memcontrol.c 56.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/mutex.h>
31
#include <linux/slab.h>
32 33 34
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
35
#include <linux/seq_file.h>
36
#include <linux/vmalloc.h>
37
#include <linux/mm_inline.h>
38
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include "internal.h"
B
Balbir Singh 已提交
40

41 42
#include <asm/uaccess.h>

43 44
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
45

46 47 48 49 50 51 52 53
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

54
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
55

56 57 58 59 60 61 62 63 64
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
65 66
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
67 68 69 70 71 72 73 74 75

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
76
	struct mem_cgroup_stat_cpu cpustat[0];
77 78 79 80 81
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
82
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83 84
		enum mem_cgroup_stat_index idx, int val)
{
85
	stat->count[idx] += val;
86 87 88 89 90 91 92 93 94 95 96 97
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

98 99 100 101
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
102 103 104
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
105 106
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
107 108

	struct zone_reclaim_stat reclaim_stat;
109 110 111 112 113 114 115 116 117 118 119 120
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
121 122 123 124 125 126 127
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 129 130
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
131 132 133 134 135 136 137
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
138 139 140 141
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
142 143 144 145
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
146
	struct mem_cgroup_lru_info info;
147

K
KOSAKI Motohiro 已提交
148 149 150 151 152
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

153
	int	prev_priority;	/* for recording reclaim priority */
154 155 156

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
157
	 * reclaimed from. Protected by hierarchy_mutex
158 159
	 */
	struct mem_cgroup *last_scanned_child;
160 161 162 163
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
164
	unsigned long	last_oom_jiffies;
165
	atomic_t	refcnt;
166

K
KOSAKI Motohiro 已提交
167 168
	unsigned int	swappiness;

169
	/*
170
	 * statistics. This must be placed at the end of memcg.
171 172
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
173 174
};

175 176 177
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
178
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
179
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
180
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
181 182 183
	NR_CHARGE_TYPE,
};

184 185 186 187
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
188 189
static const unsigned long
pcg_default_flags[NR_CHARGE_TYPE] = {
K
KAMEZAWA Hiroyuki 已提交
190 191 192
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
	PCGF_USED | PCGF_LOCK, /* Anon */
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193
	0, /* FORCE */
194 195
};

196 197 198 199 200 201 202 203 204 205
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);

206 207 208
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
209 210 211
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
212
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
213
	int cpu = get_cpu();
214

K
KAMEZAWA Hiroyuki 已提交
215
	cpustat = &stat->cpustat[cpu];
216
	if (PageCgroupCache(pc))
217
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218
	else
219
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
220 221

	if (charge)
222
		__mem_cgroup_stat_add_safe(cpustat,
223 224
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
225
		__mem_cgroup_stat_add_safe(cpustat,
226
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
K
KAMEZAWA Hiroyuki 已提交
227
	put_cpu();
228 229
}

230
static struct mem_cgroup_per_zone *
231 232 233 234 235
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

236
static struct mem_cgroup_per_zone *
237 238 239 240 241
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
242

243 244 245
	if (!mem)
		return NULL;

246 247 248 249
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250
					enum lru_list idx)
251 252 253 254 255 256 257 258 259 260 261
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
262 263
}

264
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
265 266 267 268 269 270
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

271
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
272
{
273 274 275 276 277 278 279 280
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

281 282 283 284
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
{
	if (!mem)
		return true;
	return css_is_removed(&mem->css);
}

K
KAMEZAWA Hiroyuki 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
323

K
KAMEZAWA Hiroyuki 已提交
324 325 326 327 328
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup *mem;
	struct mem_cgroup_per_zone *mz;
329

330
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
331 332 333
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
334
	if (list_empty(&pc->lru) || !pc->mem_cgroup)
K
KAMEZAWA Hiroyuki 已提交
335
		return;
336 337 338 339
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
340 341
	mz = page_cgroup_zoneinfo(pc);
	mem = pc->mem_cgroup;
342
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
K
KAMEZAWA Hiroyuki 已提交
343 344
	list_del_init(&pc->lru);
	return;
345 346
}

K
KAMEZAWA Hiroyuki 已提交
347
void mem_cgroup_del_lru(struct page *page)
348
{
K
KAMEZAWA Hiroyuki 已提交
349 350
	mem_cgroup_del_lru_list(page, page_lru(page));
}
351

K
KAMEZAWA Hiroyuki 已提交
352 353 354 355
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
356

357
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
358
		return;
359

K
KAMEZAWA Hiroyuki 已提交
360
	pc = lookup_page_cgroup(page);
361 362 363 364
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
365 366 367 368 369 370
	smp_rmb();
	/* unused page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
371 372
}

K
KAMEZAWA Hiroyuki 已提交
373
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
374
{
K
KAMEZAWA Hiroyuki 已提交
375 376
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
377

378
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
379 380
		return;
	pc = lookup_page_cgroup(page);
381 382 383 384
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
385 386
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
387
		return;
388

K
KAMEZAWA Hiroyuki 已提交
389
	mz = page_cgroup_zoneinfo(pc);
390
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
K
KAMEZAWA Hiroyuki 已提交
391 392
	list_add(&pc->lru, &mz->lists[lru]);
}
393

K
KAMEZAWA Hiroyuki 已提交
394
/*
395 396 397 398 399
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
400
 */
401
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
402
{
403 404 405 406 407 408 409 410 411 412 413 414
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
415 416
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
	if (PageLRU(page) && list_empty(&pc->lru))
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
431 432 433
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
434
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
435 436 437
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
438 439
}

440 441 442 443 444
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;

	task_lock(task);
445
	ret = task->mm && mm_match_cgroup(task->mm, mem);
446 447 448 449
	task_unlock(task);
	return ret;
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * Calculate mapped_ratio under memory controller. This will be used in
 * vmscan.c for deteremining we have to reclaim mapped pages.
 */
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
{
	long total, rss;

	/*
	 * usage is recorded in bytes. But, here, we assume the number of
	 * physical pages can be represented by "long" on any arch.
	 */
	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	return (int)((rss * 100L) / total);
}
466

467 468 469 470 471
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
472 473 474 475 476 477 478
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
479 480 481 482
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
483
	spin_lock(&mem->reclaim_param_lock);
484 485
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
486
	spin_unlock(&mem->reclaim_param_lock);
487 488 489 490
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
491
	spin_lock(&mem->reclaim_param_lock);
492
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
493
	spin_unlock(&mem->reclaim_param_lock);
494 495
}

496
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
497 498 499
{
	unsigned long active;
	unsigned long inactive;
500 501
	unsigned long gb;
	unsigned long inactive_ratio;
502 503 504 505

	inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
533 534 535 536 537
		return 1;

	return 0;
}

538 539 540 541 542 543 544 545 546 547 548
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
569 570 571 572 573 574 575 576
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
577 578 579 580 581 582 583
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

584 585 586 587 588
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
589
					int active, int file)
590 591 592 593 594 595
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
596
	struct page_cgroup *pc, *tmp;
597 598 599
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
600
	int lru = LRU_FILE * !!file + !!active;
601

602
	BUG_ON(!mem_cont);
603
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
604
	src = &mz->lists[lru];
605

606 607
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
608
		if (scan >= nr_to_scan)
609
			break;
K
KAMEZAWA Hiroyuki 已提交
610 611

		page = pc->page;
612 613
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
614
		if (unlikely(!PageLRU(page)))
615 616
			continue;

H
Hugh Dickins 已提交
617
		scan++;
618
		if (__isolate_lru_page(page, mode, file) == 0) {
619 620 621 622 623 624 625 626 627
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	*scanned = scan;
	return nr_taken;
}

628 629 630 631 632
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

/*
 * This routine finds the DFS walk successor. This routine should be
633
 * called with hierarchy_mutex held
634 635
 */
static struct mem_cgroup *
636
__mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
{
	struct cgroup *cgroup, *curr_cgroup, *root_cgroup;

	curr_cgroup = curr->css.cgroup;
	root_cgroup = root_mem->css.cgroup;

	if (!list_empty(&curr_cgroup->children)) {
		/*
		 * Walk down to children
		 */
		cgroup = list_entry(curr_cgroup->children.next,
						struct cgroup, sibling);
		curr = mem_cgroup_from_cont(cgroup);
		goto done;
	}

visit_parent:
	if (curr_cgroup == root_cgroup) {
655 656
		/* caller handles NULL case */
		curr = NULL;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
		goto done;
	}

	/*
	 * Goto next sibling
	 */
	if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
		cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
						sibling);
		curr = mem_cgroup_from_cont(cgroup);
		goto done;
	}

	/*
	 * Go up to next parent and next parent's sibling if need be
	 */
	curr_cgroup = curr_cgroup->parent;
	goto visit_parent;

done:
	return curr;
}

/*
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
686
mem_cgroup_get_next_node(struct mem_cgroup *root_mem)
687 688
{
	struct cgroup *cgroup;
689
	struct mem_cgroup *orig, *next;
690 691
	bool obsolete;

692 693 694
	/*
	 * Scan all children under the mem_cgroup mem
	 */
695
	mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
696 697 698 699

	orig = root_mem->last_scanned_child;
	obsolete = mem_cgroup_is_obsolete(orig);

700
	if (list_empty(&root_mem->css.cgroup->children)) {
701 702 703 704 705 706 707
		/*
		 * root_mem might have children before and last_scanned_child
		 * may point to one of them. We put it later.
		 */
		if (orig)
			VM_BUG_ON(!obsolete);
		next = NULL;
708 709 710
		goto done;
	}

711
	if (!orig || obsolete) {
712 713
		cgroup = list_first_entry(&root_mem->css.cgroup->children,
				struct cgroup, sibling);
714
		next = mem_cgroup_from_cont(cgroup);
715
	} else
716
		next = __mem_cgroup_get_next_node(orig, root_mem);
717 718

done:
719 720 721 722 723
	if (next)
		mem_cgroup_get(next);
	root_mem->last_scanned_child = next;
	if (orig)
		mem_cgroup_put(orig);
724
	mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
725
	return (next) ? next : root_mem;
726 727
}

728 729 730 731 732 733 734 735 736 737 738 739
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
/*
 * Dance down the hierarchy if needed to reclaim memory. We remember the
 * last child we reclaimed from, so that we don't end up penalizing
 * one child extensively based on its position in the children list.
 *
 * root_mem is the original ancestor that we've been reclaim from.
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
						gfp_t gfp_mask, bool noswap)
{
	struct mem_cgroup *next_mem;
	int ret = 0;

	/*
	 * Reclaim unconditionally and don't check for return value.
	 * We need to reclaim in the current group and down the tree.
	 * One might think about checking for children before reclaiming,
	 * but there might be left over accounting, even after children
	 * have left.
	 */
K
KOSAKI Motohiro 已提交
776 777
	ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
					   get_swappiness(root_mem));
778
	if (mem_cgroup_check_under_limit(root_mem))
779
		return 0;
780 781
	if (!root_mem->use_hierarchy)
		return ret;
782

783
	next_mem = mem_cgroup_get_next_node(root_mem);
784 785

	while (next_mem != root_mem) {
786
		if (mem_cgroup_is_obsolete(next_mem)) {
787
			next_mem = mem_cgroup_get_next_node(root_mem);
788 789
			continue;
		}
K
KOSAKI Motohiro 已提交
790 791
		ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
						   get_swappiness(next_mem));
792
		if (mem_cgroup_check_under_limit(root_mem))
793
			return 0;
794
		next_mem = mem_cgroup_get_next_node(root_mem);
795 796 797 798
	}
	return ret;
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
815 816 817
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
818
 */
819
static int __mem_cgroup_try_charge(struct mm_struct *mm,
820 821
			gfp_t gfp_mask, struct mem_cgroup **memcg,
			bool oom)
822
{
823
	struct mem_cgroup *mem, *mem_over_limit;
824
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
825
	struct res_counter *fail_res;
826 827 828 829 830 831 832

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

833
	/*
834 835
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
836 837 838
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
839 840 841
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
842
		*memcg = mem;
843
	} else {
844
		css_get(&mem->css);
845
	}
846 847 848 849
	if (unlikely(!mem))
		return 0;

	VM_BUG_ON(mem_cgroup_is_obsolete(mem));
850

851 852 853
	while (1) {
		int ret;
		bool noswap = false;
854

855
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
856 857 858
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
859 860
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
							&fail_res);
861 862 863 864 865
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			noswap = true;
866 867 868 869 870 871 872
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

873
		if (!(gfp_mask & __GFP_WAIT))
874
			goto nomem;
875

876 877
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
							noswap);
878 879

		/*
880 881 882 883 884
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
885
		 *
886
		 */
887 888
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
889 890

		if (!nr_retries--) {
891
			if (oom) {
892
				mutex_lock(&memcg_tasklist);
893
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
894
				mutex_unlock(&memcg_tasklist);
895
				mem_over_limit->last_oom_jiffies = jiffies;
896
			}
897
			goto nomem;
898
		}
899
	}
900 901 902 903 904
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
905

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
{
	struct mem_cgroup *mem;
	swp_entry_t ent;

	if (!PageSwapCache(page))
		return NULL;

	ent.val = page_private(page);
	mem = lookup_swap_cgroup(ent);
	if (!mem)
		return NULL;
	if (!css_tryget(&mem->css))
		return NULL;
	return mem;
}

923
/*
924
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
925 926 927 928 929 930 931 932 933 934
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
935 936 937 938 939

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		res_counter_uncharge(&mem->res, PAGE_SIZE);
940 941
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
942
		css_put(&mem->css);
943
		return;
944
	}
945
	pc->mem_cgroup = mem;
K
KAMEZAWA Hiroyuki 已提交
946
	smp_wmb();
947
	pc->flags = pcg_default_flags[ctype];
948

K
KAMEZAWA Hiroyuki 已提交
949
	mem_cgroup_charge_statistics(mem, pc, true);
950 951

	unlock_page_cgroup(pc);
952
}
953

954 955 956 957 958 959 960
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
961
 * - page is not on LRU (isolate_page() is useful.)
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
978
	VM_BUG_ON(PageLRU(pc->page));
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

K
KAMEZAWA Hiroyuki 已提交
994 995 996 997
	res_counter_uncharge(&from->res, PAGE_SIZE);
	mem_cgroup_charge_statistics(from, pc, false);
	if (do_swap_account)
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
998 999 1000
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1001 1002 1003
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	ret = 0;
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
out:
	unlock_page_cgroup(pc);
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1017
	struct page *page = pc->page;
1018 1019 1020 1021 1022 1023 1024 1025 1026
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
1027

1028 1029
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
1030

1031
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1032
	if (ret || !parent)
1033 1034
		return ret;

1035 1036 1037 1038
	if (!get_page_unless_zero(page)) {
		ret = -EBUSY;
		goto uncharge;
	}
K
KAMEZAWA Hiroyuki 已提交
1039 1040 1041 1042 1043

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
1044 1045 1046

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
1047 1048 1049
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
1050 1051
		/* drop extra refcnt by try_charge() */
		css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
1052
		return 0;
1053
	}
1054

K
KAMEZAWA Hiroyuki 已提交
1055
cancel:
1056 1057 1058 1059 1060
	put_page(page);
uncharge:
	/* drop extra refcnt by try_charge() */
	css_put(&parent->css);
	/* uncharge if move fails */
K
KAMEZAWA Hiroyuki 已提交
1061 1062 1063
	res_counter_uncharge(&parent->res, PAGE_SIZE);
	if (do_swap_account)
		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1064 1065 1066
	return ret;
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1088
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1089
	if (ret || !mem)
1090 1091 1092
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1093 1094 1095
	return 0;
}

1096 1097
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1098
{
1099
	if (mem_cgroup_disabled())
1100
		return 0;
1101 1102
	if (PageCompound(page))
		return 0;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1114
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1115
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1116 1117
}

1118 1119
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1120
{
1121 1122 1123
	struct mem_cgroup *mem = NULL;
	int ret;

1124
	if (mem_cgroup_disabled())
1125
		return 0;
1126 1127
	if (PageCompound(page))
		return 0;
1128 1129 1130 1131 1132 1133 1134 1135
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1136 1137
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1138 1139 1140 1141
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1142 1143 1144 1145 1146 1147 1148

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1149 1150
			return 0;
		}
1151
		unlock_page_cgroup(pc);
1152 1153
	}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	if (do_swap_account && PageSwapCache(page)) {
		mem = try_get_mem_cgroup_from_swapcache(page);
		if (mem)
			mm = NULL;
		  else
			mem = NULL;
		/* SwapCache may be still linked to LRU now. */
		mem_cgroup_lru_del_before_commit_swapcache(page);
	}

	if (unlikely(!mm && !mem))
1165
		mm = &init_mm;
1166

1167 1168
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1169
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

	ret = mem_cgroup_charge_common(page, mm, gfp_mask,
				MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
	if (mem)
		css_put(&mem->css);
	if (PageSwapCache(page))
		mem_cgroup_lru_add_after_commit_swapcache(page);

	if (do_swap_account && !ret && PageSwapCache(page)) {
		swp_entry_t ent = {.val = page_private(page)};
		/* avoid double counting */
		mem = swap_cgroup_record(ent, NULL);
		if (mem) {
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
			mem_cgroup_put(mem);
		}
	}
	return ret;
1188 1189
}

1190 1191 1192 1193 1194 1195
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
 * struct page_cgroup is aquired. This refcnt will be cumsumed by
 * "commit()" or removed by "cancel()"
 */
1196 1197 1198 1199 1200
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1201
	int ret;
1202

1203
	if (mem_cgroup_disabled())
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;
1215
	mem = try_get_mem_cgroup_from_swapcache(page);
1216 1217
	if (!mem)
		goto charge_cur_mm;
1218
	*ptr = mem;
1219 1220 1221 1222
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1223 1224 1225 1226 1227 1228
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
}

1229 1230 1231 1232
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	struct page_cgroup *pc;

1233
	if (mem_cgroup_disabled())
1234 1235 1236 1237
		return;
	if (!ptr)
		return;
	pc = lookup_page_cgroup(page);
1238
	mem_cgroup_lru_del_before_commit_swapcache(page);
1239
	__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1240
	mem_cgroup_lru_add_after_commit_swapcache(page);
1241 1242 1243
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1244 1245 1246
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1247
	 */
1248
	if (do_swap_account && PageSwapCache(page)) {
1249 1250 1251 1252 1253 1254 1255 1256 1257
		swp_entry_t ent = {.val = page_private(page)};
		struct mem_cgroup *memcg;
		memcg = swap_cgroup_record(ent, NULL);
		if (memcg) {
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
			mem_cgroup_put(memcg);
		}

	}
K
KAMEZAWA Hiroyuki 已提交
1258
	/* add this page(page_cgroup) to the LRU we want. */
1259

1260 1261 1262 1263
}

void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1264
	if (mem_cgroup_disabled())
1265 1266 1267 1268
		return;
	if (!mem)
		return;
	res_counter_uncharge(&mem->res, PAGE_SIZE);
1269 1270
	if (do_swap_account)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1271 1272 1273 1274
	css_put(&mem->css);
}


1275
/*
1276
 * uncharge if !page_mapped(page)
1277
 */
1278
static struct mem_cgroup *
1279
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1280
{
H
Hugh Dickins 已提交
1281
	struct page_cgroup *pc;
1282
	struct mem_cgroup *mem = NULL;
1283
	struct mem_cgroup_per_zone *mz;
1284

1285
	if (mem_cgroup_disabled())
1286
		return NULL;
1287

K
KAMEZAWA Hiroyuki 已提交
1288
	if (PageSwapCache(page))
1289
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1290

1291
	/*
1292
	 * Check if our page_cgroup is valid
1293
	 */
1294 1295
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1296
		return NULL;
1297

1298
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1299

1300 1301
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1319
	}
K
KAMEZAWA Hiroyuki 已提交
1320

1321 1322 1323 1324
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
1325
	mem_cgroup_charge_statistics(mem, pc, false);
1326
	ClearPageCgroupUsed(pc);
1327 1328 1329 1330 1331 1332
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
1333

1334
	mz = page_cgroup_zoneinfo(pc);
1335
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1336

K
KAMEZAWA Hiroyuki 已提交
1337 1338 1339
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1340

1341
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1342 1343 1344

unlock_out:
	unlock_page_cgroup(pc);
1345
	return NULL;
1346 1347
}

1348 1349
void mem_cgroup_uncharge_page(struct page *page)
{
1350 1351 1352 1353 1354
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1355 1356 1357 1358 1359 1360
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1361
	VM_BUG_ON(page->mapping);
1362 1363 1364
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/*
 * called from __delete_from_swap_cache() and drop "page" account.
 * memcg information is recorded to swap_cgroup of "ent"
 */
void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
{
	struct mem_cgroup *memcg;

	memcg = __mem_cgroup_uncharge_common(page,
					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
	/* record memcg information */
	if (do_swap_account && memcg) {
		swap_cgroup_record(ent, memcg);
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1380 1381
	if (memcg)
		css_put(&memcg->css);
1382 1383 1384 1385 1386 1387 1388 1389
}

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1390
{
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	struct mem_cgroup *memcg;

	if (!do_swap_account)
		return;

	memcg = swap_cgroup_record(ent, NULL);
	if (memcg) {
		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
		mem_cgroup_put(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1401
}
1402
#endif
K
KAMEZAWA Hiroyuki 已提交
1403

1404
/*
1405 1406
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
1407
 */
1408
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1409 1410
{
	struct page_cgroup *pc;
1411 1412
	struct mem_cgroup *mem = NULL;
	int ret = 0;
1413

1414
	if (mem_cgroup_disabled())
1415 1416
		return 0;

1417 1418 1419
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
1420 1421 1422
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
1423
	unlock_page_cgroup(pc);
1424

1425
	if (mem) {
1426
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1427 1428
		css_put(&mem->css);
	}
1429
	*ptr = mem;
1430
	return ret;
1431
}
1432

1433
/* remove redundant charge if migration failed*/
1434 1435
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
1436
{
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;

	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
1461
	if (unused)
1462 1463 1464
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
1465
	/*
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
1480
	 */
1481 1482
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
1483
}
1484

1485 1486 1487 1488 1489
/*
 * A call to try to shrink memory usage under specified resource controller.
 * This is typically used for page reclaiming for shmem for reducing side
 * effect of page allocation from shmem, which is used by some mem_cgroup.
 */
1490 1491 1492
int mem_cgroup_shrink_usage(struct page *page,
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
1493
{
1494
	struct mem_cgroup *mem = NULL;
1495 1496 1497
	int progress = 0;
	int retry = MEM_CGROUP_RECLAIM_RETRIES;

1498
	if (mem_cgroup_disabled())
1499
		return 0;
1500 1501 1502 1503
	if (page)
		mem = try_get_mem_cgroup_from_swapcache(page);
	if (!mem && mm)
		mem = try_get_mem_cgroup_from_mm(mm);
1504
	if (unlikely(!mem))
1505
		return 0;
1506 1507

	do {
1508
		progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1509
		progress += mem_cgroup_check_under_limit(mem);
1510 1511 1512 1513 1514 1515 1516 1517
	} while (!progress && --retry);

	css_put(&mem->css);
	if (!retry)
		return -ENOMEM;
	return 0;
}

1518 1519
static DEFINE_MUTEX(set_limit_mutex);

1520
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1521
				unsigned long long val)
1522 1523 1524 1525
{

	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
	int progress;
1526
	u64 memswlimit;
1527 1528
	int ret = 0;

1529
	while (retry_count) {
1530 1531 1532 1533
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
1544 1545
			break;
		}
1546 1547 1548 1549 1550 1551
		ret = res_counter_set_limit(&memcg->res, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1552 1553
		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
							   false);
1554 1555
  		if (!progress)			retry_count--;
	}
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	return ret;
}

int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
				unsigned long long val)
{
	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
	u64 memlimit, oldusage, curusage;
	int ret;

	if (!do_swap_account)
		return -EINVAL;

	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

		oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1594
		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1595 1596
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
		if (curusage >= oldusage)
1597 1598 1599 1600 1601
			retry_count--;
	}
	return ret;
}

1602 1603 1604 1605
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
1606
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
1607
				int node, int zid, enum lru_list lru)
1608
{
K
KAMEZAWA Hiroyuki 已提交
1609 1610
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
1611
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
1612
	unsigned long flags, loop;
1613
	struct list_head *list;
1614
	int ret = 0;
1615

K
KAMEZAWA Hiroyuki 已提交
1616 1617
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
1618
	list = &mz->lists[lru];
1619

1620 1621 1622 1623 1624 1625
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
1626
		spin_lock_irqsave(&zone->lru_lock, flags);
1627
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
1628
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1629
			break;
1630 1631 1632 1633 1634
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
1635
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1636 1637
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1638
		spin_unlock_irqrestore(&zone->lru_lock, flags);
1639

K
KAMEZAWA Hiroyuki 已提交
1640
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1641
		if (ret == -ENOMEM)
1642
			break;
1643 1644 1645 1646 1647 1648 1649

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
1650
	}
K
KAMEZAWA Hiroyuki 已提交
1651

1652 1653 1654
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
1655 1656 1657 1658 1659 1660
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
1661
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1662
{
1663 1664 1665
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1666
	struct cgroup *cgrp = mem->css.cgroup;
1667

1668
	css_get(&mem->css);
1669 1670

	shrink = 0;
1671 1672 1673
	/* should free all ? */
	if (free_all)
		goto try_to_free;
1674
move_account:
1675
	while (mem->res.usage > 0) {
1676
		ret = -EBUSY;
1677 1678 1679 1680
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
1681
			goto out;
1682 1683
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
1684 1685 1686
		ret = 0;
		for_each_node_state(node, N_POSSIBLE) {
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1687
				enum lru_list l;
1688 1689
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
1690
							node, zid, l);
1691 1692 1693
					if (ret)
						break;
				}
1694
			}
1695 1696 1697 1698 1699 1700
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
1701
		cond_resched();
1702 1703 1704 1705 1706
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
1707 1708

try_to_free:
1709 1710
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1711 1712 1713
		ret = -EBUSY;
		goto out;
	}
1714 1715
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
1716 1717 1718 1719
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
1720 1721 1722 1723 1724

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
1725 1726
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
1727
		if (!progress) {
1728
			nr_retries--;
1729 1730 1731
			/* maybe some writeback is necessary */
			congestion_wait(WRITE, HZ/10);
		}
1732 1733

	}
K
KAMEZAWA Hiroyuki 已提交
1734
	lru_add_drain();
1735 1736 1737 1738 1739
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
1740 1741
}

1742 1743 1744 1745 1746 1747
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

1786
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
1787
{
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	u64 val = 0;
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
		val = res_counter_read_u64(&mem->res, name);
		break;
	case _MEMSWAP:
		if (do_swap_account)
			val = res_counter_read_u64(&mem->memsw, name);
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
1807
}
1808 1809 1810 1811
/*
 * The user of this function is...
 * RES_LIMIT.
 */
1812 1813
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
1814
{
1815
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1816
	int type, name;
1817 1818 1819
	unsigned long long val;
	int ret;

1820 1821 1822
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
1823 1824 1825
	case RES_LIMIT:
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
1826 1827 1828
		if (ret)
			break;
		if (type == _MEM)
1829
			ret = mem_cgroup_resize_limit(memcg, val);
1830 1831
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
1832 1833 1834 1835 1836 1837
		break;
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
1838 1839
}

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

1868
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1869 1870
{
	struct mem_cgroup *mem;
1871
	int type, name;
1872 1873

	mem = mem_cgroup_from_cont(cont);
1874 1875 1876
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
1877
	case RES_MAX_USAGE:
1878 1879 1880 1881
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
1882 1883
		break;
	case RES_FAILCNT:
1884 1885 1886 1887
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
1888 1889
		break;
	}
1890
	return 0;
1891 1892
}

1893 1894 1895 1896 1897 1898
static const struct mem_cgroup_stat_desc {
	const char *msg;
	u64 unit;
} mem_cgroup_stat_desc[] = {
	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1899 1900
	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1901 1902
};

1903 1904
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
	struct mem_cgroup_stat *stat = &mem_cont->stat;
	int i;

	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
		s64 val;

		val = mem_cgroup_read_stat(stat, i);
		val *= mem_cgroup_stat_desc[i].unit;
1915
		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1916
	}
1917 1918
	/* showing # of active pages */
	{
1919 1920
		unsigned long active_anon, inactive_anon;
		unsigned long active_file, inactive_file;
L
Lee Schermerhorn 已提交
1921
		unsigned long unevictable;
1922 1923 1924 1925 1926 1927 1928 1929 1930

		inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_INACTIVE_ANON);
		active_anon = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_ACTIVE_ANON);
		inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_INACTIVE_FILE);
		active_file = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_ACTIVE_FILE);
L
Lee Schermerhorn 已提交
1931 1932 1933
		unevictable = mem_cgroup_get_all_zonestat(mem_cont,
							LRU_UNEVICTABLE);

1934 1935 1936 1937
		cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
		cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
		cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
		cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
L
Lee Schermerhorn 已提交
1938 1939
		cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);

1940
	}
1941 1942 1943 1944 1945 1946 1947
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
1948 1949

#ifdef CONFIG_DEBUG_VM
1950
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

1978 1979 1980
	return 0;
}

K
KOSAKI Motohiro 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
	    (memcg->use_hierarchy && !list_empty(&cgrp->children)))
		return -EINVAL;

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

	return 0;
}

2012

B
Balbir Singh 已提交
2013 2014
static struct cftype mem_cgroup_files[] = {
	{
2015
		.name = "usage_in_bytes",
2016
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2017
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2018
	},
2019 2020
	{
		.name = "max_usage_in_bytes",
2021
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2022
		.trigger = mem_cgroup_reset,
2023 2024
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2025
	{
2026
		.name = "limit_in_bytes",
2027
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2028
		.write_string = mem_cgroup_write,
2029
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2030 2031 2032
	},
	{
		.name = "failcnt",
2033
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2034
		.trigger = mem_cgroup_reset,
2035
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2036
	},
2037 2038
	{
		.name = "stat",
2039
		.read_map = mem_control_stat_show,
2040
	},
2041 2042 2043 2044
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
2045 2046 2047 2048 2049
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
2050 2051 2052 2053 2054
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
2055 2056
};

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

2098 2099 2100
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
2101
	struct mem_cgroup_per_zone *mz;
2102
	enum lru_list l;
2103
	int zone, tmp = node;
2104 2105 2106 2107 2108 2109 2110 2111
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
2112 2113 2114
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2115 2116
	if (!pn)
		return 1;
2117

2118 2119
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
2120 2121 2122

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
2123 2124
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
2125
	}
2126 2127 2128
	return 0;
}

2129 2130 2131 2132 2133
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

2134 2135 2136 2137 2138 2139
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

2140 2141 2142
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
2143
	int size = mem_cgroup_size();
2144

2145 2146
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
2147
	else
2148
		mem = vmalloc(size);
2149 2150

	if (mem)
2151
		memset(mem, 0, size);
2152 2153 2154
	return mem;
}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

2166
static void __mem_cgroup_free(struct mem_cgroup *mem)
2167
{
K
KAMEZAWA Hiroyuki 已提交
2168 2169 2170 2171 2172
	int node;

	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

2173
	if (mem_cgroup_size() < PAGE_SIZE)
2174 2175 2176 2177 2178
		kfree(mem);
	else
		vfree(mem);
}

2179 2180 2181 2182 2183 2184 2185
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
2186 2187
	if (atomic_dec_and_test(&mem->refcnt))
		__mem_cgroup_free(mem);
2188 2189
}

2190

2191 2192 2193
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
2194
	if (!mem_cgroup_disabled() && really_do_swap_account)
2195 2196 2197 2198 2199 2200 2201 2202
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

B
Balbir Singh 已提交
2203 2204 2205
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
2206
	struct mem_cgroup *mem, *parent;
2207
	int node;
B
Balbir Singh 已提交
2208

2209 2210 2211
	mem = mem_cgroup_alloc();
	if (!mem)
		return ERR_PTR(-ENOMEM);
2212

2213 2214 2215
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
2216
	/* root ? */
2217
	if (cont->parent == NULL) {
2218
		enable_swap_cgroup();
2219
		parent = NULL;
2220
	} else {
2221
		parent = mem_cgroup_from_cont(cont->parent);
2222 2223
		mem->use_hierarchy = parent->use_hierarchy;
	}
2224

2225 2226 2227 2228 2229 2230 2231
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
2232
	mem->last_scanned_child = NULL;
K
KOSAKI Motohiro 已提交
2233
	spin_lock_init(&mem->reclaim_param_lock);
2234

K
KOSAKI Motohiro 已提交
2235 2236
	if (parent)
		mem->swappiness = get_swappiness(parent);
2237
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
2238
	return &mem->css;
2239
free_out:
2240
	__mem_cgroup_free(mem);
2241
	return ERR_PTR(-ENOMEM);
B
Balbir Singh 已提交
2242 2243
}

2244 2245 2246 2247
static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2248
	mem_cgroup_force_empty(mem, false);
2249 2250
}

B
Balbir Singh 已提交
2251 2252 2253
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2254 2255 2256 2257 2258 2259 2260 2261
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct mem_cgroup *last_scanned_child = mem->last_scanned_child;

	if (last_scanned_child) {
		VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child));
		mem_cgroup_put(last_scanned_child);
	}
	mem_cgroup_put(mem);
B
Balbir Singh 已提交
2262 2263 2264 2265 2266
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2267 2268 2269 2270 2271 2272 2273 2274
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
2275 2276
}

B
Balbir Singh 已提交
2277 2278 2279 2280 2281
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
2282
	mutex_lock(&memcg_tasklist);
B
Balbir Singh 已提交
2283
	/*
2284 2285
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
2286
	 */
2287
	mutex_unlock(&memcg_tasklist);
B
Balbir Singh 已提交
2288 2289
}

B
Balbir Singh 已提交
2290 2291 2292 2293
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
2294
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
2295 2296
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
2297
	.attach = mem_cgroup_move_task,
2298
	.early_init = 0,
B
Balbir Singh 已提交
2299
};
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif