balloc.c 53.1 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/balloc.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 */

#include <linux/time.h>
#include <linux/capability.h>
#include <linux/fs.h>
17
#include <linux/jbd2.h>
18
#include <linux/ext4_fs.h>
19
#include <linux/ext4_jbd2.h>
20 21 22 23 24 25 26
#include <linux/quotaops.h>
#include <linux/buffer_head.h>

/*
 * balloc.c contains the blocks allocation and deallocation routines
 */

27 28 29 30 31 32 33 34 35 36
/*
 * Calculate the block group number and offset, given a block number
 */
void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
		unsigned long *blockgrpp, ext4_grpblk_t *offsetp)
{
        struct ext4_super_block *es = EXT4_SB(sb)->s_es;
	ext4_grpblk_t offset;

        blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
A
Andrew Morton 已提交
37
	offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
38 39 40 41 42 43 44
	if (offsetp)
		*offsetp = offset;
	if (blockgrpp)
	        *blockgrpp = blocknr;

}

45 46 47 48 49 50 51 52
/*
 * The free blocks are managed by bitmaps.  A file system contains several
 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
 * block for inodes, N blocks for the inode table and data blocks.
 *
 * The file system contains group descriptors which are located after the
 * super block.  Each descriptor contains the number of the bitmap block and
 * the free blocks count in the block.  The descriptors are loaded in memory
53
 * when a file system is mounted (see ext4_read_super).
54 55 56 57 58 59
 */


#define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)

/**
60
 * ext4_get_group_desc() -- load group descriptor from disk
61 62 63 64 65
 * @sb:			super block
 * @block_group:	given block group
 * @bh:			pointer to the buffer head to store the block
 *			group descriptor
 */
66
struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
67 68 69 70 71
					     unsigned int block_group,
					     struct buffer_head ** bh)
{
	unsigned long group_desc;
	unsigned long offset;
72 73
	struct ext4_group_desc * desc;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
74 75

	if (block_group >= sbi->s_groups_count) {
76
		ext4_error (sb, "ext4_get_group_desc",
77 78 79 80 81 82 83 84
			    "block_group >= groups_count - "
			    "block_group = %d, groups_count = %lu",
			    block_group, sbi->s_groups_count);

		return NULL;
	}
	smp_rmb();

85 86
	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
	offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
87
	if (!sbi->s_group_desc[group_desc]) {
88
		ext4_error (sb, "ext4_get_group_desc",
89 90 91 92 93 94
			    "Group descriptor not loaded - "
			    "block_group = %d, group_desc = %lu, desc = %lu",
			     block_group, group_desc, offset);
		return NULL;
	}

95 96 97
	desc = (struct ext4_group_desc *)(
		(__u8 *)sbi->s_group_desc[group_desc]->b_data +
		offset * EXT4_DESC_SIZE(sb));
98 99
	if (bh)
		*bh = sbi->s_group_desc[group_desc];
100
	return desc;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
}

/**
 * read_block_bitmap()
 * @sb:			super block
 * @block_group:	given block group
 *
 * Read the bitmap for a given block_group, reading into the specified
 * slot in the superblock's bitmap cache.
 *
 * Return buffer_head on success or NULL in case of failure.
 */
static struct buffer_head *
read_block_bitmap(struct super_block *sb, unsigned int block_group)
{
116
	struct ext4_group_desc * desc;
117 118
	struct buffer_head * bh = NULL;

119
	desc = ext4_get_group_desc (sb, block_group, NULL);
120 121
	if (!desc)
		goto error_out;
122
	bh = sb_bread(sb, ext4_block_bitmap(sb, desc));
123
	if (!bh)
124
		ext4_error (sb, "read_block_bitmap",
125
			    "Cannot read block bitmap - "
126
			    "block_group = %d, block_bitmap = %llu",
L
Laurent Vivier 已提交
127
			    block_group,
128
			    ext4_block_bitmap(sb, desc));
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
error_out:
	return bh;
}
/*
 * The reservation window structure operations
 * --------------------------------------------
 * Operations include:
 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
 *
 * We use a red-black tree to represent per-filesystem reservation
 * windows.
 *
 */

/**
 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
 * @rb_root:		root of per-filesystem reservation rb tree
 * @verbose:		verbose mode
 * @fn:			function which wishes to dump the reservation map
 *
 * If verbose is turned on, it will print the whole block reservation
 * windows(start, end).	Otherwise, it will only print out the "bad" windows,
 * those windows that overlap with their immediate neighbors.
 */
#if 1
static void __rsv_window_dump(struct rb_root *root, int verbose,
			      const char *fn)
{
	struct rb_node *n;
158
	struct ext4_reserve_window_node *rsv, *prev;
159 160 161 162 163 164 165 166 167
	int bad;

restart:
	n = rb_first(root);
	bad = 0;
	prev = NULL;

	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
	while (n) {
168
		rsv = list_entry(n, struct ext4_reserve_window_node, rsv_node);
169 170
		if (verbose)
			printk("reservation window 0x%p "
171
			       "start:  %llu, end:  %llu\n",
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
			       rsv, rsv->rsv_start, rsv->rsv_end);
		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
			printk("Bad reservation %p (start >= end)\n",
			       rsv);
			bad = 1;
		}
		if (prev && prev->rsv_end >= rsv->rsv_start) {
			printk("Bad reservation %p (prev->end >= start)\n",
			       rsv);
			bad = 1;
		}
		if (bad) {
			if (!verbose) {
				printk("Restarting reservation walk in verbose mode\n");
				verbose = 1;
				goto restart;
			}
		}
		n = rb_next(n);
		prev = rsv;
	}
	printk("Window map complete.\n");
	if (bad)
		BUG();
}
#define rsv_window_dump(root, verbose) \
	__rsv_window_dump((root), (verbose), __FUNCTION__)
#else
#define rsv_window_dump(root, verbose) do {} while (0)
#endif

/**
 * goal_in_my_reservation()
 * @rsv:		inode's reservation window
 * @grp_goal:		given goal block relative to the allocation block group
 * @group:		the current allocation block group
 * @sb:			filesystem super block
 *
 * Test if the given goal block (group relative) is within the file's
 * own block reservation window range.
 *
 * If the reservation window is outside the goal allocation group, return 0;
 * grp_goal (given goal block) could be -1, which means no specific
 * goal block. In this case, always return 1.
 * If the goal block is within the reservation window, return 1;
 * otherwise, return 0;
 */
static int
220
goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
221 222
			unsigned int group, struct super_block * sb)
{
223
	ext4_fsblk_t group_first_block, group_last_block;
224

225 226
	group_first_block = ext4_group_first_block_no(sb, group);
	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	if ((rsv->_rsv_start > group_last_block) ||
	    (rsv->_rsv_end < group_first_block))
		return 0;
	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
		|| (grp_goal + group_first_block > rsv->_rsv_end)))
		return 0;
	return 1;
}

/**
 * search_reserve_window()
 * @rb_root:		root of reservation tree
 * @goal:		target allocation block
 *
 * Find the reserved window which includes the goal, or the previous one
 * if the goal is not in any window.
 * Returns NULL if there are no windows or if all windows start after the goal.
 */
246 247
static struct ext4_reserve_window_node *
search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
248 249
{
	struct rb_node *n = root->rb_node;
250
	struct ext4_reserve_window_node *rsv;
251 252 253 254 255

	if (!n)
		return NULL;

	do {
256
		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

		if (goal < rsv->rsv_start)
			n = n->rb_left;
		else if (goal > rsv->rsv_end)
			n = n->rb_right;
		else
			return rsv;
	} while (n);
	/*
	 * We've fallen off the end of the tree: the goal wasn't inside
	 * any particular node.  OK, the previous node must be to one
	 * side of the interval containing the goal.  If it's the RHS,
	 * we need to back up one.
	 */
	if (rsv->rsv_start > goal) {
		n = rb_prev(&rsv->rsv_node);
273
		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
274 275 276 277 278
	}
	return rsv;
}

/**
279
 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
280 281 282 283 284
 * @sb:			super block
 * @rsv:		reservation window to add
 *
 * Must be called with rsv_lock hold.
 */
285 286
void ext4_rsv_window_add(struct super_block *sb,
		    struct ext4_reserve_window_node *rsv)
287
{
288
	struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
289
	struct rb_node *node = &rsv->rsv_node;
290
	ext4_fsblk_t start = rsv->rsv_start;
291 292 293

	struct rb_node ** p = &root->rb_node;
	struct rb_node * parent = NULL;
294
	struct ext4_reserve_window_node *this;
295 296 297 298

	while (*p)
	{
		parent = *p;
299
		this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

		if (start < this->rsv_start)
			p = &(*p)->rb_left;
		else if (start > this->rsv_end)
			p = &(*p)->rb_right;
		else {
			rsv_window_dump(root, 1);
			BUG();
		}
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
}

/**
316
 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
317 318 319 320 321 322 323 324
 * @sb:			super block
 * @rsv:		reservation window to remove
 *
 * Mark the block reservation window as not allocated, and unlink it
 * from the filesystem reservation window rb tree. Must be called with
 * rsv_lock hold.
 */
static void rsv_window_remove(struct super_block *sb,
325
			      struct ext4_reserve_window_node *rsv)
326
{
327 328
	rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
	rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
329
	rsv->rsv_alloc_hit = 0;
330
	rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
331 332 333 334 335 336
}

/*
 * rsv_is_empty() -- Check if the reservation window is allocated.
 * @rsv:		given reservation window to check
 *
337
 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
338
 */
339
static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
340 341
{
	/* a valid reservation end block could not be 0 */
342
	return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
343 344 345
}

/**
346
 * ext4_init_block_alloc_info()
347 348 349
 * @inode:		file inode structure
 *
 * Allocate and initialize the	reservation window structure, and
350
 * link the window to the ext4 inode structure at last
351 352
 *
 * The reservation window structure is only dynamically allocated
353 354
 * and linked to ext4 inode the first time the open file
 * needs a new block. So, before every ext4_new_block(s) call, for
355 356 357 358 359
 * regular files, we should check whether the reservation window
 * structure exists or not. In the latter case, this function is called.
 * Fail to do so will result in block reservation being turned off for that
 * open file.
 *
360
 * This function is called from ext4_get_blocks_handle(), also called
361 362 363 364 365
 * when setting the reservation window size through ioctl before the file
 * is open for write (needs block allocation).
 *
 * Needs truncate_mutex protection prior to call this function.
 */
366
void ext4_init_block_alloc_info(struct inode *inode)
367
{
368 369
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
370 371 372 373
	struct super_block *sb = inode->i_sb;

	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
	if (block_i) {
374
		struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
375

376 377
		rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
		rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
378 379 380 381 382 383 384 385 386

		/*
		 * if filesystem is mounted with NORESERVATION, the goal
		 * reservation window size is set to zero to indicate
		 * block reservation is off
		 */
		if (!test_opt(sb, RESERVATION))
			rsv->rsv_goal_size = 0;
		else
387
			rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
388 389 390 391 392 393 394 395
		rsv->rsv_alloc_hit = 0;
		block_i->last_alloc_logical_block = 0;
		block_i->last_alloc_physical_block = 0;
	}
	ei->i_block_alloc_info = block_i;
}

/**
396
 * ext4_discard_reservation()
397 398 399 400 401 402
 * @inode:		inode
 *
 * Discard(free) block reservation window on last file close, or truncate
 * or at last iput().
 *
 * It is being called in three cases:
403 404 405
 *	ext4_release_file(): last writer close the file
 *	ext4_clear_inode(): last iput(), when nobody link to this file.
 *	ext4_truncate(): when the block indirect map is about to change.
406 407
 *
 */
408
void ext4_discard_reservation(struct inode *inode)
409
{
410 411 412 413
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
	struct ext4_reserve_window_node *rsv;
	spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
414 415 416 417 418 419 420 421 422 423 424 425 426 427

	if (!block_i)
		return;

	rsv = &block_i->rsv_window_node;
	if (!rsv_is_empty(&rsv->rsv_window)) {
		spin_lock(rsv_lock);
		if (!rsv_is_empty(&rsv->rsv_window))
			rsv_window_remove(inode->i_sb, rsv);
		spin_unlock(rsv_lock);
	}
}

/**
428
 * ext4_free_blocks_sb() -- Free given blocks and update quota
429 430 431 432 433 434
 * @handle:			handle to this transaction
 * @sb:				super block
 * @block:			start physcial block to free
 * @count:			number of blocks to free
 * @pdquot_freed_blocks:	pointer to quota
 */
435 436
void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
			 ext4_fsblk_t block, unsigned long count,
437 438 439 440 441
			 unsigned long *pdquot_freed_blocks)
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gd_bh;
	unsigned long block_group;
442
	ext4_grpblk_t bit;
443 444
	unsigned long i;
	unsigned long overflow;
445 446 447
	struct ext4_group_desc * desc;
	struct ext4_super_block * es;
	struct ext4_sb_info *sbi;
448
	int err = 0, ret;
449
	ext4_grpblk_t group_freed;
450 451

	*pdquot_freed_blocks = 0;
452
	sbi = EXT4_SB(sb);
453 454 455
	es = sbi->s_es;
	if (block < le32_to_cpu(es->s_first_data_block) ||
	    block + count < block ||
L
Laurent Vivier 已提交
456
	    block + count > ext4_blocks_count(es)) {
457
		ext4_error (sb, "ext4_free_blocks",
458
			    "Freeing blocks not in datazone - "
459
			    "block = %llu, count = %lu", block, count);
460 461 462
		goto error_return;
	}

L
Laurent Vivier 已提交
463
	ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
464 465 466

do_more:
	overflow = 0;
467
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
468 469 470 471
	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
472 473
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
474 475 476 477 478 479
		count -= overflow;
	}
	brelse(bitmap_bh);
	bitmap_bh = read_block_bitmap(sb, block_group);
	if (!bitmap_bh)
		goto error_return;
480
	desc = ext4_get_group_desc (sb, block_group, &gd_bh);
481 482 483
	if (!desc)
		goto error_return;

484 485 486 487
	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(sb, desc),
L
Laurent Vivier 已提交
488
		     sbi->s_itb_per_group))
489
		ext4_error (sb, "ext4_free_blocks",
490
			    "Freeing blocks in system zones - "
491
			    "Block = %llu, count = %lu",
492 493 494 495 496 497 498 499
			    block, count);

	/*
	 * We are about to start releasing blocks in the bitmap,
	 * so we need undo access.
	 */
	/* @@@ check errors */
	BUFFER_TRACE(bitmap_bh, "getting undo access");
500
	err = ext4_journal_get_undo_access(handle, bitmap_bh);
501 502 503 504 505 506 507 508 509
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
510
	err = ext4_journal_get_write_access(handle, gd_bh);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	if (err)
		goto error_return;

	jbd_lock_bh_state(bitmap_bh);

	for (i = 0, group_freed = 0; i < count; i++) {
		/*
		 * An HJ special.  This is expensive...
		 */
#ifdef CONFIG_JBD_DEBUG
		jbd_unlock_bh_state(bitmap_bh);
		{
			struct buffer_head *debug_bh;
			debug_bh = sb_find_get_block(sb, block + i);
			if (debug_bh) {
				BUFFER_TRACE(debug_bh, "Deleted!");
				if (!bh2jh(bitmap_bh)->b_committed_data)
					BUFFER_TRACE(debug_bh,
						"No commited data in bitmap");
				BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
				__brelse(debug_bh);
			}
		}
		jbd_lock_bh_state(bitmap_bh);
#endif
		if (need_resched()) {
			jbd_unlock_bh_state(bitmap_bh);
			cond_resched();
			jbd_lock_bh_state(bitmap_bh);
		}
		/* @@@ This prevents newly-allocated data from being
		 * freed and then reallocated within the same
		 * transaction.
		 *
		 * Ideally we would want to allow that to happen, but to
546
		 * do so requires making jbd2_journal_forget() capable of
547 548 549 550
		 * revoking the queued write of a data block, which
		 * implies blocking on the journal lock.  *forget()
		 * cannot block due to truncate races.
		 *
551
		 * Eventually we can fix this by making jbd2_journal_forget()
552 553 554 555 556 557 558 559 560 561
		 * return a status indicating whether or not it was able
		 * to revoke the buffer.  On successful revoke, it is
		 * safe not to set the allocation bit in the committed
		 * bitmap, because we know that there is no outstanding
		 * activity on the buffer any more and so it is safe to
		 * reallocate it.
		 */
		BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
		J_ASSERT_BH(bitmap_bh,
				bh2jh(bitmap_bh)->b_committed_data != NULL);
562
		ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
563 564 565 566 567 568 569 570
				bh2jh(bitmap_bh)->b_committed_data);

		/*
		 * We clear the bit in the bitmap after setting the committed
		 * data bit, because this is the reverse order to that which
		 * the allocator uses.
		 */
		BUFFER_TRACE(bitmap_bh, "clear bit");
571
		if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
572 573
						bit + i, bitmap_bh->b_data)) {
			jbd_unlock_bh_state(bitmap_bh);
574
			ext4_error(sb, __FUNCTION__,
575
				   "bit already cleared for block %llu",
L
Laurent Vivier 已提交
576
				   (ext4_fsblk_t)(block + i));
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
			jbd_lock_bh_state(bitmap_bh);
			BUFFER_TRACE(bitmap_bh, "bit already cleared");
		} else {
			group_freed++;
		}
	}
	jbd_unlock_bh_state(bitmap_bh);

	spin_lock(sb_bgl_lock(sbi, block_group));
	desc->bg_free_blocks_count =
		cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
			group_freed);
	spin_unlock(sb_bgl_lock(sbi, block_group));
	percpu_counter_mod(&sbi->s_freeblocks_counter, count);

	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
594
	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
595 596 597

	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
598
	ret = ext4_journal_dirty_metadata(handle, gd_bh);
599 600 601 602 603 604 605 606 607 608 609
	if (!err) err = ret;
	*pdquot_freed_blocks += group_freed;

	if (overflow && !err) {
		block += count;
		count = overflow;
		goto do_more;
	}
	sb->s_dirt = 1;
error_return:
	brelse(bitmap_bh);
610
	ext4_std_error(sb, err);
611 612 613 614
	return;
}

/**
615
 * ext4_free_blocks() -- Free given blocks and update quota
616 617 618 619 620
 * @handle:		handle for this transaction
 * @inode:		inode
 * @block:		start physical block to free
 * @count:		number of blocks to count
 */
621 622
void ext4_free_blocks(handle_t *handle, struct inode *inode,
			ext4_fsblk_t block, unsigned long count)
623 624 625 626 627 628
{
	struct super_block * sb;
	unsigned long dquot_freed_blocks;

	sb = inode->i_sb;
	if (!sb) {
629
		printk ("ext4_free_blocks: nonexistent device");
630 631
		return;
	}
632
	ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
633 634 635 636 637 638
	if (dquot_freed_blocks)
		DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
	return;
}

/**
639
 * ext4_test_allocatable()
640 641 642
 * @nr:			given allocation block group
 * @bh:			bufferhead contains the bitmap of the given block group
 *
643
 * For ext4 allocations, we must not reuse any blocks which are
644 645 646 647 648 649 650 651 652 653 654 655 656 657
 * allocated in the bitmap buffer's "last committed data" copy.  This
 * prevents deletes from freeing up the page for reuse until we have
 * committed the delete transaction.
 *
 * If we didn't do this, then deleting something and reallocating it as
 * data would allow the old block to be overwritten before the
 * transaction committed (because we force data to disk before commit).
 * This would lead to corruption if we crashed between overwriting the
 * data and committing the delete.
 *
 * @@@ We may want to make this allocation behaviour conditional on
 * data-writes at some point, and disable it for metadata allocations or
 * sync-data inodes.
 */
658
static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
659 660 661 662
{
	int ret;
	struct journal_head *jh = bh2jh(bh);

663
	if (ext4_test_bit(nr, bh->b_data))
664 665 666 667 668 669
		return 0;

	jbd_lock_bh_state(bh);
	if (!jh->b_committed_data)
		ret = 1;
	else
670
		ret = !ext4_test_bit(nr, jh->b_committed_data);
671 672 673 674 675 676 677 678 679 680 681 682 683 684
	jbd_unlock_bh_state(bh);
	return ret;
}

/**
 * bitmap_search_next_usable_block()
 * @start:		the starting block (group relative) of the search
 * @bh:			bufferhead contains the block group bitmap
 * @maxblocks:		the ending block (group relative) of the reservation
 *
 * The bitmap search --- search forward alternately through the actual
 * bitmap on disk and the last-committed copy in journal, until we find a
 * bit free in both bitmaps.
 */
685 686 687
static ext4_grpblk_t
bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
					ext4_grpblk_t maxblocks)
688
{
689
	ext4_grpblk_t next;
690 691 692
	struct journal_head *jh = bh2jh(bh);

	while (start < maxblocks) {
693
		next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
694 695
		if (next >= maxblocks)
			return -1;
696
		if (ext4_test_allocatable(next, bh))
697 698 699
			return next;
		jbd_lock_bh_state(bh);
		if (jh->b_committed_data)
700
			start = ext4_find_next_zero_bit(jh->b_committed_data,
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
							maxblocks, next);
		jbd_unlock_bh_state(bh);
	}
	return -1;
}

/**
 * find_next_usable_block()
 * @start:		the starting block (group relative) to find next
 *			allocatable block in bitmap.
 * @bh:			bufferhead contains the block group bitmap
 * @maxblocks:		the ending block (group relative) for the search
 *
 * Find an allocatable block in a bitmap.  We honor both the bitmap and
 * its last-committed copy (if that exists), and perform the "most
 * appropriate allocation" algorithm of looking for a free block near
 * the initial goal; then for a free byte somewhere in the bitmap; then
 * for any free bit in the bitmap.
 */
720 721 722
static ext4_grpblk_t
find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
			ext4_grpblk_t maxblocks)
723
{
724
	ext4_grpblk_t here, next;
725 726 727 728 729 730 731 732
	char *p, *r;

	if (start > 0) {
		/*
		 * The goal was occupied; search forward for a free
		 * block within the next XX blocks.
		 *
		 * end_goal is more or less random, but it has to be
733
		 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
734 735
		 * next 64-bit boundary is simple..
		 */
736
		ext4_grpblk_t end_goal = (start + 63) & ~63;
737 738
		if (end_goal > maxblocks)
			end_goal = maxblocks;
739 740
		here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
		if (here < end_goal && ext4_test_allocatable(here, bh))
741
			return here;
742
		ext4_debug("Bit not found near goal\n");
743 744 745 746 747 748 749 750 751 752
	}

	here = start;
	if (here < 0)
		here = 0;

	p = ((char *)bh->b_data) + (here >> 3);
	r = memscan(p, 0, (maxblocks - here + 7) >> 3);
	next = (r - ((char *)bh->b_data)) << 3;

753
	if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		return next;

	/*
	 * The bitmap search --- search forward alternately through the actual
	 * bitmap and the last-committed copy until we find a bit free in
	 * both
	 */
	here = bitmap_search_next_usable_block(here, bh, maxblocks);
	return here;
}

/**
 * claim_block()
 * @block:		the free block (group relative) to allocate
 * @bh:			the bufferhead containts the block group bitmap
 *
 * We think we can allocate this block in this bitmap.  Try to set the bit.
 * If that succeeds then check that nobody has allocated and then freed the
 * block since we saw that is was not marked in b_committed_data.  If it _was_
 * allocated and freed then clear the bit in the bitmap again and return
 * zero (failure).
 */
static inline int
777
claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
778 779 780 781
{
	struct journal_head *jh = bh2jh(bh);
	int ret;

782
	if (ext4_set_bit_atomic(lock, block, bh->b_data))
783 784
		return 0;
	jbd_lock_bh_state(bh);
785 786
	if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
		ext4_clear_bit_atomic(lock, block, bh->b_data);
787 788 789 790 791 792 793 794 795
		ret = 0;
	} else {
		ret = 1;
	}
	jbd_unlock_bh_state(bh);
	return ret;
}

/**
796
 * ext4_try_to_allocate()
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
 * @sb:			superblock
 * @handle:		handle to this transaction
 * @group:		given allocation block group
 * @bitmap_bh:		bufferhead holds the block bitmap
 * @grp_goal:		given target block within the group
 * @count:		target number of blocks to allocate
 * @my_rsv:		reservation window
 *
 * Attempt to allocate blocks within a give range. Set the range of allocation
 * first, then find the first free bit(s) from the bitmap (within the range),
 * and at last, allocate the blocks by claiming the found free bit as allocated.
 *
 * To set the range of this allocation:
 *	if there is a reservation window, only try to allocate block(s) from the
 *	file's own reservation window;
 *	Otherwise, the allocation range starts from the give goal block, ends at
 *	the block group's last block.
 *
 * If we failed to allocate the desired block then we may end up crossing to a
 * new bitmap.  In that case we must release write access to the old one via
817
 * ext4_journal_release_buffer(), else we'll run out of credits.
818
 */
819 820 821 822
static ext4_grpblk_t
ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
			struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
			unsigned long *count, struct ext4_reserve_window *my_rsv)
823
{
824 825
	ext4_fsblk_t group_first_block;
	ext4_grpblk_t start, end;
826 827 828 829
	unsigned long num = 0;

	/* we do allocation within the reservation window if we have a window */
	if (my_rsv) {
830
		group_first_block = ext4_group_first_block_no(sb, group);
831 832 833 834 835 836
		if (my_rsv->_rsv_start >= group_first_block)
			start = my_rsv->_rsv_start - group_first_block;
		else
			/* reservation window cross group boundary */
			start = 0;
		end = my_rsv->_rsv_end - group_first_block + 1;
837
		if (end > EXT4_BLOCKS_PER_GROUP(sb))
838
			/* reservation window crosses group boundary */
839
			end = EXT4_BLOCKS_PER_GROUP(sb);
840 841 842 843 844 845 846 847 848
		if ((start <= grp_goal) && (grp_goal < end))
			start = grp_goal;
		else
			grp_goal = -1;
	} else {
		if (grp_goal > 0)
			start = grp_goal;
		else
			start = 0;
849
		end = EXT4_BLOCKS_PER_GROUP(sb);
850 851
	}

852
	BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
853 854

repeat:
855
	if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
856 857 858 859 860 861 862
		grp_goal = find_next_usable_block(start, bitmap_bh, end);
		if (grp_goal < 0)
			goto fail_access;
		if (!my_rsv) {
			int i;

			for (i = 0; i < 7 && grp_goal > start &&
863
					ext4_test_allocatable(grp_goal - 1,
864 865 866 867 868 869 870
								bitmap_bh);
					i++, grp_goal--)
				;
		}
	}
	start = grp_goal;

871
	if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
872 873 874 875 876 877 878 879 880 881 882 883 884 885
		grp_goal, bitmap_bh)) {
		/*
		 * The block was allocated by another thread, or it was
		 * allocated and then freed by another thread
		 */
		start++;
		grp_goal++;
		if (start >= end)
			goto fail_access;
		goto repeat;
	}
	num++;
	grp_goal++;
	while (num < *count && grp_goal < end
886 887
		&& ext4_test_allocatable(grp_goal, bitmap_bh)
		&& claim_block(sb_bgl_lock(EXT4_SB(sb), group),
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
				grp_goal, bitmap_bh)) {
		num++;
		grp_goal++;
	}
	*count = num;
	return grp_goal - num;
fail_access:
	*count = num;
	return -1;
}

/**
 *	find_next_reservable_window():
 *		find a reservable space within the given range.
 *		It does not allocate the reservation window for now:
 *		alloc_new_reservation() will do the work later.
 *
 *	@search_head: the head of the searching list;
 *		This is not necessarily the list head of the whole filesystem
 *
 *		We have both head and start_block to assist the search
 *		for the reservable space. The list starts from head,
 *		but we will shift to the place where start_block is,
 *		then start from there, when looking for a reservable space.
 *
 *	@size: the target new reservation window size
 *
 *	@group_first_block: the first block we consider to start
 *			the real search from
 *
 *	@last_block:
 *		the maximum block number that our goal reservable space
 *		could start from. This is normally the last block in this
 *		group. The search will end when we found the start of next
 *		possible reservable space is out of this boundary.
 *		This could handle the cross boundary reservation window
 *		request.
 *
 *	basically we search from the given range, rather than the whole
 *	reservation double linked list, (start_block, last_block)
 *	to find a free region that is of my size and has not
 *	been reserved.
 *
 */
static int find_next_reservable_window(
933 934
				struct ext4_reserve_window_node *search_head,
				struct ext4_reserve_window_node *my_rsv,
935
				struct super_block * sb,
936 937
				ext4_fsblk_t start_block,
				ext4_fsblk_t last_block)
938 939
{
	struct rb_node *next;
940 941
	struct ext4_reserve_window_node *rsv, *prev;
	ext4_fsblk_t cur;
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	int size = my_rsv->rsv_goal_size;

	/* TODO: make the start of the reservation window byte-aligned */
	/* cur = *start_block & ~7;*/
	cur = start_block;
	rsv = search_head;
	if (!rsv)
		return -1;

	while (1) {
		if (cur <= rsv->rsv_end)
			cur = rsv->rsv_end + 1;

		/* TODO?
		 * in the case we could not find a reservable space
		 * that is what is expected, during the re-search, we could
		 * remember what's the largest reservable space we could have
		 * and return that one.
		 *
		 * For now it will fail if we could not find the reservable
		 * space with expected-size (or more)...
		 */
		if (cur > last_block)
			return -1;		/* fail */

		prev = rsv;
		next = rb_next(&rsv->rsv_node);
969
		rsv = list_entry(next,struct ext4_reserve_window_node,rsv_node);
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

		/*
		 * Reached the last reservation, we can just append to the
		 * previous one.
		 */
		if (!next)
			break;

		if (cur + size <= rsv->rsv_start) {
			/*
			 * Found a reserveable space big enough.  We could
			 * have a reservation across the group boundary here
			 */
			break;
		}
	}
	/*
	 * we come here either :
	 * when we reach the end of the whole list,
	 * and there is empty reservable space after last entry in the list.
	 * append it to the end of the list.
	 *
	 * or we found one reservable space in the middle of the list,
	 * return the reservation window that we could append to.
	 * succeed.
	 */

	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
		rsv_window_remove(sb, my_rsv);

	/*
	 * Let's book the whole avaliable window for now.  We will check the
	 * disk bitmap later and then, if there are free blocks then we adjust
	 * the window size if it's larger than requested.
	 * Otherwise, we will remove this node from the tree next time
	 * call find_next_reservable_window.
	 */
	my_rsv->rsv_start = cur;
	my_rsv->rsv_end = cur + size - 1;
	my_rsv->rsv_alloc_hit = 0;

	if (prev != my_rsv)
1012
		ext4_rsv_window_add(sb, my_rsv);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

	return 0;
}

/**
 *	alloc_new_reservation()--allocate a new reservation window
 *
 *		To make a new reservation, we search part of the filesystem
 *		reservation list (the list that inside the group). We try to
 *		allocate a new reservation window near the allocation goal,
 *		or the beginning of the group, if there is no goal.
 *
 *		We first find a reservable space after the goal, then from
 *		there, we check the bitmap for the first free block after
 *		it. If there is no free block until the end of group, then the
 *		whole group is full, we failed. Otherwise, check if the free
 *		block is inside the expected reservable space, if so, we
 *		succeed.
 *		If the first free block is outside the reservable space, then
 *		start from the first free block, we search for next available
 *		space, and go on.
 *
 *	on succeed, a new reservation will be found and inserted into the list
 *	It contains at least one free block, and it does not overlap with other
 *	reservation windows.
 *
 *	failed: we failed to find a reservation window in this group
 *
 *	@rsv: the reservation
 *
 *	@grp_goal: The goal (group-relative).  It is where the search for a
 *		free reservable space should start from.
 *		if we have a grp_goal(grp_goal >0 ), then start from there,
 *		no grp_goal(grp_goal = -1), we start from the first block
 *		of the group.
 *
 *	@sb: the super block
 *	@group: the group we are trying to allocate in
 *	@bitmap_bh: the block group block bitmap
 *
 */
1054 1055
static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
		ext4_grpblk_t grp_goal, struct super_block *sb,
1056 1057
		unsigned int group, struct buffer_head *bitmap_bh)
{
1058 1059 1060 1061
	struct ext4_reserve_window_node *search_head;
	ext4_fsblk_t group_first_block, group_end_block, start_block;
	ext4_grpblk_t first_free_block;
	struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1062 1063
	unsigned long size;
	int ret;
1064
	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1065

1066 1067
	group_first_block = ext4_group_first_block_no(sb, group);
	group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

	if (grp_goal < 0)
		start_block = group_first_block;
	else
		start_block = grp_goal + group_first_block;

	size = my_rsv->rsv_goal_size;

	if (!rsv_is_empty(&my_rsv->rsv_window)) {
		/*
		 * if the old reservation is cross group boundary
		 * and if the goal is inside the old reservation window,
		 * we will come here when we just failed to allocate from
		 * the first part of the window. We still have another part
		 * that belongs to the next group. In this case, there is no
		 * point to discard our window and try to allocate a new one
		 * in this group(which will fail). we should
		 * keep the reservation window, just simply move on.
		 *
		 * Maybe we could shift the start block of the reservation
		 * window to the first block of next group.
		 */

		if ((my_rsv->rsv_start <= group_end_block) &&
				(my_rsv->rsv_end > group_end_block) &&
				(start_block >= my_rsv->rsv_start))
			return -1;

		if ((my_rsv->rsv_alloc_hit >
		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
			/*
			 * if the previously allocation hit ratio is
			 * greater than 1/2, then we double the size of
			 * the reservation window the next time,
			 * otherwise we keep the same size window
			 */
			size = size * 2;
1105 1106
			if (size > EXT4_MAX_RESERVE_BLOCKS)
				size = EXT4_MAX_RESERVE_BLOCKS;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
			my_rsv->rsv_goal_size= size;
		}
	}

	spin_lock(rsv_lock);
	/*
	 * shift the search start to the window near the goal block
	 */
	search_head = search_reserve_window(fs_rsv_root, start_block);

	/*
	 * find_next_reservable_window() simply finds a reservable window
	 * inside the given range(start_block, group_end_block).
	 *
	 * To make sure the reservation window has a free bit inside it, we
	 * need to check the bitmap after we found a reservable window.
	 */
retry:
	ret = find_next_reservable_window(search_head, my_rsv, sb,
						start_block, group_end_block);

	if (ret == -1) {
		if (!rsv_is_empty(&my_rsv->rsv_window))
			rsv_window_remove(sb, my_rsv);
		spin_unlock(rsv_lock);
		return -1;
	}

	/*
	 * On success, find_next_reservable_window() returns the
	 * reservation window where there is a reservable space after it.
	 * Before we reserve this reservable space, we need
	 * to make sure there is at least a free block inside this region.
	 *
	 * searching the first free bit on the block bitmap and copy of
	 * last committed bitmap alternatively, until we found a allocatable
	 * block. Search start from the start block of the reservable space
	 * we just found.
	 */
	spin_unlock(rsv_lock);
	first_free_block = bitmap_search_next_usable_block(
			my_rsv->rsv_start - group_first_block,
			bitmap_bh, group_end_block - group_first_block + 1);

	if (first_free_block < 0) {
		/*
		 * no free block left on the bitmap, no point
		 * to reserve the space. return failed.
		 */
		spin_lock(rsv_lock);
		if (!rsv_is_empty(&my_rsv->rsv_window))
			rsv_window_remove(sb, my_rsv);
		spin_unlock(rsv_lock);
		return -1;		/* failed */
	}

	start_block = first_free_block + group_first_block;
	/*
	 * check if the first free block is within the
	 * free space we just reserved
	 */
	if (start_block >= my_rsv->rsv_start && start_block < my_rsv->rsv_end)
		return 0;		/* success */
	/*
	 * if the first free bit we found is out of the reservable space
	 * continue search for next reservable space,
	 * start from where the free block is,
	 * we also shift the list head to where we stopped last time
	 */
	search_head = my_rsv;
	spin_lock(rsv_lock);
	goto retry;
}

/**
 * try_to_extend_reservation()
 * @my_rsv:		given reservation window
 * @sb:			super block
 * @size:		the delta to extend
 *
 * Attempt to expand the reservation window large enough to have
 * required number of free blocks
 *
1190
 * Since ext4_try_to_allocate() will always allocate blocks within
1191 1192 1193 1194 1195
 * the reservation window range, if the window size is too small,
 * multiple blocks allocation has to stop at the end of the reservation
 * window. To make this more efficient, given the total number of
 * blocks needed and the current size of the window, we try to
 * expand the reservation window size if necessary on a best-effort
1196
 * basis before ext4_new_blocks() tries to allocate blocks,
1197
 */
1198
static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1199 1200
			struct super_block *sb, int size)
{
1201
	struct ext4_reserve_window_node *next_rsv;
1202
	struct rb_node *next;
1203
	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1204 1205 1206 1207 1208 1209 1210 1211 1212

	if (!spin_trylock(rsv_lock))
		return;

	next = rb_next(&my_rsv->rsv_node);

	if (!next)
		my_rsv->rsv_end += size;
	else {
1213
		next_rsv = list_entry(next, struct ext4_reserve_window_node, rsv_node);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
			my_rsv->rsv_end += size;
		else
			my_rsv->rsv_end = next_rsv->rsv_start - 1;
	}
	spin_unlock(rsv_lock);
}

/**
1224
 * ext4_try_to_allocate_with_rsv()
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
 * @sb:			superblock
 * @handle:		handle to this transaction
 * @group:		given allocation block group
 * @bitmap_bh:		bufferhead holds the block bitmap
 * @grp_goal:		given target block within the group
 * @count:		target number of blocks to allocate
 * @my_rsv:		reservation window
 * @errp:		pointer to store the error code
 *
 * This is the main function used to allocate a new block and its reservation
 * window.
 *
 * Each time when a new block allocation is need, first try to allocate from
 * its own reservation.  If it does not have a reservation window, instead of
 * looking for a free bit on bitmap first, then look up the reservation list to
 * see if it is inside somebody else's reservation window, we try to allocate a
 * reservation window for it starting from the goal first. Then do the block
 * allocation within the reservation window.
 *
 * This will avoid keeping on searching the reservation list again and
 * again when somebody is looking for a free block (without
 * reservation), and there are lots of free blocks, but they are all
 * being reserved.
 *
 * We use a red-black tree for the per-filesystem reservation list.
 *
 */
1252 1253
static ext4_grpblk_t
ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1254
			unsigned int group, struct buffer_head *bitmap_bh,
1255 1256
			ext4_grpblk_t grp_goal,
			struct ext4_reserve_window_node * my_rsv,
1257 1258
			unsigned long *count, int *errp)
{
1259 1260
	ext4_fsblk_t group_first_block, group_last_block;
	ext4_grpblk_t ret = 0;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	int fatal;
	unsigned long num = *count;

	*errp = 0;

	/*
	 * Make sure we use undo access for the bitmap, because it is critical
	 * that we do the frozen_data COW on bitmap buffers in all cases even
	 * if the buffer is in BJ_Forget state in the committing transaction.
	 */
	BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1272
	fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	if (fatal) {
		*errp = fatal;
		return -1;
	}

	/*
	 * we don't deal with reservation when
	 * filesystem is mounted without reservation
	 * or the file is not a regular file
	 * or last attempt to allocate a block with reservation turned on failed
	 */
	if (my_rsv == NULL ) {
1285
		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1286 1287 1288 1289 1290
						grp_goal, count, NULL);
		goto out;
	}
	/*
	 * grp_goal is a group relative block number (if there is a goal)
1291
	 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1292 1293 1294
	 * first block is a filesystem wide block number
	 * first block is the block number of the first block in this group
	 */
1295 1296
	group_first_block = ext4_group_first_block_no(sb, group);
	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

	/*
	 * Basically we will allocate a new block from inode's reservation
	 * window.
	 *
	 * We need to allocate a new reservation window, if:
	 * a) inode does not have a reservation window; or
	 * b) last attempt to allocate a block from existing reservation
	 *    failed; or
	 * c) we come here with a goal and with a reservation window
	 *
	 * We do not need to allocate a new reservation window if we come here
	 * at the beginning with a goal and the goal is inside the window, or
	 * we don't have a goal but already have a reservation window.
	 * then we could go to allocate from the reservation window directly.
	 */
	while (1) {
		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
			!goal_in_my_reservation(&my_rsv->rsv_window,
						grp_goal, group, sb)) {
			if (my_rsv->rsv_goal_size < *count)
				my_rsv->rsv_goal_size = *count;
			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
							group, bitmap_bh);
			if (ret < 0)
				break;			/* failed */

			if (!goal_in_my_reservation(&my_rsv->rsv_window,
							grp_goal, group, sb))
				grp_goal = -1;
1327
		} else if (grp_goal >= 0) {
1328 1329 1330 1331 1332 1333 1334
			int curr = my_rsv->rsv_end -
					(grp_goal + group_first_block) + 1;

			if (curr < *count)
				try_to_extend_reservation(my_rsv, sb,
							*count - curr);
		}
1335 1336 1337

		if ((my_rsv->rsv_start > group_last_block) ||
				(my_rsv->rsv_end < group_first_block)) {
1338
			rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1339 1340
			BUG();
		}
1341
		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
					   grp_goal, &num, &my_rsv->rsv_window);
		if (ret >= 0) {
			my_rsv->rsv_alloc_hit += num;
			*count = num;
			break;				/* succeed */
		}
		num = *count;
	}
out:
	if (ret >= 0) {
		BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
					"bitmap block");
1354
		fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1355 1356 1357 1358 1359 1360 1361 1362
		if (fatal) {
			*errp = fatal;
			return -1;
		}
		return ret;
	}

	BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1363
	ext4_journal_release_buffer(handle, bitmap_bh);
1364 1365 1366 1367
	return ret;
}

/**
1368
 * ext4_has_free_blocks()
1369 1370 1371 1372
 * @sbi:		in-core super block structure.
 *
 * Check if filesystem has at least 1 free block available for allocation.
 */
1373
static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1374
{
1375
	ext4_fsblk_t free_blocks, root_blocks;
1376 1377

	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
L
Laurent Vivier 已提交
1378
	root_blocks = ext4_r_blocks_count(sbi->s_es);
1379 1380 1381 1382 1383 1384 1385 1386 1387
	if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
		sbi->s_resuid != current->fsuid &&
		(sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
		return 0;
	}
	return 1;
}

/**
1388
 * ext4_should_retry_alloc()
1389 1390 1391
 * @sb:			super block
 * @retries		number of attemps has been made
 *
1392
 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1393 1394 1395 1396 1397 1398
 * it is profitable to retry the operation, this function will wait
 * for the current or commiting transaction to complete, and then
 * return TRUE.
 *
 * if the total number of retries exceed three times, return FALSE.
 */
1399
int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1400
{
1401
	if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1402 1403 1404 1405
		return 0;

	jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);

1406
	return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1407 1408 1409
}

/**
1410
 * ext4_new_blocks() -- core block(s) allocation function
1411 1412 1413 1414 1415 1416
 * @handle:		handle to this transaction
 * @inode:		file inode
 * @goal:		given target block(filesystem wide)
 * @count:		target number of blocks to allocate
 * @errp:		error code
 *
1417
 * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1418 1419 1420 1421 1422
 * allocate block(s) from the block group contains the goal block first. If that
 * fails, it will try to allocate block(s) from other block groups without
 * any specific goal block.
 *
 */
1423 1424
ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
			ext4_fsblk_t goal, unsigned long *count, int *errp)
1425 1426 1427
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gdp_bh;
1428
	unsigned long group_no;
1429
	int goal_group;
1430 1431 1432
	ext4_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
	ext4_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
	ext4_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1433 1434 1435
	int bgi;			/* blockgroup iteration index */
	int fatal = 0, err;
	int performed_allocation = 0;
1436
	ext4_grpblk_t free_blocks;	/* number of free blocks in a group */
1437
	struct super_block *sb;
1438 1439 1440 1441 1442
	struct ext4_group_desc *gdp;
	struct ext4_super_block *es;
	struct ext4_sb_info *sbi;
	struct ext4_reserve_window_node *my_rsv = NULL;
	struct ext4_block_alloc_info *block_i;
1443
	unsigned short windowsz = 0;
1444
#ifdef EXT4FS_DEBUG
1445 1446 1447 1448 1449 1450 1451 1452
	static int goal_hits, goal_attempts;
#endif
	unsigned long ngroups;
	unsigned long num = *count;

	*errp = -ENOSPC;
	sb = inode->i_sb;
	if (!sb) {
1453
		printk("ext4_new_block: nonexistent device");
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		return 0;
	}

	/*
	 * Check quota for allocation of this block.
	 */
	if (DQUOT_ALLOC_BLOCK(inode, num)) {
		*errp = -EDQUOT;
		return 0;
	}

1465 1466 1467
	sbi = EXT4_SB(sb);
	es = EXT4_SB(sb)->s_es;
	ext4_debug("goal=%lu.\n", goal);
1468 1469 1470 1471 1472
	/*
	 * Allocate a block from reservation only when
	 * filesystem is mounted with reservation(default,-o reservation), and
	 * it's a regular file, and
	 * the desired window size is greater than 0 (One could use ioctl
1473
	 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1474 1475
	 * reservation on that particular file)
	 */
1476
	block_i = EXT4_I(inode)->i_block_alloc_info;
1477 1478 1479
	if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
		my_rsv = &block_i->rsv_window_node;

1480
	if (!ext4_has_free_blocks(sbi)) {
1481 1482 1483 1484 1485 1486 1487 1488
		*errp = -ENOSPC;
		goto out;
	}

	/*
	 * First, test whether the goal block is free.
	 */
	if (goal < le32_to_cpu(es->s_first_data_block) ||
L
Laurent Vivier 已提交
1489
	    goal >= ext4_blocks_count(es))
1490
		goal = le32_to_cpu(es->s_first_data_block);
1491
	ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1492 1493
	goal_group = group_no;
retry_alloc:
1494
	gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	if (!gdp)
		goto io_error;

	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
	/*
	 * if there is not enough free blocks to make a new resevation
	 * turn off reservation for this allocation
	 */
	if (my_rsv && (free_blocks < windowsz)
		&& (rsv_is_empty(&my_rsv->rsv_window)))
		my_rsv = NULL;

	if (free_blocks > 0) {
		bitmap_bh = read_block_bitmap(sb, group_no);
		if (!bitmap_bh)
			goto io_error;
1511
		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1512 1513 1514 1515 1516 1517 1518 1519
					group_no, bitmap_bh, grp_target_blk,
					my_rsv,	&num, &fatal);
		if (fatal)
			goto out;
		if (grp_alloc_blk >= 0)
			goto allocated;
	}

1520
	ngroups = EXT4_SB(sb)->s_groups_count;
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	smp_rmb();

	/*
	 * Now search the rest of the groups.  We assume that
	 * i and gdp correctly point to the last group visited.
	 */
	for (bgi = 0; bgi < ngroups; bgi++) {
		group_no++;
		if (group_no >= ngroups)
			group_no = 0;
1531
		gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		if (!gdp) {
			*errp = -EIO;
			goto out;
		}
		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
		/*
		 * skip this group if the number of
		 * free blocks is less than half of the reservation
		 * window size.
		 */
		if (free_blocks <= (windowsz/2))
			continue;

		brelse(bitmap_bh);
		bitmap_bh = read_block_bitmap(sb, group_no);
		if (!bitmap_bh)
			goto io_error;
		/*
		 * try to allocate block(s) from this group, without a goal(-1).
		 */
1552
		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
					group_no, bitmap_bh, -1, my_rsv,
					&num, &fatal);
		if (fatal)
			goto out;
		if (grp_alloc_blk >= 0)
			goto allocated;
	}
	/*
	 * We may end up a bogus ealier ENOSPC error due to
	 * filesystem is "full" of reservations, but
	 * there maybe indeed free blocks avaliable on disk
	 * In this case, we just forget about the reservations
	 * just do block allocation as without reservations.
	 */
	if (my_rsv) {
		my_rsv = NULL;
1569
		windowsz = 0;
1570 1571 1572 1573 1574 1575 1576 1577 1578
		group_no = goal_group;
		goto retry_alloc;
	}
	/* No space left on the device */
	*errp = -ENOSPC;
	goto out;

allocated:

1579
	ext4_debug("using block group %d(%d)\n",
1580 1581 1582
			group_no, gdp->bg_free_blocks_count);

	BUFFER_TRACE(gdp_bh, "get_write_access");
1583
	fatal = ext4_journal_get_write_access(handle, gdp_bh);
1584 1585 1586
	if (fatal)
		goto out;

1587
	ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1588

1589 1590 1591
	if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
	    in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
	    in_range(ret_block, ext4_inode_table(sb, gdp),
L
Laurent Vivier 已提交
1592
		     EXT4_SB(sb)->s_itb_per_group) ||
1593
	    in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
L
Laurent Vivier 已提交
1594
		     EXT4_SB(sb)->s_itb_per_group))
1595
		ext4_error(sb, "ext4_new_block",
1596
			    "Allocating block in system zone - "
1597
			    "blocks from %llu, length %lu",
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
			     ret_block, num);

	performed_allocation = 1;

#ifdef CONFIG_JBD_DEBUG
	{
		struct buffer_head *debug_bh;

		/* Record bitmap buffer state in the newly allocated block */
		debug_bh = sb_find_get_block(sb, ret_block);
		if (debug_bh) {
			BUFFER_TRACE(debug_bh, "state when allocated");
			BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
			brelse(debug_bh);
		}
	}
	jbd_lock_bh_state(bitmap_bh);
	spin_lock(sb_bgl_lock(sbi, group_no));
	if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
		int i;

		for (i = 0; i < num; i++) {
1620
			if (ext4_test_bit(grp_alloc_blk+i,
1621 1622 1623 1624 1625 1626
					bh2jh(bitmap_bh)->b_committed_data)) {
				printk("%s: block was unexpectedly set in "
					"b_committed_data\n", __FUNCTION__);
			}
		}
	}
1627
	ext4_debug("found bit %d\n", grp_alloc_blk);
1628 1629 1630 1631
	spin_unlock(sb_bgl_lock(sbi, group_no));
	jbd_unlock_bh_state(bitmap_bh);
#endif

L
Laurent Vivier 已提交
1632
	if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1633
		ext4_error(sb, "ext4_new_block",
1634
			    "block(%llu) >= blocks count(%llu) - "
1635
			    "block_group = %lu, es == %p ", ret_block,
L
Laurent Vivier 已提交
1636
			ext4_blocks_count(es), group_no, es);
1637 1638 1639 1640 1641 1642 1643 1644
		goto out;
	}

	/*
	 * It is up to the caller to add the new buffer to a journal
	 * list of some description.  We don't know in advance whether
	 * the caller wants to use it as metadata or data.
	 */
1645
	ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1646 1647 1648 1649 1650 1651 1652 1653 1654
			ret_block, goal_hits, goal_attempts);

	spin_lock(sb_bgl_lock(sbi, group_no));
	gdp->bg_free_blocks_count =
			cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
	spin_unlock(sb_bgl_lock(sbi, group_no));
	percpu_counter_mod(&sbi->s_freeblocks_counter, -num);

	BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1655
	err = ext4_journal_dirty_metadata(handle, gdp_bh);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	if (!fatal)
		fatal = err;

	sb->s_dirt = 1;
	if (fatal)
		goto out;

	*errp = 0;
	brelse(bitmap_bh);
	DQUOT_FREE_BLOCK(inode, *count-num);
	*count = num;
	return ret_block;

io_error:
	*errp = -EIO;
out:
	if (fatal) {
		*errp = fatal;
1674
		ext4_std_error(sb, fatal);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	}
	/*
	 * Undo the block allocation
	 */
	if (!performed_allocation)
		DQUOT_FREE_BLOCK(inode, *count);
	brelse(bitmap_bh);
	return 0;
}

1685 1686
ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
			ext4_fsblk_t goal, int *errp)
1687 1688 1689
{
	unsigned long count = 1;

1690
	return ext4_new_blocks(handle, inode, goal, &count, errp);
1691 1692 1693
}

/**
1694
 * ext4_count_free_blocks() -- count filesystem free blocks
1695 1696 1697 1698
 * @sb:		superblock
 *
 * Adds up the number of free blocks from each block group.
 */
1699
ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1700
{
1701 1702
	ext4_fsblk_t desc_count;
	struct ext4_group_desc *gdp;
1703
	int i;
1704 1705 1706 1707
	unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
#ifdef EXT4FS_DEBUG
	struct ext4_super_block *es;
	ext4_fsblk_t bitmap_count;
1708 1709 1710
	unsigned long x;
	struct buffer_head *bitmap_bh = NULL;

1711
	es = EXT4_SB(sb)->s_es;
1712 1713 1714 1715 1716 1717
	desc_count = 0;
	bitmap_count = 0;
	gdp = NULL;

	smp_rmb();
	for (i = 0; i < ngroups; i++) {
1718
		gdp = ext4_get_group_desc(sb, i, NULL);
1719 1720 1721 1722 1723 1724 1725 1726
		if (!gdp)
			continue;
		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
		brelse(bitmap_bh);
		bitmap_bh = read_block_bitmap(sb, i);
		if (bitmap_bh == NULL)
			continue;

1727
		x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1728 1729 1730 1731 1732
		printk("group %d: stored = %d, counted = %lu\n",
			i, le16_to_cpu(gdp->bg_free_blocks_count), x);
		bitmap_count += x;
	}
	brelse(bitmap_bh);
1733 1734
	printk("ext4_count_free_blocks: stored = %llu"
		", computed = %llu, %llu\n",
L
Laurent Vivier 已提交
1735
	       EXT4_FREE_BLOCKS_COUNT(es),
1736 1737 1738 1739 1740 1741
		desc_count, bitmap_count);
	return bitmap_count;
#else
	desc_count = 0;
	smp_rmb();
	for (i = 0; i < ngroups; i++) {
1742
		gdp = ext4_get_group_desc(sb, i, NULL);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
		if (!gdp)
			continue;
		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
	}

	return desc_count;
#endif
}

static inline int
1753
block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map)
1754
{
1755 1756 1757 1758
	ext4_grpblk_t offset;

	ext4_get_group_no_and_offset(sb, block, NULL, &offset);
	return ext4_test_bit (offset, map);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
}

static inline int test_root(int a, int b)
{
	int num = b;

	while (a > num)
		num *= b;
	return num == a;
}

1770
static int ext4_group_sparse(int group)
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
{
	if (group <= 1)
		return 1;
	if (!(group & 1))
		return 0;
	return (test_root(group, 7) || test_root(group, 5) ||
		test_root(group, 3));
}

/**
1781
 *	ext4_bg_has_super - number of blocks used by the superblock in group
1782 1783 1784 1785 1786 1787
 *	@sb: superblock for filesystem
 *	@group: group number to check
 *
 *	Return the number of blocks used by the superblock (primary or backup)
 *	in this group.  Currently this will be only 0 or 1.
 */
1788
int ext4_bg_has_super(struct super_block *sb, int group)
1789
{
1790 1791 1792
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
			!ext4_group_sparse(group))
1793 1794 1795 1796
		return 0;
	return 1;
}

1797
static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1798
{
1799 1800 1801
	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
	unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
	unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1802 1803 1804 1805 1806 1807

	if (group == first || group == first + 1 || group == last)
		return 1;
	return 0;
}

1808
static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1809
{
1810 1811 1812
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
			!ext4_group_sparse(group))
1813
		return 0;
1814
	return EXT4_SB(sb)->s_gdb_count;
1815 1816 1817
}

/**
1818
 *	ext4_bg_num_gdb - number of blocks used by the group table in group
1819 1820 1821 1822 1823 1824 1825
 *	@sb: superblock for filesystem
 *	@group: group number to check
 *
 *	Return the number of blocks used by the group descriptor table
 *	(primary or backup) in this group.  In the future there may be a
 *	different number of descriptor blocks in each group.
 */
1826
unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1827 1828
{
	unsigned long first_meta_bg =
1829 1830
			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1831

1832
	if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1833
			metagroup < first_meta_bg)
1834
		return ext4_bg_num_gdb_nometa(sb,group);
1835

1836
	return ext4_bg_num_gdb_meta(sb,group);
1837 1838

}