memcontrol.c 118.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include "internal.h"
B
Balbir Singh 已提交
51

52 53
#include <asm/uaccess.h>

54 55
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
56
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
57

58
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
59
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 61 62 63 64 65
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

66 67 68 69 70 71 72 73 74
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75

76 77 78 79 80 81 82 83
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
84
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
85
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
86 87
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
90 91 92 93 94 95 96 97

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

98 99 100 101
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
102 103 104
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
105 106
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
107 108

	struct zone_reclaim_stat reclaim_stat;
109 110 111 112
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
113 114
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
115 116 117 118 119 120 121 122 123 124 125 126
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

147 148 149 150 151
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
152
/* For threshold */
153 154
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
155
	int current_threshold;
156 157 158 159 160
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
161 162 163 164 165 166 167 168 169 170 171 172

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
173 174 175 176 177
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
178 179

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
180
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
181

B
Balbir Singh 已提交
182 183 184 185 186 187 188
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
189 190 191
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
192 193 194 195 196 197 198
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
199 200 201 202
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
203 204 205 206
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
207
	struct mem_cgroup_lru_info info;
208

K
KOSAKI Motohiro 已提交
209 210 211 212 213
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

214
	int	prev_priority;	/* for recording reclaim priority */
215 216

	/*
217
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
218
	 * reclaimed from.
219
	 */
K
KAMEZAWA Hiroyuki 已提交
220
	int last_scanned_child;
221 222 223 224
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
225
	atomic_t	oom_lock;
226
	atomic_t	refcnt;
227

K
KOSAKI Motohiro 已提交
228
	unsigned int	swappiness;
229 230
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
231

232 233 234
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

235 236 237 238
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
239
	struct mem_cgroup_thresholds thresholds;
240

241
	/* thresholds for mem+swap usage. RCU-protected */
242
	struct mem_cgroup_thresholds memsw_thresholds;
243

K
KAMEZAWA Hiroyuki 已提交
244 245 246
	/* For oom notifier event fd */
	struct list_head oom_notify;

247 248 249 250 251
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
252
	/*
253
	 * percpu counter.
254
	 */
255
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
256 257
};

258 259 260 261 262 263
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
264
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
265
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
266 267 268
	NR_MOVE_TYPE,
};

269 270 271 272 273
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
274
	unsigned long moved_charge;
275
	unsigned long moved_swap;
276 277 278 279 280
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
281

D
Daisuke Nishimura 已提交
282 283 284 285 286 287
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

288 289 290 291 292 293
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

294 295 296 297 298 299 300
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

301 302 303
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
304
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
305
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
306
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
307
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
308 309 310
	NR_CHARGE_TYPE,
};

311 312 313 314
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
315 316
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
317

318 319 320
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
321
#define _OOM_TYPE		(2)
322 323 324
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
325 326
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
327

328 329 330 331 332 333 334
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
335 336
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
337

338 339
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
340
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
341
static void drain_all_stock_async(void);
342

343 344 345 346 347 348
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

349 350 351 352 353
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
383
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
384
				struct mem_cgroup_per_zone *mz,
385 386
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
387 388 389 390 391 392 393 394
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

395 396 397
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
414 415 416 417 418 419 420 421 422 423 424 425 426
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

427 428 429 430 431 432
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
433
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
434 435 436 437 438 439
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
440
	unsigned long long excess;
441 442
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
443 444
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
445 446 447
	mctz = soft_limit_tree_from_page(page);

	/*
448 449
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
450
	 */
451 452
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
453
		excess = res_counter_soft_limit_excess(&mem->res);
454 455 456 457
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
458
		if (excess || mz->on_tree) {
459 460 461 462 463
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
464 465
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
466
			 */
467
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
468 469
			spin_unlock(&mctz->lock);
		}
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

488 489 490 491 492 493 494 495 496
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
497
	struct mem_cgroup_per_zone *mz;
498 499

retry:
500
	mz = NULL;
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

550 551 552 553
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
554
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
555 556
}

557 558 559
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
560
{
561
	int val = (charge) ? 1 : -1;
562

563 564
	preempt_disable();

565
	if (PageCgroupCache(pc))
566
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
567
	else
568
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
569 570

	if (charge)
571
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
572
	else
573
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
574
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
575

576
	preempt_enable();
577 578
}

K
KAMEZAWA Hiroyuki 已提交
579
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
580
					enum lru_list idx)
581 582 583 584 585 586 587 588 589 590 591
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
592 593
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

617
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
618 619 620 621 622 623
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

624
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
625
{
626 627 628 629 630 631 632 633
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

634 635 636 637
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

638 639 640
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
641 642 643

	if (!mm)
		return NULL;
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

694 695 696 697 698
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
712

K
KAMEZAWA Hiroyuki 已提交
713 714 715 716
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
717

718
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
719 720 721
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
722
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
723
		return;
724
	VM_BUG_ON(!pc->mem_cgroup);
725 726 727 728
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
729
	mz = page_cgroup_zoneinfo(pc);
730
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
731 732 733
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
734 735
	list_del_init(&pc->lru);
	return;
736 737
}

K
KAMEZAWA Hiroyuki 已提交
738
void mem_cgroup_del_lru(struct page *page)
739
{
K
KAMEZAWA Hiroyuki 已提交
740 741
	mem_cgroup_del_lru_list(page, page_lru(page));
}
742

K
KAMEZAWA Hiroyuki 已提交
743 744 745 746
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
747

748
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
749
		return;
750

K
KAMEZAWA Hiroyuki 已提交
751
	pc = lookup_page_cgroup(page);
752 753 754 755
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
756
	smp_rmb();
757 758
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
759 760 761
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
762 763
}

K
KAMEZAWA Hiroyuki 已提交
764
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
765
{
K
KAMEZAWA Hiroyuki 已提交
766 767
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
768

769
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
770 771
		return;
	pc = lookup_page_cgroup(page);
772
	VM_BUG_ON(PageCgroupAcctLRU(pc));
773 774 775 776
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
777 778
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
779
		return;
780

K
KAMEZAWA Hiroyuki 已提交
781
	mz = page_cgroup_zoneinfo(pc);
782
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
783 784 785
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
786 787
	list_add(&pc->lru, &mz->lists[lru]);
}
788

K
KAMEZAWA Hiroyuki 已提交
789
/*
790 791 792 793 794
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
795
 */
796
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
797
{
798 799 800 801 802 803 804 805 806 807 808 809
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
810 811
}

812 813 814 815 816 817 818 819
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
820
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
821 822 823 824 825
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
826 827 828
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
829
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
830 831 832
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
833 834
}

835 836 837
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
838
	struct mem_cgroup *curr = NULL;
839 840

	task_lock(task);
841 842 843
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
844
	task_unlock(task);
845 846
	if (!curr)
		return 0;
847 848 849 850 851 852 853
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
854 855 856 857
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
858 859 860
	return ret;
}

861 862 863 864 865
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
866 867 868 869 870 871 872
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
873 874 875 876
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
877
	spin_lock(&mem->reclaim_param_lock);
878 879
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
880
	spin_unlock(&mem->reclaim_param_lock);
881 882 883 884
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
885
	spin_lock(&mem->reclaim_param_lock);
886
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
887
	spin_unlock(&mem->reclaim_param_lock);
888 889
}

890
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
891 892 893
{
	unsigned long active;
	unsigned long inactive;
894 895
	unsigned long gb;
	unsigned long inactive_ratio;
896

K
KAMEZAWA Hiroyuki 已提交
897 898
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
899

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
927 928 929 930 931
		return 1;

	return 0;
}

932 933 934 935 936 937 938 939 940 941 942
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

943 944 945 946 947 948 949 950 951 952 953
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
974 975 976 977 978 979 980 981
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
982 983 984 985 986 987 988
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

989 990 991 992 993
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
994
					int active, int file)
995 996 997 998 999 1000
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1001
	struct page_cgroup *pc, *tmp;
1002 1003 1004
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1005
	int lru = LRU_FILE * file + active;
1006
	int ret;
1007

1008
	BUG_ON(!mem_cont);
1009
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1010
	src = &mz->lists[lru];
1011

1012 1013
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1014
		if (scan >= nr_to_scan)
1015
			break;
K
KAMEZAWA Hiroyuki 已提交
1016 1017

		page = pc->page;
1018 1019
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1020
		if (unlikely(!PageLRU(page)))
1021 1022
			continue;

H
Hugh Dickins 已提交
1023
		scan++;
1024 1025 1026
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1027
			list_move(&page->lru, dst);
1028
			mem_cgroup_del_lru(page);
1029
			nr_taken++;
1030 1031 1032 1033 1034 1035 1036
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1037 1038 1039 1040 1041 1042 1043
		}
	}

	*scanned = scan;
	return nr_taken;
}

1044 1045 1046
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1075 1076 1077 1078 1079 1080
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1081 1082

/**
1083
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1102
	if (!memcg || !p)
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1160
/*
K
KAMEZAWA Hiroyuki 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1203 1204
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1205 1206 1207
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1208 1209
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1210 1211
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1212
						struct zone *zone,
1213 1214
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1215
{
K
KAMEZAWA Hiroyuki 已提交
1216 1217 1218
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1219 1220
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1221 1222
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1223

1224 1225 1226 1227
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1228
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1229
		victim = mem_cgroup_select_victim(root_mem);
1230
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1231
			loop++;
1232 1233
			if (loop >= 1)
				drain_all_stock_async();
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1257
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1258 1259
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1260 1261
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1262
		/* we use swappiness of local cgroup */
1263 1264 1265 1266 1267 1268 1269
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1270
		css_put(&victim->css);
1271 1272 1273 1274 1275 1276 1277
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1278
		total += ret;
1279 1280 1281 1282
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1283
			return 1 + total;
1284
	}
K
KAMEZAWA Hiroyuki 已提交
1285
	return total;
1286 1287
}

K
KAMEZAWA Hiroyuki 已提交
1288
static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1289
{
K
KAMEZAWA Hiroyuki 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	int *val = (int *)data;
	int x;
	/*
	 * Logically, we can stop scanning immediately when we find
	 * a memcg is already locked. But condidering unlock ops and
	 * creation/removal of memcg, scan-all is simple operation.
	 */
	x = atomic_inc_return(&mem->oom_lock);
	*val = max(x, *val);
	return 0;
}
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
	int lock_count = 0;
1308

K
KAMEZAWA Hiroyuki 已提交
1309 1310 1311 1312 1313
	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);

	if (lock_count == 1)
		return true;
	return false;
1314
}
1315

K
KAMEZAWA Hiroyuki 已提交
1316
static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1317
{
K
KAMEZAWA Hiroyuki 已提交
1318 1319 1320 1321 1322 1323
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
	atomic_add_unless(&mem->oom_lock, -1, 0);
1324 1325 1326
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1327 1328 1329 1330 1331 1332 1333 1334
static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
}

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1371 1372 1373 1374 1375 1376
static void memcg_oom_recover(struct mem_cgroup *mem)
{
	if (mem->oom_kill_disable && atomic_read(&mem->oom_lock))
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1377 1378 1379 1380
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1381
{
K
KAMEZAWA Hiroyuki 已提交
1382
	struct oom_wait_info owait;
1383
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1384

K
KAMEZAWA Hiroyuki 已提交
1385 1386 1387 1388 1389
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1390
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1391 1392 1393 1394 1395 1396 1397 1398
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1399 1400 1401 1402
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1403
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1404 1405
	mutex_unlock(&memcg_oom_mutex);

1406 1407
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1408
		mem_cgroup_out_of_memory(mem, mask);
1409
	} else {
K
KAMEZAWA Hiroyuki 已提交
1410
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1411
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1412 1413 1414
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1415
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1416 1417 1418 1419 1420 1421 1422
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1423 1424
}

1425 1426 1427 1428
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1429
void mem_cgroup_update_file_mapped(struct page *page, int val)
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
1440
	if (!mem || !PageCgroupUsed(pc))
1441 1442 1443
		goto done;

	/*
1444
	 * Preemption is already disabled. We can use __this_cpu_xxx
1445
	 */
1446 1447 1448 1449 1450 1451 1452
	if (val > 0) {
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		SetPageCgroupFileMapped(pc);
	} else {
		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		ClearPageCgroupFileMapped(pc);
	}
1453 1454 1455 1456

done:
	unlock_page_cgroup(pc);
}
1457

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1519
 * This will be consumed by consume_stock() function, later.
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1585 1586 1587
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1588
 */
1589
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1590
			gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1591
{
1592
	struct mem_cgroup *mem, *mem_over_limit;
1593
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1594
	struct res_counter *fail_res;
1595
	int csize = CHARGE_SIZE;
1596

K
KAMEZAWA Hiroyuki 已提交
1597 1598 1599 1600 1601 1602 1603 1604
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1605

1606
	/*
1607 1608
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1609 1610 1611
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1612 1613 1614
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1615
		*memcg = mem;
1616
	} else {
1617
		css_get(&mem->css);
1618
	}
1619 1620 1621
	if (unlikely(!mem))
		return 0;

1622
	VM_BUG_ON(css_is_removed(&mem->css));
1623 1624
	if (mem_cgroup_is_root(mem))
		goto done;
1625

1626
	while (1) {
1627
		int ret = 0;
1628
		unsigned long flags = 0;
1629

1630
		if (consume_stock(mem))
1631
			goto done;
1632 1633

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1634 1635 1636
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1637
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1638 1639 1640
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1641
			res_counter_uncharge(&mem->res, csize);
1642
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1643 1644 1645 1646 1647 1648 1649
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1650 1651 1652 1653 1654
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1655
		if (!(gfp_mask & __GFP_WAIT))
1656
			goto nomem;
1657

1658 1659
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1660 1661
		if (ret)
			continue;
1662 1663

		/*
1664 1665 1666 1667 1668
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1669
		 *
1670
		 */
1671 1672
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1673

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
		/* try to avoid oom while someone is moving charge */
		if (mc.moving_task && current != mc.moving_task) {
			struct mem_cgroup *from, *to;
			bool do_continue = false;
			/*
			 * There is a small race that "from" or "to" can be
			 * freed by rmdir, so we use css_tryget().
			 */
			from = mc.from;
			to = mc.to;
			if (from && css_tryget(&from->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&from->css,
							&mem_over_limit->css);
				else
					do_continue = (from == mem_over_limit);
				css_put(&from->css);
			}
			if (!do_continue && to && css_tryget(&to->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&to->css,
							&mem_over_limit->css);
				else
					do_continue = (to == mem_over_limit);
				css_put(&to->css);
			}
			if (do_continue) {
				DEFINE_WAIT(wait);
				prepare_to_wait(&mc.waitq, &wait,
							TASK_INTERRUPTIBLE);
				/* moving charge context might have finished. */
				if (mc.moving_task)
					schedule();
				finish_wait(&mc.waitq, &wait);
				continue;
			}
		}

1714
		if (!nr_retries--) {
K
KAMEZAWA Hiroyuki 已提交
1715 1716 1717 1718 1719
			if (!oom)
				goto nomem;
			if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
				nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
				continue;
1720
			}
K
KAMEZAWA Hiroyuki 已提交
1721 1722 1723
			/* When we reach here, current task is dying .*/
			css_put(&mem->css);
			goto bypass;
1724
		}
1725
	}
1726 1727
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
1728
done:
1729 1730 1731 1732
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
1733 1734 1735
bypass:
	*memcg = NULL;
	return 0;
1736
}
1737

1738 1739 1740 1741 1742
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1743 1744
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1745 1746
{
	if (!mem_cgroup_is_root(mem)) {
1747
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1748
		if (do_swap_account)
1749 1750 1751 1752
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1753
	}
1754 1755 1756 1757 1758 1759
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1760 1761
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1781
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1782
{
1783
	struct mem_cgroup *mem = NULL;
1784
	struct page_cgroup *pc;
1785
	unsigned short id;
1786 1787
	swp_entry_t ent;

1788 1789 1790
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1791
	lock_page_cgroup(pc);
1792
	if (PageCgroupUsed(pc)) {
1793
		mem = pc->mem_cgroup;
1794 1795
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1796
	} else if (PageSwapCache(page)) {
1797
		ent.val = page_private(page);
1798 1799 1800 1801 1802 1803
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1804
	}
1805
	unlock_page_cgroup(pc);
1806 1807 1808
	return mem;
}

1809
/*
1810
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1821 1822 1823 1824

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1825
		mem_cgroup_cancel_charge(mem);
1826
		return;
1827
	}
1828

1829
	pc->mem_cgroup = mem;
1830 1831 1832 1833 1834 1835 1836
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1837
	smp_wmb();
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1851

K
KAMEZAWA Hiroyuki 已提交
1852
	mem_cgroup_charge_statistics(mem, pc, true);
1853 1854

	unlock_page_cgroup(pc);
1855 1856 1857 1858 1859
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
1860
	memcg_check_events(mem, pc->page);
1861
}
1862

1863
/**
1864
 * __mem_cgroup_move_account - move account of the page
1865 1866 1867
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1868
 * @uncharge: whether we should call uncharge and css_put against @from.
1869 1870
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1871
 * - page is not on LRU (isolate_page() is useful.)
1872
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1873
 *
1874 1875 1876 1877
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1878 1879
 */

1880
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1881
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1882 1883
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1884
	VM_BUG_ON(PageLRU(pc->page));
1885 1886 1887
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1888

1889
	if (PageCgroupFileMapped(pc)) {
1890 1891 1892 1893 1894
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
1895
	}
1896 1897 1898 1899
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1900

1901
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1902 1903
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1904 1905 1906
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1907 1908 1909
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1910
	 */
1911 1912 1913 1914 1915 1916 1917
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1918
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1919 1920 1921 1922
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1923
		__mem_cgroup_move_account(pc, from, to, uncharge);
1924 1925 1926
		ret = 0;
	}
	unlock_page_cgroup(pc);
1927 1928 1929 1930 1931
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1943
	struct page *page = pc->page;
1944 1945 1946 1947 1948 1949 1950 1951 1952
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1953 1954 1955 1956 1957
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1958

1959
	parent = mem_cgroup_from_cont(pcg);
1960
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1961
	if (ret || !parent)
1962
		goto put_back;
1963

1964 1965 1966
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1967
put_back:
K
KAMEZAWA Hiroyuki 已提交
1968
	putback_lru_page(page);
1969
put:
1970
	put_page(page);
1971
out:
1972 1973 1974
	return ret;
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1996
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1997
	if (ret || !mem)
1998 1999 2000
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
2001 2002 2003
	return 0;
}

2004 2005
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2006
{
2007
	if (mem_cgroup_disabled())
2008
		return 0;
2009 2010
	if (PageCompound(page))
		return 0;
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2022
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2023
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2024 2025
}

D
Daisuke Nishimura 已提交
2026 2027 2028 2029
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2030 2031
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2032
{
2033 2034 2035
	struct mem_cgroup *mem = NULL;
	int ret;

2036
	if (mem_cgroup_disabled())
2037
		return 0;
2038 2039
	if (PageCompound(page))
		return 0;
2040 2041 2042 2043 2044 2045 2046 2047
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2048 2049
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2050 2051 2052 2053
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2054 2055 2056 2057 2058 2059 2060

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2061 2062
			return 0;
		}
2063
		unlock_page_cgroup(pc);
2064 2065
	}

2066
	if (unlikely(!mm && !mem))
2067
		mm = &init_mm;
2068

2069 2070
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2071
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2072

D
Daisuke Nishimura 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2082 2083

	return ret;
2084 2085
}

2086 2087 2088
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2089
 * struct page_cgroup is acquired. This refcnt will be consumed by
2090 2091
 * "commit()" or removed by "cancel()"
 */
2092 2093 2094 2095 2096
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2097
	int ret;
2098

2099
	if (mem_cgroup_disabled())
2100 2101 2102 2103 2104 2105
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2106 2107 2108
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2109 2110
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2111
		goto charge_cur_mm;
2112
	mem = try_get_mem_cgroup_from_page(page);
2113 2114
	if (!mem)
		goto charge_cur_mm;
2115
	*ptr = mem;
2116
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2117 2118 2119
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
2120 2121 2122
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2123
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2124 2125
}

D
Daisuke Nishimura 已提交
2126 2127 2128
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2129 2130 2131
{
	struct page_cgroup *pc;

2132
	if (mem_cgroup_disabled())
2133 2134 2135
		return;
	if (!ptr)
		return;
2136
	cgroup_exclude_rmdir(&ptr->css);
2137
	pc = lookup_page_cgroup(page);
2138
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2139
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2140
	mem_cgroup_lru_add_after_commit_swapcache(page);
2141 2142 2143
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2144 2145 2146
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2147
	 */
2148
	if (do_swap_account && PageSwapCache(page)) {
2149
		swp_entry_t ent = {.val = page_private(page)};
2150
		unsigned short id;
2151
		struct mem_cgroup *memcg;
2152 2153 2154 2155

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2156
		if (memcg) {
2157 2158 2159 2160
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2161
			if (!mem_cgroup_is_root(memcg))
2162
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2163
			mem_cgroup_swap_statistics(memcg, false);
2164 2165
			mem_cgroup_put(memcg);
		}
2166
		rcu_read_unlock();
2167
	}
2168 2169 2170 2171 2172 2173
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2174 2175
}

D
Daisuke Nishimura 已提交
2176 2177 2178 2179 2180 2181
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2182 2183
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2184
	if (mem_cgroup_disabled())
2185 2186 2187
		return;
	if (!mem)
		return;
2188
	mem_cgroup_cancel_charge(mem);
2189 2190
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2235 2236
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2237 2238
	return;
}
2239

2240
/*
2241
 * uncharge if !page_mapped(page)
2242
 */
2243
static struct mem_cgroup *
2244
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2245
{
H
Hugh Dickins 已提交
2246
	struct page_cgroup *pc;
2247
	struct mem_cgroup *mem = NULL;
2248
	struct mem_cgroup_per_zone *mz;
2249

2250
	if (mem_cgroup_disabled())
2251
		return NULL;
2252

K
KAMEZAWA Hiroyuki 已提交
2253
	if (PageSwapCache(page))
2254
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2255

2256
	/*
2257
	 * Check if our page_cgroup is valid
2258
	 */
2259 2260
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2261
		return NULL;
2262

2263
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2264

2265 2266
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2267 2268 2269 2270 2271
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2272
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2273 2274
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2286
	}
K
KAMEZAWA Hiroyuki 已提交
2287

2288 2289
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2290 2291
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2292
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2293

2294
	ClearPageCgroupUsed(pc);
2295 2296 2297 2298 2299 2300
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2301

2302
	mz = page_cgroup_zoneinfo(pc);
2303
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2304

2305
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2306 2307 2308
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2309

2310
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2311 2312 2313

unlock_out:
	unlock_page_cgroup(pc);
2314
	return NULL;
2315 2316
}

2317 2318
void mem_cgroup_uncharge_page(struct page *page)
{
2319 2320 2321 2322 2323
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2324 2325 2326 2327 2328 2329
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2330
	VM_BUG_ON(page->mapping);
2331 2332 2333
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2374
	memcg_oom_recover(batch->memcg);
2375 2376 2377 2378
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2379
#ifdef CONFIG_SWAP
2380
/*
2381
 * called after __delete_from_swap_cache() and drop "page" account.
2382 2383
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2384 2385
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2386 2387
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2388 2389 2390 2391 2392 2393
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2394 2395

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2396
	if (do_swap_account && swapout && memcg) {
2397
		swap_cgroup_record(ent, css_id(&memcg->css));
2398 2399
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2400
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2401
		css_put(&memcg->css);
2402
}
2403
#endif
2404 2405 2406 2407 2408 2409 2410

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2411
{
2412
	struct mem_cgroup *memcg;
2413
	unsigned short id;
2414 2415 2416 2417

	if (!do_swap_account)
		return;

2418 2419 2420
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2421
	if (memcg) {
2422 2423 2424 2425
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2426
		if (!mem_cgroup_is_root(memcg))
2427
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2428
		mem_cgroup_swap_statistics(memcg, false);
2429 2430
		mem_cgroup_put(memcg);
	}
2431
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2432
}
2433 2434 2435 2436 2437 2438

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2439
 * @need_fixup: whether we should fixup res_counters and refcounts.
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2450
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2451 2452 2453 2454 2455 2456 2457 2458
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2459
		mem_cgroup_swap_statistics(to, true);
2460
		/*
2461 2462 2463 2464 2465 2466
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2467 2468
		 */
		mem_cgroup_get(to);
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2481 2482 2483 2484 2485 2486
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2487
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2488 2489 2490
{
	return -EINVAL;
}
2491
#endif
K
KAMEZAWA Hiroyuki 已提交
2492

2493
/*
2494 2495
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2496
 */
2497 2498
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2499 2500
{
	struct page_cgroup *pc;
2501
	struct mem_cgroup *mem = NULL;
2502
	enum charge_type ctype;
2503
	int ret = 0;
2504

2505
	if (mem_cgroup_disabled())
2506 2507
		return 0;

2508 2509 2510
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2511 2512
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2544
	}
2545
	unlock_page_cgroup(pc);
2546 2547 2548 2549 2550 2551
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2552

A
Andrea Arcangeli 已提交
2553
	*ptr = mem;
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2567
	}
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2582
	return ret;
2583
}
2584

2585
/* remove redundant charge if migration failed*/
2586
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2587
	struct page *oldpage, struct page *newpage)
2588
{
2589
	struct page *used, *unused;
2590 2591 2592 2593
	struct page_cgroup *pc;

	if (!mem)
		return;
2594
	/* blocks rmdir() */
2595
	cgroup_exclude_rmdir(&mem->css);
2596 2597
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2598 2599
		used = oldpage;
		unused = newpage;
2600
	} else {
2601
		used = newpage;
2602 2603
		unused = oldpage;
	}
2604
	/*
2605 2606 2607
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2608
	 */
2609 2610 2611 2612
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2613

2614 2615 2616 2617 2618
	if (unused != oldpage)
		pc = lookup_page_cgroup(unused);
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

	pc = lookup_page_cgroup(used);
2619
	/*
2620 2621 2622 2623 2624 2625
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2626
	 */
2627 2628
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2629
	/*
2630 2631
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2632 2633 2634 2635
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2636
}
2637

2638
/*
2639 2640 2641 2642 2643 2644
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2645
 */
2646
int mem_cgroup_shmem_charge_fallback(struct page *page,
2647 2648
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2649
{
2650
	struct mem_cgroup *mem = NULL;
2651
	int ret;
2652

2653
	if (mem_cgroup_disabled())
2654
		return 0;
2655

2656 2657 2658
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2659

2660
	return ret;
2661 2662
}

2663 2664
static DEFINE_MUTEX(set_limit_mutex);

2665
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2666
				unsigned long long val)
2667
{
2668
	int retry_count;
2669
	u64 memswlimit, memlimit;
2670
	int ret = 0;
2671 2672
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2673
	int enlarge;
2674 2675 2676 2677 2678 2679 2680 2681 2682

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2683

2684
	enlarge = 0;
2685
	while (retry_count) {
2686 2687 2688 2689
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2700 2701
			break;
		}
2702 2703 2704 2705 2706

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2707
		ret = res_counter_set_limit(&memcg->res, val);
2708 2709 2710 2711 2712 2713
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2714 2715 2716 2717 2718
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2719
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2720
						MEM_CGROUP_RECLAIM_SHRINK);
2721 2722 2723 2724 2725 2726
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2727
	}
2728 2729
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2730

2731 2732 2733
	return ret;
}

L
Li Zefan 已提交
2734 2735
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2736
{
2737
	int retry_count;
2738
	u64 memlimit, memswlimit, oldusage, curusage;
2739 2740
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2741
	int enlarge = 0;
2742

2743 2744 2745
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
2763 2764 2765
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
2766
		ret = res_counter_set_limit(&memcg->memsw, val);
2767 2768 2769 2770 2771 2772
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2773 2774 2775 2776 2777
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2778
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2779 2780
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2781
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2782
		/* Usage is reduced ? */
2783
		if (curusage >= oldusage)
2784
			retry_count--;
2785 2786
		else
			oldusage = curusage;
2787
	}
2788 2789
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2790 2791 2792
	return ret;
}

2793 2794 2795 2796 2797 2798 2799 2800 2801
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2802
	unsigned long long excess;
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2855
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2856 2857 2858 2859 2860 2861 2862 2863
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2864 2865
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2884 2885 2886 2887
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2888
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2889
				int node, int zid, enum lru_list lru)
2890
{
K
KAMEZAWA Hiroyuki 已提交
2891 2892
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2893
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2894
	unsigned long flags, loop;
2895
	struct list_head *list;
2896
	int ret = 0;
2897

K
KAMEZAWA Hiroyuki 已提交
2898 2899
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2900
	list = &mz->lists[lru];
2901

2902 2903 2904 2905 2906 2907
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2908
		spin_lock_irqsave(&zone->lru_lock, flags);
2909
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2910
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2911
			break;
2912 2913 2914 2915
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2916
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2917
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2918 2919
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2920
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2921

K
KAMEZAWA Hiroyuki 已提交
2922
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2923
		if (ret == -ENOMEM)
2924
			break;
2925 2926 2927 2928 2929 2930 2931

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2932
	}
K
KAMEZAWA Hiroyuki 已提交
2933

2934 2935 2936
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2937 2938 2939 2940 2941 2942
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2943
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2944
{
2945 2946 2947
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2948
	struct cgroup *cgrp = mem->css.cgroup;
2949

2950
	css_get(&mem->css);
2951 2952

	shrink = 0;
2953 2954 2955
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2956
move_account:
2957
	do {
2958
		ret = -EBUSY;
2959 2960 2961 2962
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2963
			goto out;
2964 2965
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2966
		drain_all_stock_sync();
2967
		ret = 0;
2968
		for_each_node_state(node, N_HIGH_MEMORY) {
2969
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2970
				enum lru_list l;
2971 2972
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2973
							node, zid, l);
2974 2975 2976
					if (ret)
						break;
				}
2977
			}
2978 2979 2980
			if (ret)
				break;
		}
2981
		memcg_oom_recover(mem);
2982 2983 2984
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2985
		cond_resched();
2986 2987
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2988 2989 2990
out:
	css_put(&mem->css);
	return ret;
2991 2992

try_to_free:
2993 2994
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2995 2996 2997
		ret = -EBUSY;
		goto out;
	}
2998 2999
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3000 3001 3002 3003
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3004 3005 3006 3007 3008

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3009 3010
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3011
		if (!progress) {
3012
			nr_retries--;
3013
			/* maybe some writeback is necessary */
3014
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3015
		}
3016 3017

	}
K
KAMEZAWA Hiroyuki 已提交
3018
	lru_add_drain();
3019
	/* try move_account...there may be some *locked* pages. */
3020
	goto move_account;
3021 3022
}

3023 3024 3025 3026 3027 3028
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3047
	 * If parent's use_hierarchy is set, we can't make any modifications
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3067 3068 3069 3070 3071 3072 3073 3074 3075
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
3076
	d->val += mem_cgroup_read_stat(mem, d->idx);
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

3116
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3117
{
3118
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3119
	u64 val;
3120 3121 3122 3123 3124 3125
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3126 3127 3128
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3129
			val = res_counter_read_u64(&mem->res, name);
3130 3131
		break;
	case _MEMSWAP:
3132 3133 3134
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3135
			val = res_counter_read_u64(&mem->memsw, name);
3136 3137 3138 3139 3140 3141
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3142
}
3143 3144 3145 3146
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3147 3148
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3149
{
3150
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3151
	int type, name;
3152 3153 3154
	unsigned long long val;
	int ret;

3155 3156 3157
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3158
	case RES_LIMIT:
3159 3160 3161 3162
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3163 3164
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3165 3166 3167
		if (ret)
			break;
		if (type == _MEM)
3168
			ret = mem_cgroup_resize_limit(memcg, val);
3169 3170
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3171
		break;
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3186 3187 3188 3189 3190
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3191 3192
}

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3221
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3222 3223
{
	struct mem_cgroup *mem;
3224
	int type, name;
3225 3226

	mem = mem_cgroup_from_cont(cont);
3227 3228 3229
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3230
	case RES_MAX_USAGE:
3231 3232 3233 3234
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3235 3236
		break;
	case RES_FAILCNT:
3237 3238 3239 3240
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3241 3242
		break;
	}
3243

3244
	return 0;
3245 3246
}

3247 3248 3249 3250 3251 3252
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3253
#ifdef CONFIG_MMU
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3272 3273 3274 3275 3276 3277 3278
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3279

K
KAMEZAWA Hiroyuki 已提交
3280 3281 3282 3283 3284

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3285
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3286 3287
	MCS_PGPGIN,
	MCS_PGPGOUT,
3288
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3299 3300
};

K
KAMEZAWA Hiroyuki 已提交
3301 3302 3303 3304 3305 3306
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3307
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3308 3309
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3310
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3325
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3326
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3327
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3328
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3329
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3330
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3331
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3332
	s->stat[MCS_PGPGIN] += val;
3333
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3334
	s->stat[MCS_PGPGOUT] += val;
3335
	if (do_swap_account) {
3336
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3337 3338
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3360 3361
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3362 3363
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3364
	struct mcs_total_stat mystat;
3365 3366
	int i;

K
KAMEZAWA Hiroyuki 已提交
3367 3368
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3369

3370 3371 3372
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3373
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3374
	}
L
Lee Schermerhorn 已提交
3375

K
KAMEZAWA Hiroyuki 已提交
3376
	/* Hierarchical information */
3377 3378 3379 3380 3381 3382 3383
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3384

K
KAMEZAWA Hiroyuki 已提交
3385 3386
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3387 3388 3389
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3390
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3391
	}
K
KAMEZAWA Hiroyuki 已提交
3392

K
KOSAKI Motohiro 已提交
3393
#ifdef CONFIG_DEBUG_VM
3394
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3422 3423 3424
	return 0;
}

K
KOSAKI Motohiro 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3437

K
KOSAKI Motohiro 已提交
3438 3439 3440 3441 3442 3443 3444
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3445 3446 3447

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3448 3449
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3450 3451
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3452
		return -EINVAL;
3453
	}
K
KOSAKI Motohiro 已提交
3454 3455 3456 3457 3458

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3459 3460
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3461 3462 3463
	return 0;
}

3464 3465 3466 3467 3468 3469 3470 3471
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3472
		t = rcu_dereference(memcg->thresholds.primary);
3473
	else
3474
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3486
	i = t->current_threshold;
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3510
	t->current_threshold = i - 1;
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	__mem_cgroup_threshold(memcg, false);
	if (do_swap_account)
		__mem_cgroup_threshold(memcg, true);
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3546 3547
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3548 3549
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3550 3551
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3552
	int i, size, ret;
3553 3554 3555 3556 3557 3558

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3559

3560
	if (type == _MEM)
3561
		thresholds = &memcg->thresholds;
3562
	else if (type == _MEMSWAP)
3563
		thresholds = &memcg->memsw_thresholds;
3564 3565 3566 3567 3568 3569
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3570
	if (thresholds->primary)
3571 3572
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3573
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3574 3575

	/* Allocate memory for new array of thresholds */
3576
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3577
			GFP_KERNEL);
3578
	if (!new) {
3579 3580 3581
		ret = -ENOMEM;
		goto unlock;
	}
3582
	new->size = size;
3583 3584

	/* Copy thresholds (if any) to new array */
3585 3586
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3587
				sizeof(struct mem_cgroup_threshold));
3588 3589
	}

3590
	/* Add new threshold */
3591 3592
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3593 3594

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3595
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3596 3597 3598
			compare_thresholds, NULL);

	/* Find current threshold */
3599
	new->current_threshold = -1;
3600
	for (i = 0; i < size; i++) {
3601
		if (new->entries[i].threshold < usage) {
3602
			/*
3603 3604
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3605 3606
			 * it here.
			 */
3607
			++new->current_threshold;
3608 3609 3610
		}
	}

3611 3612 3613 3614 3615
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3616

3617
	/* To be sure that nobody uses thresholds */
3618 3619 3620 3621 3622 3623 3624 3625
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3626
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3627
	struct cftype *cft, struct eventfd_ctx *eventfd)
3628 3629
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3630 3631
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3632 3633
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3634
	int i, j, size;
3635 3636 3637

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3638
		thresholds = &memcg->thresholds;
3639
	else if (type == _MEMSWAP)
3640
		thresholds = &memcg->memsw_thresholds;
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3656 3657 3658
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3659 3660 3661
			size++;
	}

3662
	new = thresholds->spare;
3663

3664 3665
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3666 3667
		kfree(new);
		new = NULL;
3668
		goto swap_buffers;
3669 3670
	}

3671
	new->size = size;
3672 3673

	/* Copy thresholds and find current threshold */
3674 3675 3676
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3677 3678
			continue;

3679 3680
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3681
			/*
3682
			 * new->current_threshold will not be used
3683 3684 3685
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3686
			++new->current_threshold;
3687 3688 3689 3690
		}
		j++;
	}

3691
swap_buffers:
3692 3693 3694
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
3695

3696
	/* To be sure that nobody uses thresholds */
3697 3698 3699 3700
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3701

K
KAMEZAWA Hiroyuki 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3727
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

/*
 */
static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
3788 3789
static struct cftype mem_cgroup_files[] = {
	{
3790
		.name = "usage_in_bytes",
3791
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3792
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3793 3794
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
3795
	},
3796 3797
	{
		.name = "max_usage_in_bytes",
3798
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3799
		.trigger = mem_cgroup_reset,
3800 3801
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3802
	{
3803
		.name = "limit_in_bytes",
3804
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3805
		.write_string = mem_cgroup_write,
3806
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3807
	},
3808 3809 3810 3811 3812 3813
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3814 3815
	{
		.name = "failcnt",
3816
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3817
		.trigger = mem_cgroup_reset,
3818
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3819
	},
3820 3821
	{
		.name = "stat",
3822
		.read_map = mem_control_stat_show,
3823
	},
3824 3825 3826 3827
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3828 3829 3830 3831 3832
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3833 3834 3835 3836 3837
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3838 3839 3840 3841 3842
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3843 3844
	{
		.name = "oom_control",
3845 3846
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3847 3848 3849 3850
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
3851 3852
};

3853 3854 3855 3856 3857 3858
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3859 3860
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3896 3897 3898
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3899
	struct mem_cgroup_per_zone *mz;
3900
	enum lru_list l;
3901
	int zone, tmp = node;
3902 3903 3904 3905 3906 3907 3908 3909
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3910 3911 3912
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3913 3914
	if (!pn)
		return 1;
3915

3916 3917
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3918 3919 3920

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3921 3922
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3923
		mz->usage_in_excess = 0;
3924 3925
		mz->on_tree = false;
		mz->mem = mem;
3926
	}
3927 3928 3929
	return 0;
}

3930 3931 3932 3933 3934
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3935 3936 3937
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3938
	int size = sizeof(struct mem_cgroup);
3939

3940
	/* Can be very big if MAX_NUMNODES is very big */
3941 3942
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3943
	else
3944
		mem = vmalloc(size);
3945

3946 3947 3948 3949
	if (!mem)
		return NULL;

	memset(mem, 0, size);
3950 3951 3952 3953 3954 3955 3956 3957
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
3958 3959 3960
	return mem;
}

3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3972
static void __mem_cgroup_free(struct mem_cgroup *mem)
3973
{
K
KAMEZAWA Hiroyuki 已提交
3974 3975
	int node;

3976
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3977 3978
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3979 3980 3981
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3982 3983
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3984 3985 3986 3987 3988
		kfree(mem);
	else
		vfree(mem);
}

3989 3990 3991 3992 3993
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

3994
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3995
{
3996
	if (atomic_sub_and_test(count, &mem->refcnt)) {
3997
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3998
		__mem_cgroup_free(mem);
3999 4000 4001
		if (parent)
			mem_cgroup_put(parent);
	}
4002 4003
}

4004 4005 4006 4007 4008
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4009 4010 4011 4012 4013 4014 4015 4016 4017
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4018

4019 4020 4021
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4022
	if (!mem_cgroup_disabled() && really_do_swap_account)
4023 4024 4025 4026 4027 4028 4029 4030
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4056
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4057 4058
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4059
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4060
	long error = -ENOMEM;
4061
	int node;
B
Balbir Singh 已提交
4062

4063 4064
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4065
		return ERR_PTR(error);
4066

4067 4068 4069
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4070

4071
	/* root ? */
4072
	if (cont->parent == NULL) {
4073
		int cpu;
4074
		enable_swap_cgroup();
4075
		parent = NULL;
4076
		root_mem_cgroup = mem;
4077 4078
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4079 4080 4081 4082 4083 4084
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4085
	} else {
4086
		parent = mem_cgroup_from_cont(cont->parent);
4087
		mem->use_hierarchy = parent->use_hierarchy;
4088
		mem->oom_kill_disable = parent->oom_kill_disable;
4089
	}
4090

4091 4092 4093
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4094 4095 4096 4097 4098 4099 4100
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4101 4102 4103 4104
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4105
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4106
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4107
	INIT_LIST_HEAD(&mem->oom_notify);
4108

K
KOSAKI Motohiro 已提交
4109 4110
	if (parent)
		mem->swappiness = get_swappiness(parent);
4111
	atomic_set(&mem->refcnt, 1);
4112
	mem->move_charge_at_immigrate = 0;
4113
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4114
	return &mem->css;
4115
free_out:
4116
	__mem_cgroup_free(mem);
4117
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4118
	return ERR_PTR(error);
B
Balbir Singh 已提交
4119 4120
}

4121
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4122 4123 4124
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4125 4126

	return mem_cgroup_force_empty(mem, false);
4127 4128
}

B
Balbir Singh 已提交
4129 4130 4131
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4132 4133 4134
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4135 4136 4137 4138 4139
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4140 4141 4142 4143 4144 4145 4146 4147
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4148 4149
}

4150
#ifdef CONFIG_MMU
4151
/* Handlers for move charge at task migration. */
4152 4153
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4154
{
4155 4156
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4157 4158
	struct mem_cgroup *mem = mc.to;

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4197
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4198 4199 4200 4201 4202
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4203 4204 4205 4206 4207 4208 4209 4210
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4211
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4212 4213 4214 4215 4216 4217
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4218 4219 4220
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4221 4222 4223 4224 4225
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4226
	swp_entry_t	ent;
4227 4228 4229 4230 4231
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4232
	MC_TARGET_SWAP,
4233 4234
};

D
Daisuke Nishimura 已提交
4235 4236
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4237
{
D
Daisuke Nishimura 已提交
4238
	struct page *page = vm_normal_page(vma, addr, ptent);
4239

D
Daisuke Nishimura 已提交
4240 4241 4242 4243 4244 4245
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4246 4247
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4266 4267
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4268
		return NULL;
4269
	}
D
Daisuke Nishimura 已提交
4270 4271 4272 4273 4274 4275
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4321 4322
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4323 4324 4325

	if (!page && !ent.val)
		return 0;
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4341 4342
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4343 4344 4345 4346
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4366 4367 4368
	return 0;
}

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4396
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4397 4398 4399 4400 4401
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
4402 4403 4404
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
4405
		memcg_oom_recover(mc.to);
4406 4407 4408 4409 4410 4411 4412 4413
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4414
		memcg_oom_recover(mc.from);
4415
	}
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4439 4440
	mc.from = NULL;
	mc.to = NULL;
4441 4442
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
4443 4444
}

4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4463 4464 4465 4466
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4467
			VM_BUG_ON(mc.moved_charge);
4468
			VM_BUG_ON(mc.moved_swap);
4469
			VM_BUG_ON(mc.moving_task);
4470 4471 4472
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4473
			mc.moved_charge = 0;
4474
			mc.moved_swap = 0;
4475
			mc.moving_task = current;
4476 4477 4478 4479 4480

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4491
	mem_cgroup_clear_mc();
4492 4493
}

4494 4495 4496
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4497
{
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4511
		swp_entry_t ent;
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4523 4524
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4525
				mc.precharge--;
4526 4527
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4528 4529 4530 4531 4532
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4533 4534
		case MC_TARGET_SWAP:
			ent = target.ent;
4535 4536
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4537
				mc.precharge--;
4538 4539 4540
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4541
			break;
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4556
		ret = mem_cgroup_do_precharge(1);
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4589 4590
}

B
Balbir Singh 已提交
4591 4592 4593
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4594 4595
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4596
{
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4609
}
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4632

B
Balbir Singh 已提交
4633 4634 4635 4636
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4637
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4638 4639
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4640 4641
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4642
	.attach = mem_cgroup_move_task,
4643
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4644
	.use_id = 1,
B
Balbir Singh 已提交
4645
};
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif