1544
}

1545 1546
/* User hints */
int regulatory_hint_user(const char *alpha2)
1547
{
1548 1549
	struct regulatory_request *request;

1550
	BUG_ON(!alpha2);
1551

1552 1553 1554 1555 1556 1557 1558
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1559
	request->initiator = NL80211_REGDOM_SET_BY_USER,
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1585
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1586 1587 1588 1589

	queue_regulatory_request(request);

	return 0;
1590 1591 1592
}
EXPORT_SYMBOL(regulatory_hint);

1593 1594 1595
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1596 1597
	struct wiphy *request_wiphy;

1598 1599
	assert_cfg80211_lock();

1600 1601 1602 1603
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1604 1605 1606
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1607
		return false;
1608 1609

	if (likely(request_wiphy != wiphy))
1610
		return !country_ie_integrity_changes(country_ie_checksum);
1611 1612
	/*
	 * We should not have let these through at this point, they
1613
	 * should have been picked up earlier by the first alpha2 check
1614 1615
	 * on the device
	 */
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1629
	struct regulatory_request *request;
1630

1631
	mutex_lock(&cfg80211_mutex);
1632

1633 1634 1635 1636 1637
	if (unlikely(!last_request)) {
		mutex_unlock(&cfg80211_mutex);
		return;
	}

1638 1639 1640 1641 1642 1643 1644
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1645 1646
	/*
	 * Pending country IE processing, this can happen after we
1647
	 * call CRDA and wait for a response if a beacon was received before
1648 1649
	 * we were able to process the last regulatory_hint_11d() call
	 */
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1661 1662
	/*
	 * We will run this for *every* beacon processed for the BSSID, so
1663
	 * we optimize an early check to exit out early if we don't have to
1664 1665
	 * do anything
	 */
1666 1667 1668
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    wiphy_idx_valid(last_request->wiphy_idx))) {
1669 1670
		struct cfg80211_registered_device *drv_last_ie;

1671 1672
		drv_last_ie =
			cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1673

1674 1675 1676 1677
		/*
		 * Lets keep this simple -- we trust the first AP
		 * after we intersect with CRDA
		 */
1678
		if (likely(&drv_last_ie->wiphy == wiphy)) {
1679 1680 1681 1682
			/*
			 * Ignore IEs coming in on this wiphy with
			 * the same alpha2 and environment cap
			 */
1683 1684 1685 1686 1687
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
1688 1689
			/*
			 * the wiphy moved on to another BSSID or the AP
1690 1691 1692
			 * was reconfigured. XXX: We need to deal with the
			 * case where the user suspends and goes to goes
			 * to another country, and then gets IEs from an
1693 1694
			 * AP with different settings
			 */
1695 1696
			goto out;
		} else {
1697 1698 1699 1700
			/*
			 * Ignore IEs coming in on two separate wiphys with
			 * the same alpha2 and environment cap
			 */
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
			/* We could potentially intersect though */
			goto out;
		}
	}

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1715 1716
	/*
	 * This will not happen right now but we leave it here for the
1717 1718
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1719 1720 1721 1722 1723 1724
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1725
		goto free_rd_out;
1726

1727 1728 1729 1730
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1731 1732 1733 1734
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1735 1736
	country_ie_regdomain = rd;

1737 1738 1739
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
1740
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1741 1742 1743 1744
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

	mutex_unlock(&cfg80211_mutex);
1745

1746 1747 1748
	queue_regulatory_request(request);

	return;
1749 1750 1751

free_rd_out:
	kfree(rd);
1752
out:
1753
	mutex_unlock(&cfg80211_mutex);
1754 1755
}
EXPORT_SYMBOL(regulatory_hint_11d);
1756

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1806
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1807 1808
{
	unsigned int i;
1809 1810 1811
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1812 1813 1814 1815 1816 1817 1818 1819 1820

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1821 1822 1823 1824
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1843
static void print_regdomain(const struct ieee80211_regdomain *rd)
1844 1845
{

1846 1847
	if (is_intersected_alpha2(rd->alpha2)) {

1848 1849
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1850 1851 1852 1853
			struct cfg80211_registered_device *drv;
			drv = cfg80211_drv_by_wiphy_idx(
				last_request->wiphy_idx);
			if (drv) {
1854 1855 1856 1857 1858 1859 1860 1861 1862
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
					drv->country_ie_alpha2[0],
					drv->country_ie_alpha2[1]);
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1863
					"domain intersected: \n");
1864
	} else if (is_world_regdom(rd->alpha2))
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1880
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1881 1882 1883 1884 1885 1886
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
1900
		print_regdomain_info(intersected_rd);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

1914
/* Takes ownership of rd only if it doesn't fail */
1915
static int __set_regdom(const struct ieee80211_regdomain *rd)
1916
{
1917
	const struct ieee80211_regdomain *intersected_rd = NULL;
1918
	struct cfg80211_registered_device *drv = NULL;
1919
	struct wiphy *request_wiphy;
1920 1921 1922
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1923
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1924 1925 1926 1927 1928 1929 1930 1931 1932
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1933
	if (!last_request)
1934 1935
		return -EINVAL;

1936 1937
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1938
	 * rd is non static (it means CRDA was present and was used last)
1939 1940
	 * and the pending request came in from a country IE
	 */
1941
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1942 1943 1944 1945
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1946
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1947
		    !regdom_changes(rd->alpha2))
1948 1949 1950
			return -EINVAL;
	}

1951 1952
	/*
	 * Now lets set the regulatory domain, update all driver channels
1953 1954
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1955 1956
	 * internal EEPROM data
	 */
1957

1958
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1959 1960
		return -EINVAL;

1961 1962 1963 1964 1965
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1966 1967
	}

1968 1969
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1970
	if (!last_request->intersect) {
1971 1972
		int r;

1973
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1974 1975 1976 1977 1978
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1979 1980 1981 1982
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1983

1984
		BUG_ON(request_wiphy->regd);
1985

1986
		r = reg_copy_regd(&request_wiphy->regd, rd);
1987 1988 1989
		if (r)
			return r;

1990 1991 1992 1993 1994 1995 1996
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

1997
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1998

1999 2000 2001
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2002

2003 2004
		/*
		 * We can trash what CRDA provided now.
2005
		 * However if a driver requested this specific regulatory
2006 2007
		 * domain we keep it for its private use
		 */
2008
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2009
			request_wiphy->regd = rd;
2010 2011 2012
		else
			kfree(rd);

2013 2014 2015 2016 2017 2018
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2019 2020
	}

2021 2022 2023 2024 2025 2026
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

	BUG_ON(!country_ie_regdomain);
2027
	BUG_ON(rd == country_ie_regdomain);
2028

2029 2030 2031 2032
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2033

2034
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2035

2036 2037 2038
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2039

2040 2041
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2042 2043 2044 2045

	if (!intersected_rd)
		return -EINVAL;

2046
	drv = wiphy_to_dev(request_wiphy);
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

	drv->country_ie_alpha2[0] = rd->alpha2[0];
	drv->country_ie_alpha2[1] = rd->alpha2[1];
	drv->env = last_request->country_ie_env;

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2057
	reset_regdomains();
2058
	cfg80211_regdomain = intersected_rd;
2059 2060 2061 2062 2063

	return 0;
}


2064 2065
/*
 * Use this call to set the current regulatory domain. Conflicts with
2066
 * multiple drivers can be ironed out later. Caller must've already
2067 2068
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2069
int set_regdom(const struct ieee80211_regdomain *rd)
2070 2071 2072
{
	int r;

2073 2074
	assert_cfg80211_lock();

2075 2076
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2077 2078
	if (r) {
		kfree(rd);
2079
		return r;
2080
	}
2081 2082

	/* This would make this whole thing pointless */
2083 2084
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2085 2086

	/* update all wiphys now with the new established regulatory domain */
2087
	update_all_wiphy_regulatory(last_request->initiator);
2088

2089
	print_regdomain(cfg80211_regdomain);
2090

2091 2092
	nl80211_send_reg_change_event(last_request);

2093 2094 2095
	return r;
}

2096
/* Caller must hold cfg80211_mutex */
2097 2098
void reg_device_remove(struct wiphy *wiphy)
{
2099
	struct wiphy *request_wiphy = NULL;
2100

2101 2102
	assert_cfg80211_lock();

2103 2104
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2105

2106
	kfree(wiphy->regd);
2107
	if (!last_request || !request_wiphy)
2108
		return;
2109
	if (request_wiphy != wiphy)
2110
		return;
2111
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2112 2113 2114
	last_request->country_ie_env = ENVIRON_ANY;
}

2115 2116
int regulatory_init(void)
{
2117
	int err = 0;
2118

2119 2120 2121
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2122

2123
	spin_lock_init(&reg_requests_lock);
2124
	spin_lock_init(&reg_pending_beacons_lock);
2125

2126
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2127
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2128

2129
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2130
	print_regdomain_info(cfg80211_regdomain);
2131 2132
	/*
	 * The old code still requests for a new regdomain and if
2133
	 * you have CRDA you get it updated, otherwise you get
2134 2135 2136 2137 2138 2139
	 * stuck with the static values. Since "EU" is not a valid
	 * ISO / IEC 3166 alpha2 code we can't expect userpace to
	 * give us a regulatory domain for it. We need last_request
	 * iniitalized though so lets just send a request which we
	 * know will be ignored... this crap will be removed once
	 * OLD_REG dies.
2140
	 */
2141
	err = regulatory_hint_core(ieee80211_regdom);
2142
#else
2143
	cfg80211_regdomain = cfg80211_world_regdom;
2144

2145
	err = regulatory_hint_core(ieee80211_regdom);
2146
#endif
2147
	if (err) {
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2162
#endif
2163
	}
2164

2165 2166 2167 2168 2169
	return 0;
}

void regulatory_exit(void)
{
2170
	struct regulatory_request *reg_request, *tmp;
2171
	struct reg_beacon *reg_beacon, *btmp;
2172 2173 2174

	cancel_work_sync(&reg_work);

2175
	mutex_lock(&cfg80211_mutex);
2176

2177
	reset_regdomains();
2178

2179 2180 2181
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2182 2183
	kfree(last_request);

2184
	platform_device_unregister(reg_pdev);
2185

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2214
	mutex_unlock(&cfg80211_mutex);
2215
}