balloc.c 59.1 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/balloc.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 */

#include <linux/time.h>
#include <linux/capability.h>
#include <linux/fs.h>
17
#include <linux/jbd2.h>
18
#include <linux/ext4_fs.h>
19
#include <linux/ext4_jbd2.h>
20 21 22
#include <linux/quotaops.h>
#include <linux/buffer_head.h>

A
Andreas Dilger 已提交
23
#include "group.h"
24 25 26 27
/*
 * balloc.c contains the blocks allocation and deallocation routines
 */

28 29 30 31
/*
 * Calculate the block group number and offset, given a block number
 */
void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32
		ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
33
{
D
Dave Kleikamp 已提交
34
	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35 36
	ext4_grpblk_t offset;

D
Dave Kleikamp 已提交
37
	blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
A
Andrew Morton 已提交
38
	offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39 40 41
	if (offsetp)
		*offsetp = offset;
	if (blockgrpp)
D
Dave Kleikamp 已提交
42
		*blockgrpp = blocknr;
43 44 45

}

A
Andreas Dilger 已提交
46 47 48
/* Initializes an uninitialized block bitmap if given, and returns the
 * number of blocks free in the group. */
unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
49
		 ext4_group_t block_group, struct ext4_group_desc *gdp)
A
Andreas Dilger 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
{
	unsigned long start;
	int bit, bit_max;
	unsigned free_blocks, group_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	if (bh) {
		J_ASSERT_BH(bh, buffer_locked(bh));

		/* If checksum is bad mark all blocks used to prevent allocation
		 * essentially implementing a per-group read-only flag. */
		if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
			ext4_error(sb, __FUNCTION__,
63
				  "Checksum bad for group %lu\n", block_group);
A
Andreas Dilger 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
			gdp->bg_free_blocks_count = 0;
			gdp->bg_free_inodes_count = 0;
			gdp->bg_itable_unused = 0;
			memset(bh->b_data, 0xff, sb->s_blocksize);
			return 0;
		}
		memset(bh->b_data, 0, sb->s_blocksize);
	}

	/* Check for superblock and gdt backups in this group */
	bit_max = ext4_bg_has_super(sb, block_group);

	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
	    block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
			  sbi->s_desc_per_block) {
		if (bit_max) {
			bit_max += ext4_bg_num_gdb(sb, block_group);
			bit_max +=
				le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
		}
	} else { /* For META_BG_BLOCK_GROUPS */
		int group_rel = (block_group -
				 le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
				EXT4_DESC_PER_BLOCK(sb);
		if (group_rel == 0 || group_rel == 1 ||
		    (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
			bit_max += 1;
	}

	if (block_group == sbi->s_groups_count - 1) {
		/*
		 * Even though mke2fs always initialize first and last group
		 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
		 * to make sure we calculate the right free blocks
		 */
		group_blocks = ext4_blocks_count(sbi->s_es) -
			le32_to_cpu(sbi->s_es->s_first_data_block) -
			(EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
	} else {
		group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
	}

	free_blocks = group_blocks - bit_max;

	if (bh) {
		for (bit = 0; bit < bit_max; bit++)
			ext4_set_bit(bit, bh->b_data);

		start = block_group * EXT4_BLOCKS_PER_GROUP(sb) +
			le32_to_cpu(sbi->s_es->s_first_data_block);

		/* Set bits for block and inode bitmaps, and inode table */
		ext4_set_bit(ext4_block_bitmap(sb, gdp) - start, bh->b_data);
		ext4_set_bit(ext4_inode_bitmap(sb, gdp) - start, bh->b_data);
118
		for (bit = (ext4_inode_table(sb, gdp) - start),
A
Andreas Dilger 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
		     bit_max = bit + sbi->s_itb_per_group; bit < bit_max; bit++)
			ext4_set_bit(bit, bh->b_data);

		/*
		 * Also if the number of blocks within the group is
		 * less than the blocksize * 8 ( which is the size
		 * of bitmap ), set rest of the block bitmap to 1
		 */
		mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
	}

	return free_blocks - sbi->s_itb_per_group - 2;
}


134 135 136 137 138 139 140 141
/*
 * The free blocks are managed by bitmaps.  A file system contains several
 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
 * block for inodes, N blocks for the inode table and data blocks.
 *
 * The file system contains group descriptors which are located after the
 * super block.  Each descriptor contains the number of the bitmap block and
 * the free blocks count in the block.  The descriptors are loaded in memory
142
 * when a file system is mounted (see ext4_fill_super).
143 144 145 146 147 148
 */


#define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)

/**
149
 * ext4_get_group_desc() -- load group descriptor from disk
150 151 152 153 154
 * @sb:			super block
 * @block_group:	given block group
 * @bh:			pointer to the buffer head to store the block
 *			group descriptor
 */
155
struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
156
					     ext4_group_t block_group,
157 158 159 160
					     struct buffer_head ** bh)
{
	unsigned long group_desc;
	unsigned long offset;
161 162
	struct ext4_group_desc * desc;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
163 164

	if (block_group >= sbi->s_groups_count) {
165
		ext4_error (sb, "ext4_get_group_desc",
166
			    "block_group >= groups_count - "
167
			    "block_group = %lu, groups_count = %lu",
168 169 170 171 172 173
			    block_group, sbi->s_groups_count);

		return NULL;
	}
	smp_rmb();

174 175
	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
	offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
176
	if (!sbi->s_group_desc[group_desc]) {
177
		ext4_error (sb, "ext4_get_group_desc",
178
			    "Group descriptor not loaded - "
179
			    "block_group = %lu, group_desc = %lu, desc = %lu",
180 181 182 183
			     block_group, group_desc, offset);
		return NULL;
	}

184 185 186
	desc = (struct ext4_group_desc *)(
		(__u8 *)sbi->s_group_desc[group_desc]->b_data +
		offset * EXT4_DESC_SIZE(sb));
187 188
	if (bh)
		*bh = sbi->s_group_desc[group_desc];
189
	return desc;
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static int ext4_valid_block_bitmap(struct super_block *sb,
					struct ext4_group_desc *desc,
					unsigned int block_group,
					struct buffer_head *bh)
{
	ext4_grpblk_t offset;
	ext4_grpblk_t next_zero_bit;
	ext4_fsblk_t bitmap_blk;
	ext4_fsblk_t group_first_block;

	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
		/* with FLEX_BG, the inode/block bitmaps and itable
		 * blocks may not be in the group at all
		 * so the bitmap validation will be skipped for those groups
		 * or it has to also read the block group where the bitmaps
		 * are located to verify they are set.
		 */
		return 1;
	}
	group_first_block = ext4_group_first_block_no(sb, block_group);

	/* check whether block bitmap block number is set */
	bitmap_blk = ext4_block_bitmap(sb, desc);
	offset = bitmap_blk - group_first_block;
	if (!ext4_test_bit(offset, bh->b_data))
		/* bad block bitmap */
		goto err_out;

	/* check whether the inode bitmap block number is set */
	bitmap_blk = ext4_inode_bitmap(sb, desc);
	offset = bitmap_blk - group_first_block;
	if (!ext4_test_bit(offset, bh->b_data))
		/* bad block bitmap */
		goto err_out;

	/* check whether the inode table block number is set */
	bitmap_blk = ext4_inode_table(sb, desc);
	offset = bitmap_blk - group_first_block;
	next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
				offset + EXT4_SB(sb)->s_itb_per_group,
				offset);
	if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
		/* good bitmap for inode tables */
		return 1;

err_out:
	ext4_error(sb, __FUNCTION__,
			"Invalid block bitmap - "
			"block_group = %d, block = %llu",
			block_group, bitmap_blk);
	return 0;
}
244 245 246 247 248
/**
 * read_block_bitmap()
 * @sb:			super block
 * @block_group:	given block group
 *
249 250
 * Read the bitmap for a given block_group,and validate the
 * bits for block/inode/inode tables are set in the bitmaps
251 252 253
 *
 * Return buffer_head on success or NULL in case of failure.
 */
A
Andreas Dilger 已提交
254
struct buffer_head *
255
read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
256
{
257
	struct ext4_group_desc * desc;
258
	struct buffer_head * bh = NULL;
259
	ext4_fsblk_t bitmap_blk;
260

A
Andreas Dilger 已提交
261
	desc = ext4_get_group_desc(sb, block_group, NULL);
262
	if (!desc)
263 264
		return NULL;
	bitmap_blk = ext4_block_bitmap(sb, desc);
265 266 267 268 269 270 271 272 273 274 275
	bh = sb_getblk(sb, bitmap_blk);
	if (unlikely(!bh)) {
		ext4_error(sb, __FUNCTION__,
			    "Cannot read block bitmap - "
			    "block_group = %d, block_bitmap = %llu",
			    (int)block_group, (unsigned long long)bitmap_blk);
		return NULL;
	}
	if (bh_uptodate_or_lock(bh))
		return bh;

A
Andreas Dilger 已提交
276
	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
277 278 279 280
		ext4_init_block_bitmap(sb, bh, block_group, desc);
		set_buffer_uptodate(bh);
		unlock_buffer(bh);
		return bh;
A
Andreas Dilger 已提交
281
	}
282 283 284
	if (bh_submit_read(bh) < 0) {
		put_bh(bh);
		ext4_error(sb, __FUNCTION__,
285
			    "Cannot read block bitmap - "
286 287 288 289 290 291 292 293 294
			    "block_group = %d, block_bitmap = %llu",
			    (int)block_group, (unsigned long long)bitmap_blk);
		return NULL;
	}
	if (!ext4_valid_block_bitmap(sb, desc, block_group, bh)) {
		put_bh(bh);
		return NULL;
	}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	return bh;
}
/*
 * The reservation window structure operations
 * --------------------------------------------
 * Operations include:
 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
 *
 * We use a red-black tree to represent per-filesystem reservation
 * windows.
 *
 */

/**
 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
 * @rb_root:		root of per-filesystem reservation rb tree
 * @verbose:		verbose mode
 * @fn:			function which wishes to dump the reservation map
 *
 * If verbose is turned on, it will print the whole block reservation
 * windows(start, end).	Otherwise, it will only print out the "bad" windows,
 * those windows that overlap with their immediate neighbors.
 */
#if 1
static void __rsv_window_dump(struct rb_root *root, int verbose,
			      const char *fn)
{
	struct rb_node *n;
323
	struct ext4_reserve_window_node *rsv, *prev;
324 325 326 327 328 329 330 331 332
	int bad;

restart:
	n = rb_first(root);
	bad = 0;
	prev = NULL;

	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
	while (n) {
333
		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
334 335
		if (verbose)
			printk("reservation window 0x%p "
336
			       "start:  %llu, end:  %llu\n",
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
			       rsv, rsv->rsv_start, rsv->rsv_end);
		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
			printk("Bad reservation %p (start >= end)\n",
			       rsv);
			bad = 1;
		}
		if (prev && prev->rsv_end >= rsv->rsv_start) {
			printk("Bad reservation %p (prev->end >= start)\n",
			       rsv);
			bad = 1;
		}
		if (bad) {
			if (!verbose) {
				printk("Restarting reservation walk in verbose mode\n");
				verbose = 1;
				goto restart;
			}
		}
		n = rb_next(n);
		prev = rsv;
	}
	printk("Window map complete.\n");
	if (bad)
		BUG();
}
#define rsv_window_dump(root, verbose) \
	__rsv_window_dump((root), (verbose), __FUNCTION__)
#else
#define rsv_window_dump(root, verbose) do {} while (0)
#endif

/**
 * goal_in_my_reservation()
 * @rsv:		inode's reservation window
 * @grp_goal:		given goal block relative to the allocation block group
 * @group:		the current allocation block group
 * @sb:			filesystem super block
 *
 * Test if the given goal block (group relative) is within the file's
 * own block reservation window range.
 *
 * If the reservation window is outside the goal allocation group, return 0;
 * grp_goal (given goal block) could be -1, which means no specific
 * goal block. In this case, always return 1.
 * If the goal block is within the reservation window, return 1;
 * otherwise, return 0;
 */
static int
385
goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
386
			ext4_group_t group, struct super_block *sb)
387
{
388
	ext4_fsblk_t group_first_block, group_last_block;
389

390 391
	group_first_block = ext4_group_first_block_no(sb, group);
	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	if ((rsv->_rsv_start > group_last_block) ||
	    (rsv->_rsv_end < group_first_block))
		return 0;
	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
		|| (grp_goal + group_first_block > rsv->_rsv_end)))
		return 0;
	return 1;
}

/**
 * search_reserve_window()
 * @rb_root:		root of reservation tree
 * @goal:		target allocation block
 *
 * Find the reserved window which includes the goal, or the previous one
 * if the goal is not in any window.
 * Returns NULL if there are no windows or if all windows start after the goal.
 */
411 412
static struct ext4_reserve_window_node *
search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
413 414
{
	struct rb_node *n = root->rb_node;
415
	struct ext4_reserve_window_node *rsv;
416 417 418 419 420

	if (!n)
		return NULL;

	do {
421
		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

		if (goal < rsv->rsv_start)
			n = n->rb_left;
		else if (goal > rsv->rsv_end)
			n = n->rb_right;
		else
			return rsv;
	} while (n);
	/*
	 * We've fallen off the end of the tree: the goal wasn't inside
	 * any particular node.  OK, the previous node must be to one
	 * side of the interval containing the goal.  If it's the RHS,
	 * we need to back up one.
	 */
	if (rsv->rsv_start > goal) {
		n = rb_prev(&rsv->rsv_node);
438
		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
439 440 441 442 443
	}
	return rsv;
}

/**
444
 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
445 446 447 448 449
 * @sb:			super block
 * @rsv:		reservation window to add
 *
 * Must be called with rsv_lock hold.
 */
450 451
void ext4_rsv_window_add(struct super_block *sb,
		    struct ext4_reserve_window_node *rsv)
452
{
453
	struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
454
	struct rb_node *node = &rsv->rsv_node;
455
	ext4_fsblk_t start = rsv->rsv_start;
456 457 458

	struct rb_node ** p = &root->rb_node;
	struct rb_node * parent = NULL;
459
	struct ext4_reserve_window_node *this;
460 461 462 463

	while (*p)
	{
		parent = *p;
464
		this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

		if (start < this->rsv_start)
			p = &(*p)->rb_left;
		else if (start > this->rsv_end)
			p = &(*p)->rb_right;
		else {
			rsv_window_dump(root, 1);
			BUG();
		}
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
}

/**
481
 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
482 483 484 485 486 487 488 489
 * @sb:			super block
 * @rsv:		reservation window to remove
 *
 * Mark the block reservation window as not allocated, and unlink it
 * from the filesystem reservation window rb tree. Must be called with
 * rsv_lock hold.
 */
static void rsv_window_remove(struct super_block *sb,
490
			      struct ext4_reserve_window_node *rsv)
491
{
492 493
	rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
	rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
494
	rsv->rsv_alloc_hit = 0;
495
	rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
496 497 498 499 500 501
}

/*
 * rsv_is_empty() -- Check if the reservation window is allocated.
 * @rsv:		given reservation window to check
 *
502
 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
503
 */
504
static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
505 506
{
	/* a valid reservation end block could not be 0 */
507
	return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
508 509 510
}

/**
511
 * ext4_init_block_alloc_info()
512 513 514
 * @inode:		file inode structure
 *
 * Allocate and initialize the	reservation window structure, and
515
 * link the window to the ext4 inode structure at last
516 517
 *
 * The reservation window structure is only dynamically allocated
518 519
 * and linked to ext4 inode the first time the open file
 * needs a new block. So, before every ext4_new_block(s) call, for
520 521 522 523 524
 * regular files, we should check whether the reservation window
 * structure exists or not. In the latter case, this function is called.
 * Fail to do so will result in block reservation being turned off for that
 * open file.
 *
525
 * This function is called from ext4_get_blocks_handle(), also called
526 527 528
 * when setting the reservation window size through ioctl before the file
 * is open for write (needs block allocation).
 *
529
 * Needs down_write(i_data_sem) protection prior to call this function.
530
 */
531
void ext4_init_block_alloc_info(struct inode *inode)
532
{
533 534
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
535 536 537 538
	struct super_block *sb = inode->i_sb;

	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
	if (block_i) {
539
		struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
540

541 542
		rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
		rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
543 544 545 546 547 548 549 550 551

		/*
		 * if filesystem is mounted with NORESERVATION, the goal
		 * reservation window size is set to zero to indicate
		 * block reservation is off
		 */
		if (!test_opt(sb, RESERVATION))
			rsv->rsv_goal_size = 0;
		else
552
			rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
553 554 555 556 557 558 559 560
		rsv->rsv_alloc_hit = 0;
		block_i->last_alloc_logical_block = 0;
		block_i->last_alloc_physical_block = 0;
	}
	ei->i_block_alloc_info = block_i;
}

/**
561
 * ext4_discard_reservation()
562 563 564 565 566 567
 * @inode:		inode
 *
 * Discard(free) block reservation window on last file close, or truncate
 * or at last iput().
 *
 * It is being called in three cases:
568 569 570
 *	ext4_release_file(): last writer close the file
 *	ext4_clear_inode(): last iput(), when nobody link to this file.
 *	ext4_truncate(): when the block indirect map is about to change.
571 572
 *
 */
573
void ext4_discard_reservation(struct inode *inode)
574
{
575 576 577 578
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
	struct ext4_reserve_window_node *rsv;
	spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
579

580 581
	ext4_mb_discard_inode_preallocations(inode);

582 583 584 585 586 587 588 589 590 591 592 593 594
	if (!block_i)
		return;

	rsv = &block_i->rsv_window_node;
	if (!rsv_is_empty(&rsv->rsv_window)) {
		spin_lock(rsv_lock);
		if (!rsv_is_empty(&rsv->rsv_window))
			rsv_window_remove(inode->i_sb, rsv);
		spin_unlock(rsv_lock);
	}
}

/**
595
 * ext4_free_blocks_sb() -- Free given blocks and update quota
596 597 598 599 600 601
 * @handle:			handle to this transaction
 * @sb:				super block
 * @block:			start physcial block to free
 * @count:			number of blocks to free
 * @pdquot_freed_blocks:	pointer to quota
 */
602 603
void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
			 ext4_fsblk_t block, unsigned long count,
604 605 606 607
			 unsigned long *pdquot_freed_blocks)
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gd_bh;
608
	ext4_group_t block_group;
609
	ext4_grpblk_t bit;
610 611
	unsigned long i;
	unsigned long overflow;
612 613 614
	struct ext4_group_desc * desc;
	struct ext4_super_block * es;
	struct ext4_sb_info *sbi;
615
	int err = 0, ret;
616
	ext4_grpblk_t group_freed;
617 618

	*pdquot_freed_blocks = 0;
619
	sbi = EXT4_SB(sb);
620 621 622
	es = sbi->s_es;
	if (block < le32_to_cpu(es->s_first_data_block) ||
	    block + count < block ||
L
Laurent Vivier 已提交
623
	    block + count > ext4_blocks_count(es)) {
624
		ext4_error (sb, "ext4_free_blocks",
625
			    "Freeing blocks not in datazone - "
626
			    "block = %llu, count = %lu", block, count);
627 628 629
		goto error_return;
	}

L
Laurent Vivier 已提交
630
	ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
631 632 633

do_more:
	overflow = 0;
634
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
635 636 637 638
	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
639 640
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
641 642 643 644 645 646
		count -= overflow;
	}
	brelse(bitmap_bh);
	bitmap_bh = read_block_bitmap(sb, block_group);
	if (!bitmap_bh)
		goto error_return;
647
	desc = ext4_get_group_desc (sb, block_group, &gd_bh);
648 649 650
	if (!desc)
		goto error_return;

651 652 653 654
	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(sb, desc),
655
		     sbi->s_itb_per_group)) {
656
		ext4_error (sb, "ext4_free_blocks",
657
			    "Freeing blocks in system zones - "
658
			    "Block = %llu, count = %lu",
659
			    block, count);
660 661
		goto error_return;
	}
662 663 664 665 666 667 668

	/*
	 * We are about to start releasing blocks in the bitmap,
	 * so we need undo access.
	 */
	/* @@@ check errors */
	BUFFER_TRACE(bitmap_bh, "getting undo access");
669
	err = ext4_journal_get_undo_access(handle, bitmap_bh);
670 671 672 673 674 675 676 677 678
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
679
	err = ext4_journal_get_write_access(handle, gd_bh);
680 681 682 683 684 685 686 687 688
	if (err)
		goto error_return;

	jbd_lock_bh_state(bitmap_bh);

	for (i = 0, group_freed = 0; i < count; i++) {
		/*
		 * An HJ special.  This is expensive...
		 */
689
#ifdef CONFIG_JBD2_DEBUG
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
		jbd_unlock_bh_state(bitmap_bh);
		{
			struct buffer_head *debug_bh;
			debug_bh = sb_find_get_block(sb, block + i);
			if (debug_bh) {
				BUFFER_TRACE(debug_bh, "Deleted!");
				if (!bh2jh(bitmap_bh)->b_committed_data)
					BUFFER_TRACE(debug_bh,
						"No commited data in bitmap");
				BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
				__brelse(debug_bh);
			}
		}
		jbd_lock_bh_state(bitmap_bh);
#endif
		if (need_resched()) {
			jbd_unlock_bh_state(bitmap_bh);
			cond_resched();
			jbd_lock_bh_state(bitmap_bh);
		}
		/* @@@ This prevents newly-allocated data from being
		 * freed and then reallocated within the same
		 * transaction.
		 *
		 * Ideally we would want to allow that to happen, but to
715
		 * do so requires making jbd2_journal_forget() capable of
716 717 718 719
		 * revoking the queued write of a data block, which
		 * implies blocking on the journal lock.  *forget()
		 * cannot block due to truncate races.
		 *
720
		 * Eventually we can fix this by making jbd2_journal_forget()
721 722 723 724 725 726 727 728 729 730
		 * return a status indicating whether or not it was able
		 * to revoke the buffer.  On successful revoke, it is
		 * safe not to set the allocation bit in the committed
		 * bitmap, because we know that there is no outstanding
		 * activity on the buffer any more and so it is safe to
		 * reallocate it.
		 */
		BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
		J_ASSERT_BH(bitmap_bh,
				bh2jh(bitmap_bh)->b_committed_data != NULL);
731
		ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
732 733 734 735 736 737 738 739
				bh2jh(bitmap_bh)->b_committed_data);

		/*
		 * We clear the bit in the bitmap after setting the committed
		 * data bit, because this is the reverse order to that which
		 * the allocator uses.
		 */
		BUFFER_TRACE(bitmap_bh, "clear bit");
740
		if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
741 742
						bit + i, bitmap_bh->b_data)) {
			jbd_unlock_bh_state(bitmap_bh);
743
			ext4_error(sb, __FUNCTION__,
744
				   "bit already cleared for block %llu",
L
Laurent Vivier 已提交
745
				   (ext4_fsblk_t)(block + i));
746 747 748 749 750 751 752 753 754
			jbd_lock_bh_state(bitmap_bh);
			BUFFER_TRACE(bitmap_bh, "bit already cleared");
		} else {
			group_freed++;
		}
	}
	jbd_unlock_bh_state(bitmap_bh);

	spin_lock(sb_bgl_lock(sbi, block_group));
M
Marcin Slusarz 已提交
755
	le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
A
Andreas Dilger 已提交
756
	desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
757
	spin_unlock(sb_bgl_lock(sbi, block_group));
P
Peter Zijlstra 已提交
758
	percpu_counter_add(&sbi->s_freeblocks_counter, count);
759 760 761

	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
762
	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
763 764 765

	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
766
	ret = ext4_journal_dirty_metadata(handle, gd_bh);
767 768 769 770 771 772 773 774 775 776 777
	if (!err) err = ret;
	*pdquot_freed_blocks += group_freed;

	if (overflow && !err) {
		block += count;
		count = overflow;
		goto do_more;
	}
	sb->s_dirt = 1;
error_return:
	brelse(bitmap_bh);
778
	ext4_std_error(sb, err);
779 780 781 782
	return;
}

/**
783
 * ext4_free_blocks() -- Free given blocks and update quota
784 785 786 787
 * @handle:		handle for this transaction
 * @inode:		inode
 * @block:		start physical block to free
 * @count:		number of blocks to count
788
 * @metadata: 		Are these metadata blocks
789
 */
790
void ext4_free_blocks(handle_t *handle, struct inode *inode,
791 792
			ext4_fsblk_t block, unsigned long count,
			int metadata)
793 794 795 796
{
	struct super_block * sb;
	unsigned long dquot_freed_blocks;

797 798 799 800 801 802
	/* this isn't the right place to decide whether block is metadata
	 * inode.c/extents.c knows better, but for safety ... */
	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
			ext4_should_journal_data(inode))
		metadata = 1;

803
	sb = inode->i_sb;
804 805 806 807 808 809 810

	if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
		ext4_free_blocks_sb(handle, sb, block, count,
						&dquot_freed_blocks);
	else
		ext4_mb_free_blocks(handle, inode, block, count,
						metadata, &dquot_freed_blocks);
811 812 813 814 815 816
	if (dquot_freed_blocks)
		DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
	return;
}

/**
817
 * ext4_test_allocatable()
818 819 820
 * @nr:			given allocation block group
 * @bh:			bufferhead contains the bitmap of the given block group
 *
821
 * For ext4 allocations, we must not reuse any blocks which are
822 823 824 825 826 827 828 829 830 831 832 833 834 835
 * allocated in the bitmap buffer's "last committed data" copy.  This
 * prevents deletes from freeing up the page for reuse until we have
 * committed the delete transaction.
 *
 * If we didn't do this, then deleting something and reallocating it as
 * data would allow the old block to be overwritten before the
 * transaction committed (because we force data to disk before commit).
 * This would lead to corruption if we crashed between overwriting the
 * data and committing the delete.
 *
 * @@@ We may want to make this allocation behaviour conditional on
 * data-writes at some point, and disable it for metadata allocations or
 * sync-data inodes.
 */
836
static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
837 838 839 840
{
	int ret;
	struct journal_head *jh = bh2jh(bh);

841
	if (ext4_test_bit(nr, bh->b_data))
842 843 844 845 846 847
		return 0;

	jbd_lock_bh_state(bh);
	if (!jh->b_committed_data)
		ret = 1;
	else
848
		ret = !ext4_test_bit(nr, jh->b_committed_data);
849 850 851 852 853 854 855 856 857 858 859 860 861 862
	jbd_unlock_bh_state(bh);
	return ret;
}

/**
 * bitmap_search_next_usable_block()
 * @start:		the starting block (group relative) of the search
 * @bh:			bufferhead contains the block group bitmap
 * @maxblocks:		the ending block (group relative) of the reservation
 *
 * The bitmap search --- search forward alternately through the actual
 * bitmap on disk and the last-committed copy in journal, until we find a
 * bit free in both bitmaps.
 */
863 864 865
static ext4_grpblk_t
bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
					ext4_grpblk_t maxblocks)
866
{
867
	ext4_grpblk_t next;
868 869 870
	struct journal_head *jh = bh2jh(bh);

	while (start < maxblocks) {
871
		next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
872 873
		if (next >= maxblocks)
			return -1;
874
		if (ext4_test_allocatable(next, bh))
875 876 877
			return next;
		jbd_lock_bh_state(bh);
		if (jh->b_committed_data)
878
			start = ext4_find_next_zero_bit(jh->b_committed_data,
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
							maxblocks, next);
		jbd_unlock_bh_state(bh);
	}
	return -1;
}

/**
 * find_next_usable_block()
 * @start:		the starting block (group relative) to find next
 *			allocatable block in bitmap.
 * @bh:			bufferhead contains the block group bitmap
 * @maxblocks:		the ending block (group relative) for the search
 *
 * Find an allocatable block in a bitmap.  We honor both the bitmap and
 * its last-committed copy (if that exists), and perform the "most
 * appropriate allocation" algorithm of looking for a free block near
 * the initial goal; then for a free byte somewhere in the bitmap; then
 * for any free bit in the bitmap.
 */
898 899 900
static ext4_grpblk_t
find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
			ext4_grpblk_t maxblocks)
901
{
902
	ext4_grpblk_t here, next;
903 904 905 906 907 908 909 910
	char *p, *r;

	if (start > 0) {
		/*
		 * The goal was occupied; search forward for a free
		 * block within the next XX blocks.
		 *
		 * end_goal is more or less random, but it has to be
911
		 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
912 913
		 * next 64-bit boundary is simple..
		 */
914
		ext4_grpblk_t end_goal = (start + 63) & ~63;
915 916
		if (end_goal > maxblocks)
			end_goal = maxblocks;
917 918
		here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
		if (here < end_goal && ext4_test_allocatable(here, bh))
919
			return here;
920
		ext4_debug("Bit not found near goal\n");
921 922 923 924 925 926 927
	}

	here = start;
	if (here < 0)
		here = 0;

	p = ((char *)bh->b_data) + (here >> 3);
928
	r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
929 930
	next = (r - ((char *)bh->b_data)) << 3;

931
	if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
		return next;

	/*
	 * The bitmap search --- search forward alternately through the actual
	 * bitmap and the last-committed copy until we find a bit free in
	 * both
	 */
	here = bitmap_search_next_usable_block(here, bh, maxblocks);
	return here;
}

/**
 * claim_block()
 * @block:		the free block (group relative) to allocate
 * @bh:			the bufferhead containts the block group bitmap
 *
 * We think we can allocate this block in this bitmap.  Try to set the bit.
 * If that succeeds then check that nobody has allocated and then freed the
 * block since we saw that is was not marked in b_committed_data.  If it _was_
 * allocated and freed then clear the bit in the bitmap again and return
 * zero (failure).
 */
static inline int
955
claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
956 957 958 959
{
	struct journal_head *jh = bh2jh(bh);
	int ret;

960
	if (ext4_set_bit_atomic(lock, block, bh->b_data))
961 962
		return 0;
	jbd_lock_bh_state(bh);
963 964
	if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
		ext4_clear_bit_atomic(lock, block, bh->b_data);
965 966 967 968 969 970 971 972 973
		ret = 0;
	} else {
		ret = 1;
	}
	jbd_unlock_bh_state(bh);
	return ret;
}

/**
974
 * ext4_try_to_allocate()
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
 * @sb:			superblock
 * @handle:		handle to this transaction
 * @group:		given allocation block group
 * @bitmap_bh:		bufferhead holds the block bitmap
 * @grp_goal:		given target block within the group
 * @count:		target number of blocks to allocate
 * @my_rsv:		reservation window
 *
 * Attempt to allocate blocks within a give range. Set the range of allocation
 * first, then find the first free bit(s) from the bitmap (within the range),
 * and at last, allocate the blocks by claiming the found free bit as allocated.
 *
 * To set the range of this allocation:
 *	if there is a reservation window, only try to allocate block(s) from the
 *	file's own reservation window;
 *	Otherwise, the allocation range starts from the give goal block, ends at
 *	the block group's last block.
 *
 * If we failed to allocate the desired block then we may end up crossing to a
 * new bitmap.  In that case we must release write access to the old one via
995
 * ext4_journal_release_buffer(), else we'll run out of credits.
996
 */
997
static ext4_grpblk_t
998 999 1000 1001
ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
			ext4_group_t group, struct buffer_head *bitmap_bh,
			ext4_grpblk_t grp_goal, unsigned long *count,
			struct ext4_reserve_window *my_rsv)
1002
{
1003 1004
	ext4_fsblk_t group_first_block;
	ext4_grpblk_t start, end;
1005 1006 1007 1008
	unsigned long num = 0;

	/* we do allocation within the reservation window if we have a window */
	if (my_rsv) {
1009
		group_first_block = ext4_group_first_block_no(sb, group);
1010 1011 1012 1013 1014 1015
		if (my_rsv->_rsv_start >= group_first_block)
			start = my_rsv->_rsv_start - group_first_block;
		else
			/* reservation window cross group boundary */
			start = 0;
		end = my_rsv->_rsv_end - group_first_block + 1;
1016
		if (end > EXT4_BLOCKS_PER_GROUP(sb))
1017
			/* reservation window crosses group boundary */
1018
			end = EXT4_BLOCKS_PER_GROUP(sb);
1019 1020 1021 1022 1023 1024 1025 1026 1027
		if ((start <= grp_goal) && (grp_goal < end))
			start = grp_goal;
		else
			grp_goal = -1;
	} else {
		if (grp_goal > 0)
			start = grp_goal;
		else
			start = 0;
1028
		end = EXT4_BLOCKS_PER_GROUP(sb);
1029 1030
	}

1031
	BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1032 1033

repeat:
1034
	if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1035 1036 1037 1038 1039 1040 1041
		grp_goal = find_next_usable_block(start, bitmap_bh, end);
		if (grp_goal < 0)
			goto fail_access;
		if (!my_rsv) {
			int i;

			for (i = 0; i < 7 && grp_goal > start &&
1042
					ext4_test_allocatable(grp_goal - 1,
1043 1044 1045 1046 1047 1048 1049
								bitmap_bh);
					i++, grp_goal--)
				;
		}
	}
	start = grp_goal;

1050
	if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		grp_goal, bitmap_bh)) {
		/*
		 * The block was allocated by another thread, or it was
		 * allocated and then freed by another thread
		 */
		start++;
		grp_goal++;
		if (start >= end)
			goto fail_access;
		goto repeat;
	}
	num++;
	grp_goal++;
	while (num < *count && grp_goal < end
1065 1066
		&& ext4_test_allocatable(grp_goal, bitmap_bh)
		&& claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
				grp_goal, bitmap_bh)) {
		num++;
		grp_goal++;
	}
	*count = num;
	return grp_goal - num;
fail_access:
	*count = num;
	return -1;
}

/**
 *	find_next_reservable_window():
 *		find a reservable space within the given range.
 *		It does not allocate the reservation window for now:
 *		alloc_new_reservation() will do the work later.
 *
 *	@search_head: the head of the searching list;
 *		This is not necessarily the list head of the whole filesystem
 *
 *		We have both head and start_block to assist the search
 *		for the reservable space. The list starts from head,
 *		but we will shift to the place where start_block is,
 *		then start from there, when looking for a reservable space.
 *
 *	@size: the target new reservation window size
 *
 *	@group_first_block: the first block we consider to start
 *			the real search from
 *
 *	@last_block:
 *		the maximum block number that our goal reservable space
 *		could start from. This is normally the last block in this
 *		group. The search will end when we found the start of next
 *		possible reservable space is out of this boundary.
 *		This could handle the cross boundary reservation window
 *		request.
 *
 *	basically we search from the given range, rather than the whole
 *	reservation double linked list, (start_block, last_block)
 *	to find a free region that is of my size and has not
 *	been reserved.
 *
 */
static int find_next_reservable_window(
1112 1113
				struct ext4_reserve_window_node *search_head,
				struct ext4_reserve_window_node *my_rsv,
1114
				struct super_block * sb,
1115 1116
				ext4_fsblk_t start_block,
				ext4_fsblk_t last_block)
1117 1118
{
	struct rb_node *next;
1119 1120
	struct ext4_reserve_window_node *rsv, *prev;
	ext4_fsblk_t cur;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	int size = my_rsv->rsv_goal_size;

	/* TODO: make the start of the reservation window byte-aligned */
	/* cur = *start_block & ~7;*/
	cur = start_block;
	rsv = search_head;
	if (!rsv)
		return -1;

	while (1) {
		if (cur <= rsv->rsv_end)
			cur = rsv->rsv_end + 1;

		/* TODO?
		 * in the case we could not find a reservable space
		 * that is what is expected, during the re-search, we could
		 * remember what's the largest reservable space we could have
		 * and return that one.
		 *
		 * For now it will fail if we could not find the reservable
		 * space with expected-size (or more)...
		 */
		if (cur > last_block)
			return -1;		/* fail */

		prev = rsv;
		next = rb_next(&rsv->rsv_node);
1148
		rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

		/*
		 * Reached the last reservation, we can just append to the
		 * previous one.
		 */
		if (!next)
			break;

		if (cur + size <= rsv->rsv_start) {
			/*
			 * Found a reserveable space big enough.  We could
			 * have a reservation across the group boundary here
			 */
			break;
		}
	}
	/*
	 * we come here either :
	 * when we reach the end of the whole list,
	 * and there is empty reservable space after last entry in the list.
	 * append it to the end of the list.
	 *
	 * or we found one reservable space in the middle of the list,
	 * return the reservation window that we could append to.
	 * succeed.
	 */

	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
		rsv_window_remove(sb, my_rsv);

	/*
	 * Let's book the whole avaliable window for now.  We will check the
	 * disk bitmap later and then, if there are free blocks then we adjust
	 * the window size if it's larger than requested.
	 * Otherwise, we will remove this node from the tree next time
	 * call find_next_reservable_window.
	 */
	my_rsv->rsv_start = cur;
	my_rsv->rsv_end = cur + size - 1;
	my_rsv->rsv_alloc_hit = 0;

	if (prev != my_rsv)
1191
		ext4_rsv_window_add(sb, my_rsv);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	return 0;
}

/**
 *	alloc_new_reservation()--allocate a new reservation window
 *
 *		To make a new reservation, we search part of the filesystem
 *		reservation list (the list that inside the group). We try to
 *		allocate a new reservation window near the allocation goal,
 *		or the beginning of the group, if there is no goal.
 *
 *		We first find a reservable space after the goal, then from
 *		there, we check the bitmap for the first free block after
 *		it. If there is no free block until the end of group, then the
 *		whole group is full, we failed. Otherwise, check if the free
 *		block is inside the expected reservable space, if so, we
 *		succeed.
 *		If the first free block is outside the reservable space, then
 *		start from the first free block, we search for next available
 *		space, and go on.
 *
 *	on succeed, a new reservation will be found and inserted into the list
 *	It contains at least one free block, and it does not overlap with other
 *	reservation windows.
 *
 *	failed: we failed to find a reservation window in this group
 *
 *	@rsv: the reservation
 *
 *	@grp_goal: The goal (group-relative).  It is where the search for a
 *		free reservable space should start from.
 *		if we have a grp_goal(grp_goal >0 ), then start from there,
 *		no grp_goal(grp_goal = -1), we start from the first block
 *		of the group.
 *
 *	@sb: the super block
 *	@group: the group we are trying to allocate in
 *	@bitmap_bh: the block group block bitmap
 *
 */
1233 1234
static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
		ext4_grpblk_t grp_goal, struct super_block *sb,
1235
		ext4_group_t group, struct buffer_head *bitmap_bh)
1236
{
1237 1238 1239 1240
	struct ext4_reserve_window_node *search_head;
	ext4_fsblk_t group_first_block, group_end_block, start_block;
	ext4_grpblk_t first_free_block;
	struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1241 1242
	unsigned long size;
	int ret;
1243
	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1244

1245 1246
	group_first_block = ext4_group_first_block_no(sb, group);
	group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

	if (grp_goal < 0)
		start_block = group_first_block;
	else
		start_block = grp_goal + group_first_block;

	size = my_rsv->rsv_goal_size;

	if (!rsv_is_empty(&my_rsv->rsv_window)) {
		/*
		 * if the old reservation is cross group boundary
		 * and if the goal is inside the old reservation window,
		 * we will come here when we just failed to allocate from
		 * the first part of the window. We still have another part
		 * that belongs to the next group. In this case, there is no
		 * point to discard our window and try to allocate a new one
		 * in this group(which will fail). we should
		 * keep the reservation window, just simply move on.
		 *
		 * Maybe we could shift the start block of the reservation
		 * window to the first block of next group.
		 */

		if ((my_rsv->rsv_start <= group_end_block) &&
				(my_rsv->rsv_end > group_end_block) &&
				(start_block >= my_rsv->rsv_start))
			return -1;

		if ((my_rsv->rsv_alloc_hit >
		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
			/*
			 * if the previously allocation hit ratio is
			 * greater than 1/2, then we double the size of
			 * the reservation window the next time,
			 * otherwise we keep the same size window
			 */
			size = size * 2;
1284 1285
			if (size > EXT4_MAX_RESERVE_BLOCKS)
				size = EXT4_MAX_RESERVE_BLOCKS;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
			my_rsv->rsv_goal_size= size;
		}
	}

	spin_lock(rsv_lock);
	/*
	 * shift the search start to the window near the goal block
	 */
	search_head = search_reserve_window(fs_rsv_root, start_block);

	/*
	 * find_next_reservable_window() simply finds a reservable window
	 * inside the given range(start_block, group_end_block).
	 *
	 * To make sure the reservation window has a free bit inside it, we
	 * need to check the bitmap after we found a reservable window.
	 */
retry:
	ret = find_next_reservable_window(search_head, my_rsv, sb,
						start_block, group_end_block);

	if (ret == -1) {
		if (!rsv_is_empty(&my_rsv->rsv_window))
			rsv_window_remove(sb, my_rsv);
		spin_unlock(rsv_lock);
		return -1;
	}

	/*
	 * On success, find_next_reservable_window() returns the
	 * reservation window where there is a reservable space after it.
	 * Before we reserve this reservable space, we need
	 * to make sure there is at least a free block inside this region.
	 *
	 * searching the first free bit on the block bitmap and copy of
	 * last committed bitmap alternatively, until we found a allocatable
	 * block. Search start from the start block of the reservable space
	 * we just found.
	 */
	spin_unlock(rsv_lock);
	first_free_block = bitmap_search_next_usable_block(
			my_rsv->rsv_start - group_first_block,
			bitmap_bh, group_end_block - group_first_block + 1);

	if (first_free_block < 0) {
		/*
		 * no free block left on the bitmap, no point
		 * to reserve the space. return failed.
		 */
		spin_lock(rsv_lock);
		if (!rsv_is_empty(&my_rsv->rsv_window))
			rsv_window_remove(sb, my_rsv);
		spin_unlock(rsv_lock);
		return -1;		/* failed */
	}

	start_block = first_free_block + group_first_block;
	/*
	 * check if the first free block is within the
	 * free space we just reserved
	 */
1347
	if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		return 0;		/* success */
	/*
	 * if the first free bit we found is out of the reservable space
	 * continue search for next reservable space,
	 * start from where the free block is,
	 * we also shift the list head to where we stopped last time
	 */
	search_head = my_rsv;
	spin_lock(rsv_lock);
	goto retry;
}

/**
 * try_to_extend_reservation()
 * @my_rsv:		given reservation window
 * @sb:			super block
 * @size:		the delta to extend
 *
 * Attempt to expand the reservation window large enough to have
 * required number of free blocks
 *
1369
 * Since ext4_try_to_allocate() will always allocate blocks within
1370 1371 1372 1373 1374
 * the reservation window range, if the window size is too small,
 * multiple blocks allocation has to stop at the end of the reservation
 * window. To make this more efficient, given the total number of
 * blocks needed and the current size of the window, we try to
 * expand the reservation window size if necessary on a best-effort
1375
 * basis before ext4_new_blocks() tries to allocate blocks,
1376
 */
1377
static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1378 1379
			struct super_block *sb, int size)
{
1380
	struct ext4_reserve_window_node *next_rsv;
1381
	struct rb_node *next;
1382
	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1383 1384 1385 1386 1387 1388 1389 1390 1391

	if (!spin_trylock(rsv_lock))
		return;

	next = rb_next(&my_rsv->rsv_node);

	if (!next)
		my_rsv->rsv_end += size;
	else {
1392
		next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
			my_rsv->rsv_end += size;
		else
			my_rsv->rsv_end = next_rsv->rsv_start - 1;
	}
	spin_unlock(rsv_lock);
}

/**
1403
 * ext4_try_to_allocate_with_rsv()
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
 * @sb:			superblock
 * @handle:		handle to this transaction
 * @group:		given allocation block group
 * @bitmap_bh:		bufferhead holds the block bitmap
 * @grp_goal:		given target block within the group
 * @count:		target number of blocks to allocate
 * @my_rsv:		reservation window
 * @errp:		pointer to store the error code
 *
 * This is the main function used to allocate a new block and its reservation
 * window.
 *
 * Each time when a new block allocation is need, first try to allocate from
 * its own reservation.  If it does not have a reservation window, instead of
 * looking for a free bit on bitmap first, then look up the reservation list to
 * see if it is inside somebody else's reservation window, we try to allocate a
 * reservation window for it starting from the goal first. Then do the block
 * allocation within the reservation window.
 *
 * This will avoid keeping on searching the reservation list again and
 * again when somebody is looking for a free block (without
 * reservation), and there are lots of free blocks, but they are all
 * being reserved.
 *
 * We use a red-black tree for the per-filesystem reservation list.
 *
 */
1431 1432
static ext4_grpblk_t
ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1433
			ext4_group_t group, struct buffer_head *bitmap_bh,
1434 1435
			ext4_grpblk_t grp_goal,
			struct ext4_reserve_window_node * my_rsv,
1436 1437
			unsigned long *count, int *errp)
{
1438 1439
	ext4_fsblk_t group_first_block, group_last_block;
	ext4_grpblk_t ret = 0;
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	int fatal;
	unsigned long num = *count;

	*errp = 0;

	/*
	 * Make sure we use undo access for the bitmap, because it is critical
	 * that we do the frozen_data COW on bitmap buffers in all cases even
	 * if the buffer is in BJ_Forget state in the committing transaction.
	 */
	BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1451
	fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	if (fatal) {
		*errp = fatal;
		return -1;
	}

	/*
	 * we don't deal with reservation when
	 * filesystem is mounted without reservation
	 * or the file is not a regular file
	 * or last attempt to allocate a block with reservation turned on failed
	 */
	if (my_rsv == NULL ) {
1464
		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1465 1466 1467 1468 1469
						grp_goal, count, NULL);
		goto out;
	}
	/*
	 * grp_goal is a group relative block number (if there is a goal)
1470
	 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1471 1472 1473
	 * first block is a filesystem wide block number
	 * first block is the block number of the first block in this group
	 */
1474 1475
	group_first_block = ext4_group_first_block_no(sb, group);
	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

	/*
	 * Basically we will allocate a new block from inode's reservation
	 * window.
	 *
	 * We need to allocate a new reservation window, if:
	 * a) inode does not have a reservation window; or
	 * b) last attempt to allocate a block from existing reservation
	 *    failed; or
	 * c) we come here with a goal and with a reservation window
	 *
	 * We do not need to allocate a new reservation window if we come here
	 * at the beginning with a goal and the goal is inside the window, or
	 * we don't have a goal but already have a reservation window.
	 * then we could go to allocate from the reservation window directly.
	 */
	while (1) {
		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
			!goal_in_my_reservation(&my_rsv->rsv_window,
						grp_goal, group, sb)) {
			if (my_rsv->rsv_goal_size < *count)
				my_rsv->rsv_goal_size = *count;
			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
							group, bitmap_bh);
			if (ret < 0)
				break;			/* failed */

			if (!goal_in_my_reservation(&my_rsv->rsv_window,
							grp_goal, group, sb))
				grp_goal = -1;
1506
		} else if (grp_goal >= 0) {
1507 1508 1509 1510 1511 1512 1513
			int curr = my_rsv->rsv_end -
					(grp_goal + group_first_block) + 1;

			if (curr < *count)
				try_to_extend_reservation(my_rsv, sb,
							*count - curr);
		}
1514 1515 1516

		if ((my_rsv->rsv_start > group_last_block) ||
				(my_rsv->rsv_end < group_first_block)) {
1517
			rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1518 1519
			BUG();
		}
1520
		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
					   grp_goal, &num, &my_rsv->rsv_window);
		if (ret >= 0) {
			my_rsv->rsv_alloc_hit += num;
			*count = num;
			break;				/* succeed */
		}
		num = *count;
	}
out:
	if (ret >= 0) {
		BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
					"bitmap block");
1533
		fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1534 1535 1536 1537 1538 1539 1540 1541
		if (fatal) {
			*errp = fatal;
			return -1;
		}
		return ret;
	}

	BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1542
	ext4_journal_release_buffer(handle, bitmap_bh);
1543 1544 1545 1546
	return ret;
}

/**
1547
 * ext4_has_free_blocks()
1548 1549 1550 1551
 * @sbi:		in-core super block structure.
 *
 * Check if filesystem has at least 1 free block available for allocation.
 */
1552
static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1553
{
1554
	ext4_fsblk_t free_blocks, root_blocks;
1555 1556

	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
L
Laurent Vivier 已提交
1557
	root_blocks = ext4_r_blocks_count(sbi->s_es);
1558 1559 1560 1561 1562 1563 1564 1565 1566
	if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
		sbi->s_resuid != current->fsuid &&
		(sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
		return 0;
	}
	return 1;
}

/**
1567
 * ext4_should_retry_alloc()
1568 1569 1570
 * @sb:			super block
 * @retries		number of attemps has been made
 *
1571
 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1572 1573 1574 1575 1576 1577
 * it is profitable to retry the operation, this function will wait
 * for the current or commiting transaction to complete, and then
 * return TRUE.
 *
 * if the total number of retries exceed three times, return FALSE.
 */
1578
int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1579
{
1580
	if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1581 1582 1583 1584
		return 0;

	jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);

1585
	return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1586 1587 1588
}

/**
1589
 * ext4_new_blocks_old() -- core block(s) allocation function
1590 1591 1592 1593 1594 1595
 * @handle:		handle to this transaction
 * @inode:		file inode
 * @goal:		given target block(filesystem wide)
 * @count:		target number of blocks to allocate
 * @errp:		error code
 *
1596
 * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1597 1598 1599 1600 1601
 * allocate block(s) from the block group contains the goal block first. If that
 * fails, it will try to allocate block(s) from other block groups without
 * any specific goal block.
 *
 */
1602
ext4_fsblk_t ext4_new_blocks_old(handle_t *handle, struct inode *inode,
1603
			ext4_fsblk_t goal, unsigned long *count, int *errp)
1604 1605 1606
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gdp_bh;
1607 1608
	ext4_group_t group_no;
	ext4_group_t goal_group;
1609 1610 1611
	ext4_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
	ext4_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
	ext4_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1612
	ext4_group_t bgi;			/* blockgroup iteration index */
1613 1614
	int fatal = 0, err;
	int performed_allocation = 0;
1615
	ext4_grpblk_t free_blocks;	/* number of free blocks in a group */
1616
	struct super_block *sb;
1617 1618 1619 1620 1621
	struct ext4_group_desc *gdp;
	struct ext4_super_block *es;
	struct ext4_sb_info *sbi;
	struct ext4_reserve_window_node *my_rsv = NULL;
	struct ext4_block_alloc_info *block_i;
1622
	unsigned short windowsz = 0;
1623
	ext4_group_t ngroups;
1624 1625 1626 1627 1628
	unsigned long num = *count;

	*errp = -ENOSPC;
	sb = inode->i_sb;
	if (!sb) {
1629
		printk("ext4_new_block: nonexistent device");
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		return 0;
	}

	/*
	 * Check quota for allocation of this block.
	 */
	if (DQUOT_ALLOC_BLOCK(inode, num)) {
		*errp = -EDQUOT;
		return 0;
	}

1641 1642
	sbi = EXT4_SB(sb);
	es = EXT4_SB(sb)->s_es;
E
Eric Sandeen 已提交
1643
	ext4_debug("goal=%llu.\n", goal);
1644 1645 1646 1647 1648
	/*
	 * Allocate a block from reservation only when
	 * filesystem is mounted with reservation(default,-o reservation), and
	 * it's a regular file, and
	 * the desired window size is greater than 0 (One could use ioctl
1649
	 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1650 1651
	 * reservation on that particular file)
	 */
1652
	block_i = EXT4_I(inode)->i_block_alloc_info;
1653 1654 1655
	if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
		my_rsv = &block_i->rsv_window_node;

1656
	if (!ext4_has_free_blocks(sbi)) {
1657 1658 1659 1660 1661 1662 1663 1664
		*errp = -ENOSPC;
		goto out;
	}

	/*
	 * First, test whether the goal block is free.
	 */
	if (goal < le32_to_cpu(es->s_first_data_block) ||
L
Laurent Vivier 已提交
1665
	    goal >= ext4_blocks_count(es))
1666
		goal = le32_to_cpu(es->s_first_data_block);
1667
	ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1668 1669
	goal_group = group_no;
retry_alloc:
1670
	gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	if (!gdp)
		goto io_error;

	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
	/*
	 * if there is not enough free blocks to make a new resevation
	 * turn off reservation for this allocation
	 */
	if (my_rsv && (free_blocks < windowsz)
		&& (rsv_is_empty(&my_rsv->rsv_window)))
		my_rsv = NULL;

	if (free_blocks > 0) {
		bitmap_bh = read_block_bitmap(sb, group_no);
		if (!bitmap_bh)
			goto io_error;
1687
		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1688 1689 1690 1691 1692 1693 1694 1695
					group_no, bitmap_bh, grp_target_blk,
					my_rsv,	&num, &fatal);
		if (fatal)
			goto out;
		if (grp_alloc_blk >= 0)
			goto allocated;
	}

1696
	ngroups = EXT4_SB(sb)->s_groups_count;
1697 1698 1699 1700
	smp_rmb();

	/*
	 * Now search the rest of the groups.  We assume that
1701
	 * group_no and gdp correctly point to the last group visited.
1702 1703 1704 1705 1706
	 */
	for (bgi = 0; bgi < ngroups; bgi++) {
		group_no++;
		if (group_no >= ngroups)
			group_no = 0;
1707
		gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1708 1709
		if (!gdp)
			goto io_error;
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
		/*
		 * skip this group if the number of
		 * free blocks is less than half of the reservation
		 * window size.
		 */
		if (free_blocks <= (windowsz/2))
			continue;

		brelse(bitmap_bh);
		bitmap_bh = read_block_bitmap(sb, group_no);
		if (!bitmap_bh)
			goto io_error;
		/*
		 * try to allocate block(s) from this group, without a goal(-1).
		 */
1726
		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
					group_no, bitmap_bh, -1, my_rsv,
					&num, &fatal);
		if (fatal)
			goto out;
		if (grp_alloc_blk >= 0)
			goto allocated;
	}
	/*
	 * We may end up a bogus ealier ENOSPC error due to
	 * filesystem is "full" of reservations, but
	 * there maybe indeed free blocks avaliable on disk
	 * In this case, we just forget about the reservations
	 * just do block allocation as without reservations.
	 */
	if (my_rsv) {
		my_rsv = NULL;
1743
		windowsz = 0;
1744 1745 1746 1747 1748 1749 1750 1751 1752
		group_no = goal_group;
		goto retry_alloc;
	}
	/* No space left on the device */
	*errp = -ENOSPC;
	goto out;

allocated:

E
Eric Sandeen 已提交
1753
	ext4_debug("using block group %lu(%d)\n",
1754 1755 1756
			group_no, gdp->bg_free_blocks_count);

	BUFFER_TRACE(gdp_bh, "get_write_access");
1757
	fatal = ext4_journal_get_write_access(handle, gdp_bh);
1758 1759 1760
	if (fatal)
		goto out;

1761
	ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1762

1763
	if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1764
	    in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1765
	    in_range(ret_block, ext4_inode_table(sb, gdp),
L
Laurent Vivier 已提交
1766
		     EXT4_SB(sb)->s_itb_per_group) ||
1767
	    in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1768
		     EXT4_SB(sb)->s_itb_per_group)) {
1769
		ext4_error(sb, "ext4_new_block",
1770
			    "Allocating block in system zone - "
1771
			    "blocks from %llu, length %lu",
1772
			     ret_block, num);
1773 1774
		goto out;
	}
1775 1776 1777

	performed_allocation = 1;

1778
#ifdef CONFIG_JBD2_DEBUG
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	{
		struct buffer_head *debug_bh;

		/* Record bitmap buffer state in the newly allocated block */
		debug_bh = sb_find_get_block(sb, ret_block);
		if (debug_bh) {
			BUFFER_TRACE(debug_bh, "state when allocated");
			BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
			brelse(debug_bh);
		}
	}
	jbd_lock_bh_state(bitmap_bh);
	spin_lock(sb_bgl_lock(sbi, group_no));
	if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
		int i;

		for (i = 0; i < num; i++) {
1796
			if (ext4_test_bit(grp_alloc_blk+i,
1797 1798 1799 1800 1801 1802
					bh2jh(bitmap_bh)->b_committed_data)) {
				printk("%s: block was unexpectedly set in "
					"b_committed_data\n", __FUNCTION__);
			}
		}
	}
1803
	ext4_debug("found bit %d\n", grp_alloc_blk);
1804 1805 1806 1807
	spin_unlock(sb_bgl_lock(sbi, group_no));
	jbd_unlock_bh_state(bitmap_bh);
#endif

L
Laurent Vivier 已提交
1808
	if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1809
		ext4_error(sb, "ext4_new_block",
1810
			    "block(%llu) >= blocks count(%llu) - "
1811
			    "block_group = %lu, es == %p ", ret_block,
L
Laurent Vivier 已提交
1812
			ext4_blocks_count(es), group_no, es);
1813 1814 1815 1816 1817 1818 1819 1820 1821
		goto out;
	}

	/*
	 * It is up to the caller to add the new buffer to a journal
	 * list of some description.  We don't know in advance whether
	 * the caller wants to use it as metadata or data.
	 */
	spin_lock(sb_bgl_lock(sbi, group_no));
A
Andreas Dilger 已提交
1822 1823
	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
M
Marcin Slusarz 已提交
1824
	le16_add_cpu(&gdp->bg_free_blocks_count, -num);
A
Andreas Dilger 已提交
1825
	gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1826
	spin_unlock(sb_bgl_lock(sbi, group_no));
P
Peter Zijlstra 已提交
1827
	percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1828 1829

	BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1830
	err = ext4_journal_dirty_metadata(handle, gdp_bh);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	if (!fatal)
		fatal = err;

	sb->s_dirt = 1;
	if (fatal)
		goto out;

	*errp = 0;
	brelse(bitmap_bh);
	DQUOT_FREE_BLOCK(inode, *count-num);
	*count = num;
	return ret_block;

io_error:
	*errp = -EIO;
out:
	if (fatal) {
		*errp = fatal;
1849
		ext4_std_error(sb, fatal);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	}
	/*
	 * Undo the block allocation
	 */
	if (!performed_allocation)
		DQUOT_FREE_BLOCK(inode, *count);
	brelse(bitmap_bh);
	return 0;
}

1860
ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
		ext4_fsblk_t goal, int *errp)
{
	struct ext4_allocation_request ar;
	ext4_fsblk_t ret;

	if (!test_opt(inode->i_sb, MBALLOC)) {
		unsigned long count = 1;
		ret = ext4_new_blocks_old(handle, inode, goal, &count, errp);
		return ret;
	}

	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = 1;
	ret = ext4_mb_new_blocks(handle, &ar, errp);
	return ret;
}

ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
		ext4_fsblk_t goal, unsigned long *count, int *errp)
1882
{
1883 1884
	struct ext4_allocation_request ar;
	ext4_fsblk_t ret;
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	if (!test_opt(inode->i_sb, MBALLOC)) {
		ret = ext4_new_blocks_old(handle, inode, goal, count, errp);
		return ret;
	}

	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = *count;
	ret = ext4_mb_new_blocks(handle, &ar, errp);
	*count = ar.len;
	return ret;
1898 1899
}

1900

1901
/**
1902
 * ext4_count_free_blocks() -- count filesystem free blocks
1903 1904 1905 1906
 * @sb:		superblock
 *
 * Adds up the number of free blocks from each block group.
 */
1907
ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1908
{
1909 1910
	ext4_fsblk_t desc_count;
	struct ext4_group_desc *gdp;
1911 1912
	ext4_group_t i;
	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
1913 1914 1915
#ifdef EXT4FS_DEBUG
	struct ext4_super_block *es;
	ext4_fsblk_t bitmap_count;
1916 1917 1918
	unsigned long x;
	struct buffer_head *bitmap_bh = NULL;

1919
	es = EXT4_SB(sb)->s_es;
1920 1921 1922 1923 1924 1925
	desc_count = 0;
	bitmap_count = 0;
	gdp = NULL;

	smp_rmb();
	for (i = 0; i < ngroups; i++) {
1926
		gdp = ext4_get_group_desc(sb, i, NULL);
1927 1928 1929 1930 1931 1932 1933 1934
		if (!gdp)
			continue;
		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
		brelse(bitmap_bh);
		bitmap_bh = read_block_bitmap(sb, i);
		if (bitmap_bh == NULL)
			continue;

1935
		x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1936
		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1937 1938 1939 1940
			i, le16_to_cpu(gdp->bg_free_blocks_count), x);
		bitmap_count += x;
	}
	brelse(bitmap_bh);
1941 1942
	printk("ext4_count_free_blocks: stored = %llu"
		", computed = %llu, %llu\n",
E
Eric Sandeen 已提交
1943
		ext4_free_blocks_count(es),
1944 1945 1946 1947 1948 1949
		desc_count, bitmap_count);
	return bitmap_count;
#else
	desc_count = 0;
	smp_rmb();
	for (i = 0; i < ngroups; i++) {
1950
		gdp = ext4_get_group_desc(sb, i, NULL);
1951 1952 1953 1954 1955 1956 1957 1958 1959
		if (!gdp)
			continue;
		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
	}

	return desc_count;
#endif
}

1960
static inline int test_root(ext4_group_t a, int b)
1961 1962 1963 1964 1965 1966 1967 1968
{
	int num = b;

	while (a > num)
		num *= b;
	return num == a;
}

1969
static int ext4_group_sparse(ext4_group_t group)
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
{
	if (group <= 1)
		return 1;
	if (!(group & 1))
		return 0;
	return (test_root(group, 7) || test_root(group, 5) ||
		test_root(group, 3));
}

/**
1980
 *	ext4_bg_has_super - number of blocks used by the superblock in group
1981 1982 1983 1984 1985 1986
 *	@sb: superblock for filesystem
 *	@group: group number to check
 *
 *	Return the number of blocks used by the superblock (primary or backup)
 *	in this group.  Currently this will be only 0 or 1.
 */
1987
int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
1988
{
1989 1990 1991
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
			!ext4_group_sparse(group))
1992 1993 1994 1995
		return 0;
	return 1;
}

1996 1997
static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
					ext4_group_t group)
1998
{
1999
	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2000 2001
	ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
	ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2002 2003 2004 2005 2006 2007

	if (group == first || group == first + 1 || group == last)
		return 1;
	return 0;
}

2008 2009
static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
					ext4_group_t group)
2010
{
2011
	return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2012 2013 2014
}

/**
2015
 *	ext4_bg_num_gdb - number of blocks used by the group table in group
2016 2017 2018 2019 2020 2021 2022
 *	@sb: superblock for filesystem
 *	@group: group number to check
 *
 *	Return the number of blocks used by the group descriptor table
 *	(primary or backup) in this group.  In the future there may be a
 *	different number of descriptor blocks in each group.
 */
2023
unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2024 2025
{
	unsigned long first_meta_bg =
2026 2027
			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2028

2029
	if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2030
			metagroup < first_meta_bg)
2031
		return ext4_bg_num_gdb_nometa(sb,group);
2032

2033
	return ext4_bg_num_gdb_meta(sb,group);
2034 2035

}