balloc.c 52.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/balloc.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 */

#include <linux/time.h>
#include <linux/capability.h>
#include <linux/fs.h>
17
#include <linux/jbd2.h>
18
#include <linux/ext4_fs.h>
19
#include <linux/ext4_jbd2.h>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/quotaops.h>
#include <linux/buffer_head.h>

/*
 * balloc.c contains the blocks allocation and deallocation routines
 */

/*
 * The free blocks are managed by bitmaps.  A file system contains several
 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
 * block for inodes, N blocks for the inode table and data blocks.
 *
 * The file system contains group descriptors which are located after the
 * super block.  Each descriptor contains the number of the bitmap block and
 * the free blocks count in the block.  The descriptors are loaded in memory
35
 * when a file system is mounted (see ext4_read_super).
36 37 38 39 40 41
 */


#define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)

/**
42
 * ext4_get_group_desc() -- load group descriptor from disk
43 44 45 46 47
 * @sb:			super block
 * @block_group:	given block group
 * @bh:			pointer to the buffer head to store the block
 *			group descriptor
 */
48
struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
49 50 51 52 53
					     unsigned int block_group,
					     struct buffer_head ** bh)
{
	unsigned long group_desc;
	unsigned long offset;
54 55
	struct ext4_group_desc * desc;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
56 57

	if (block_group >= sbi->s_groups_count) {
58
		ext4_error (sb, "ext4_get_group_desc",
59 60 61 62 63 64 65 66
			    "block_group >= groups_count - "
			    "block_group = %d, groups_count = %lu",
			    block_group, sbi->s_groups_count);

		return NULL;
	}
	smp_rmb();

67 68
	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
	offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
69
	if (!sbi->s_group_desc[group_desc]) {
70
		ext4_error (sb, "ext4_get_group_desc",
71 72 73 74 75 76
			    "Group descriptor not loaded - "
			    "block_group = %d, group_desc = %lu, desc = %lu",
			     block_group, group_desc, offset);
		return NULL;
	}

77 78 79
	desc = (struct ext4_group_desc *)(
		(__u8 *)sbi->s_group_desc[group_desc]->b_data +
		offset * EXT4_DESC_SIZE(sb));
80 81
	if (bh)
		*bh = sbi->s_group_desc[group_desc];
82
	return desc;
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
}

/**
 * read_block_bitmap()
 * @sb:			super block
 * @block_group:	given block group
 *
 * Read the bitmap for a given block_group, reading into the specified
 * slot in the superblock's bitmap cache.
 *
 * Return buffer_head on success or NULL in case of failure.
 */
static struct buffer_head *
read_block_bitmap(struct super_block *sb, unsigned int block_group)
{
98
	struct ext4_group_desc * desc;
99 100
	struct buffer_head * bh = NULL;

101
	desc = ext4_get_group_desc (sb, block_group, NULL);
102 103
	if (!desc)
		goto error_out;
L
Laurent Vivier 已提交
104
	bh = sb_bread(sb, ext4_block_bitmap(desc));
105
	if (!bh)
106
		ext4_error (sb, "read_block_bitmap",
107
			    "Cannot read block bitmap - "
108
			    "block_group = %d, block_bitmap = %llu",
L
Laurent Vivier 已提交
109 110
			    block_group,
			    ext4_block_bitmap(desc));
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
error_out:
	return bh;
}
/*
 * The reservation window structure operations
 * --------------------------------------------
 * Operations include:
 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
 *
 * We use a red-black tree to represent per-filesystem reservation
 * windows.
 *
 */

/**
 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
 * @rb_root:		root of per-filesystem reservation rb tree
 * @verbose:		verbose mode
 * @fn:			function which wishes to dump the reservation map
 *
 * If verbose is turned on, it will print the whole block reservation
 * windows(start, end).	Otherwise, it will only print out the "bad" windows,
 * those windows that overlap with their immediate neighbors.
 */
#if 1
static void __rsv_window_dump(struct rb_root *root, int verbose,
			      const char *fn)
{
	struct rb_node *n;
140
	struct ext4_reserve_window_node *rsv, *prev;
141 142 143 144 145 146 147 148 149
	int bad;

restart:
	n = rb_first(root);
	bad = 0;
	prev = NULL;

	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
	while (n) {
150
		rsv = list_entry(n, struct ext4_reserve_window_node, rsv_node);
151 152
		if (verbose)
			printk("reservation window 0x%p "
153
			       "start:  %llu, end:  %llu\n",
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
			       rsv, rsv->rsv_start, rsv->rsv_end);
		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
			printk("Bad reservation %p (start >= end)\n",
			       rsv);
			bad = 1;
		}
		if (prev && prev->rsv_end >= rsv->rsv_start) {
			printk("Bad reservation %p (prev->end >= start)\n",
			       rsv);
			bad = 1;
		}
		if (bad) {
			if (!verbose) {
				printk("Restarting reservation walk in verbose mode\n");
				verbose = 1;
				goto restart;
			}
		}
		n = rb_next(n);
		prev = rsv;
	}
	printk("Window map complete.\n");
	if (bad)
		BUG();
}
#define rsv_window_dump(root, verbose) \
	__rsv_window_dump((root), (verbose), __FUNCTION__)
#else
#define rsv_window_dump(root, verbose) do {} while (0)
#endif

/**
 * goal_in_my_reservation()
 * @rsv:		inode's reservation window
 * @grp_goal:		given goal block relative to the allocation block group
 * @group:		the current allocation block group
 * @sb:			filesystem super block
 *
 * Test if the given goal block (group relative) is within the file's
 * own block reservation window range.
 *
 * If the reservation window is outside the goal allocation group, return 0;
 * grp_goal (given goal block) could be -1, which means no specific
 * goal block. In this case, always return 1.
 * If the goal block is within the reservation window, return 1;
 * otherwise, return 0;
 */
static int
202
goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
203 204
			unsigned int group, struct super_block * sb)
{
205
	ext4_fsblk_t group_first_block, group_last_block;
206

207 208
	group_first_block = ext4_group_first_block_no(sb, group);
	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

	if ((rsv->_rsv_start > group_last_block) ||
	    (rsv->_rsv_end < group_first_block))
		return 0;
	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
		|| (grp_goal + group_first_block > rsv->_rsv_end)))
		return 0;
	return 1;
}

/**
 * search_reserve_window()
 * @rb_root:		root of reservation tree
 * @goal:		target allocation block
 *
 * Find the reserved window which includes the goal, or the previous one
 * if the goal is not in any window.
 * Returns NULL if there are no windows or if all windows start after the goal.
 */
228 229
static struct ext4_reserve_window_node *
search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
230 231
{
	struct rb_node *n = root->rb_node;
232
	struct ext4_reserve_window_node *rsv;
233 234 235 236 237

	if (!n)
		return NULL;

	do {
238
		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

		if (goal < rsv->rsv_start)
			n = n->rb_left;
		else if (goal > rsv->rsv_end)
			n = n->rb_right;
		else
			return rsv;
	} while (n);
	/*
	 * We've fallen off the end of the tree: the goal wasn't inside
	 * any particular node.  OK, the previous node must be to one
	 * side of the interval containing the goal.  If it's the RHS,
	 * we need to back up one.
	 */
	if (rsv->rsv_start > goal) {
		n = rb_prev(&rsv->rsv_node);
255
		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
256 257 258 259 260
	}
	return rsv;
}

/**
261
 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
262 263 264 265 266
 * @sb:			super block
 * @rsv:		reservation window to add
 *
 * Must be called with rsv_lock hold.
 */
267 268
void ext4_rsv_window_add(struct super_block *sb,
		    struct ext4_reserve_window_node *rsv)
269
{
270
	struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
271
	struct rb_node *node = &rsv->rsv_node;
272
	ext4_fsblk_t start = rsv->rsv_start;
273 274 275

	struct rb_node ** p = &root->rb_node;
	struct rb_node * parent = NULL;
276
	struct ext4_reserve_window_node *this;
277 278 279 280

	while (*p)
	{
		parent = *p;
281
		this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

		if (start < this->rsv_start)
			p = &(*p)->rb_left;
		else if (start > this->rsv_end)
			p = &(*p)->rb_right;
		else {
			rsv_window_dump(root, 1);
			BUG();
		}
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
}

/**
298
 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
299 300 301 302 303 304 305 306
 * @sb:			super block
 * @rsv:		reservation window to remove
 *
 * Mark the block reservation window as not allocated, and unlink it
 * from the filesystem reservation window rb tree. Must be called with
 * rsv_lock hold.
 */
static void rsv_window_remove(struct super_block *sb,
307
			      struct ext4_reserve_window_node *rsv)
308
{
309 310
	rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
	rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
311
	rsv->rsv_alloc_hit = 0;
312
	rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
313 314 315 316 317 318
}

/*
 * rsv_is_empty() -- Check if the reservation window is allocated.
 * @rsv:		given reservation window to check
 *
319
 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
320
 */
321
static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
322 323
{
	/* a valid reservation end block could not be 0 */
324
	return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
325 326 327
}

/**
328
 * ext4_init_block_alloc_info()
329 330 331
 * @inode:		file inode structure
 *
 * Allocate and initialize the	reservation window structure, and
332
 * link the window to the ext4 inode structure at last
333 334
 *
 * The reservation window structure is only dynamically allocated
335 336
 * and linked to ext4 inode the first time the open file
 * needs a new block. So, before every ext4_new_block(s) call, for
337 338 339 340 341
 * regular files, we should check whether the reservation window
 * structure exists or not. In the latter case, this function is called.
 * Fail to do so will result in block reservation being turned off for that
 * open file.
 *
342
 * This function is called from ext4_get_blocks_handle(), also called
343 344 345 346 347
 * when setting the reservation window size through ioctl before the file
 * is open for write (needs block allocation).
 *
 * Needs truncate_mutex protection prior to call this function.
 */
348
void ext4_init_block_alloc_info(struct inode *inode)
349
{
350 351
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
352 353 354 355
	struct super_block *sb = inode->i_sb;

	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
	if (block_i) {
356
		struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
357

358 359
		rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
		rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
360 361 362 363 364 365 366 367 368

		/*
		 * if filesystem is mounted with NORESERVATION, the goal
		 * reservation window size is set to zero to indicate
		 * block reservation is off
		 */
		if (!test_opt(sb, RESERVATION))
			rsv->rsv_goal_size = 0;
		else
369
			rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
370 371 372 373 374 375 376 377
		rsv->rsv_alloc_hit = 0;
		block_i->last_alloc_logical_block = 0;
		block_i->last_alloc_physical_block = 0;
	}
	ei->i_block_alloc_info = block_i;
}

/**
378
 * ext4_discard_reservation()
379 380 381 382 383 384
 * @inode:		inode
 *
 * Discard(free) block reservation window on last file close, or truncate
 * or at last iput().
 *
 * It is being called in three cases:
385 386 387
 *	ext4_release_file(): last writer close the file
 *	ext4_clear_inode(): last iput(), when nobody link to this file.
 *	ext4_truncate(): when the block indirect map is about to change.
388 389
 *
 */
390
void ext4_discard_reservation(struct inode *inode)
391
{
392 393 394 395
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
	struct ext4_reserve_window_node *rsv;
	spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
396 397 398 399 400 401 402 403 404 405 406 407 408 409

	if (!block_i)
		return;

	rsv = &block_i->rsv_window_node;
	if (!rsv_is_empty(&rsv->rsv_window)) {
		spin_lock(rsv_lock);
		if (!rsv_is_empty(&rsv->rsv_window))
			rsv_window_remove(inode->i_sb, rsv);
		spin_unlock(rsv_lock);
	}
}

/**
410
 * ext4_free_blocks_sb() -- Free given blocks and update quota
411 412 413 414 415 416
 * @handle:			handle to this transaction
 * @sb:				super block
 * @block:			start physcial block to free
 * @count:			number of blocks to free
 * @pdquot_freed_blocks:	pointer to quota
 */
417 418
void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
			 ext4_fsblk_t block, unsigned long count,
419 420 421 422 423
			 unsigned long *pdquot_freed_blocks)
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gd_bh;
	unsigned long block_group;
424
	ext4_grpblk_t bit;
425 426
	unsigned long i;
	unsigned long overflow;
427 428 429
	struct ext4_group_desc * desc;
	struct ext4_super_block * es;
	struct ext4_sb_info *sbi;
430
	int err = 0, ret;
431
	ext4_grpblk_t group_freed;
432 433

	*pdquot_freed_blocks = 0;
434
	sbi = EXT4_SB(sb);
435 436 437
	es = sbi->s_es;
	if (block < le32_to_cpu(es->s_first_data_block) ||
	    block + count < block ||
L
Laurent Vivier 已提交
438
	    block + count > ext4_blocks_count(es)) {
439
		ext4_error (sb, "ext4_free_blocks",
440
			    "Freeing blocks not in datazone - "
441
			    "block = %llu, count = %lu", block, count);
442 443 444
		goto error_return;
	}

L
Laurent Vivier 已提交
445
	ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
446 447 448

do_more:
	overflow = 0;
449
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
450 451 452 453
	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
454 455
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
456 457 458 459 460 461
		count -= overflow;
	}
	brelse(bitmap_bh);
	bitmap_bh = read_block_bitmap(sb, block_group);
	if (!bitmap_bh)
		goto error_return;
462
	desc = ext4_get_group_desc (sb, block_group, &gd_bh);
463 464 465
	if (!desc)
		goto error_return;

L
Laurent Vivier 已提交
466 467 468 469 470
	if (in_range(ext4_block_bitmap(desc), block, count) ||
	    in_range(ext4_inode_bitmap(desc), block, count) ||
	    in_range(block, ext4_inode_table(desc), sbi->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(desc),
		     sbi->s_itb_per_group))
471
		ext4_error (sb, "ext4_free_blocks",
472
			    "Freeing blocks in system zones - "
473
			    "Block = %llu, count = %lu",
474 475 476 477 478 479 480 481
			    block, count);

	/*
	 * We are about to start releasing blocks in the bitmap,
	 * so we need undo access.
	 */
	/* @@@ check errors */
	BUFFER_TRACE(bitmap_bh, "getting undo access");
482
	err = ext4_journal_get_undo_access(handle, bitmap_bh);
483 484 485 486 487 488 489 490 491
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
492
	err = ext4_journal_get_write_access(handle, gd_bh);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	if (err)
		goto error_return;

	jbd_lock_bh_state(bitmap_bh);

	for (i = 0, group_freed = 0; i < count; i++) {
		/*
		 * An HJ special.  This is expensive...
		 */
#ifdef CONFIG_JBD_DEBUG
		jbd_unlock_bh_state(bitmap_bh);
		{
			struct buffer_head *debug_bh;
			debug_bh = sb_find_get_block(sb, block + i);
			if (debug_bh) {
				BUFFER_TRACE(debug_bh, "Deleted!");
				if (!bh2jh(bitmap_bh)->b_committed_data)
					BUFFER_TRACE(debug_bh,
						"No commited data in bitmap");
				BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
				__brelse(debug_bh);
			}
		}
		jbd_lock_bh_state(bitmap_bh);
#endif
		if (need_resched()) {
			jbd_unlock_bh_state(bitmap_bh);
			cond_resched();
			jbd_lock_bh_state(bitmap_bh);
		}
		/* @@@ This prevents newly-allocated data from being
		 * freed and then reallocated within the same
		 * transaction.
		 *
		 * Ideally we would want to allow that to happen, but to
528
		 * do so requires making jbd2_journal_forget() capable of
529 530 531 532
		 * revoking the queued write of a data block, which
		 * implies blocking on the journal lock.  *forget()
		 * cannot block due to truncate races.
		 *
533
		 * Eventually we can fix this by making jbd2_journal_forget()
534 535 536 537 538 539 540 541 542 543
		 * return a status indicating whether or not it was able
		 * to revoke the buffer.  On successful revoke, it is
		 * safe not to set the allocation bit in the committed
		 * bitmap, because we know that there is no outstanding
		 * activity on the buffer any more and so it is safe to
		 * reallocate it.
		 */
		BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
		J_ASSERT_BH(bitmap_bh,
				bh2jh(bitmap_bh)->b_committed_data != NULL);
544
		ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
545 546 547 548 549 550 551 552
				bh2jh(bitmap_bh)->b_committed_data);

		/*
		 * We clear the bit in the bitmap after setting the committed
		 * data bit, because this is the reverse order to that which
		 * the allocator uses.
		 */
		BUFFER_TRACE(bitmap_bh, "clear bit");
553
		if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
554 555
						bit + i, bitmap_bh->b_data)) {
			jbd_unlock_bh_state(bitmap_bh);
556
			ext4_error(sb, __FUNCTION__,
557
				   "bit already cleared for block %llu",
L
Laurent Vivier 已提交
558
				   (ext4_fsblk_t)(block + i));
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
			jbd_lock_bh_state(bitmap_bh);
			BUFFER_TRACE(bitmap_bh, "bit already cleared");
		} else {
			group_freed++;
		}
	}
	jbd_unlock_bh_state(bitmap_bh);

	spin_lock(sb_bgl_lock(sbi, block_group));
	desc->bg_free_blocks_count =
		cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
			group_freed);
	spin_unlock(sb_bgl_lock(sbi, block_group));
	percpu_counter_mod(&sbi->s_freeblocks_counter, count);

	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
576
	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
577 578 579

	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
580
	ret = ext4_journal_dirty_metadata(handle, gd_bh);
581 582 583 584 585 586 587 588 589 590 591
	if (!err) err = ret;
	*pdquot_freed_blocks += group_freed;

	if (overflow && !err) {
		block += count;
		count = overflow;
		goto do_more;
	}
	sb->s_dirt = 1;
error_return:
	brelse(bitmap_bh);
592
	ext4_std_error(sb, err);
593 594 595 596
	return;
}

/**
597
 * ext4_free_blocks() -- Free given blocks and update quota
598 599 600 601 602
 * @handle:		handle for this transaction
 * @inode:		inode
 * @block:		start physical block to free
 * @count:		number of blocks to count
 */
603 604
void ext4_free_blocks(handle_t *handle, struct inode *inode,
			ext4_fsblk_t block, unsigned long count)
605 606 607 608 609 610
{
	struct super_block * sb;
	unsigned long dquot_freed_blocks;

	sb = inode->i_sb;
	if (!sb) {
611
		printk ("ext4_free_blocks: nonexistent device");
612 613
		return;
	}
614
	ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
615 616 617 618 619 620
	if (dquot_freed_blocks)
		DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
	return;
}

/**
621
 * ext4_test_allocatable()
622 623 624
 * @nr:			given allocation block group
 * @bh:			bufferhead contains the bitmap of the given block group
 *
625
 * For ext4 allocations, we must not reuse any blocks which are
626 627 628 629 630 631 632 633 634 635 636 637 638 639
 * allocated in the bitmap buffer's "last committed data" copy.  This
 * prevents deletes from freeing up the page for reuse until we have
 * committed the delete transaction.
 *
 * If we didn't do this, then deleting something and reallocating it as
 * data would allow the old block to be overwritten before the
 * transaction committed (because we force data to disk before commit).
 * This would lead to corruption if we crashed between overwriting the
 * data and committing the delete.
 *
 * @@@ We may want to make this allocation behaviour conditional on
 * data-writes at some point, and disable it for metadata allocations or
 * sync-data inodes.
 */
640
static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
641 642 643 644
{
	int ret;
	struct journal_head *jh = bh2jh(bh);

645
	if (ext4_test_bit(nr, bh->b_data))
646 647 648 649 650 651
		return 0;

	jbd_lock_bh_state(bh);
	if (!jh->b_committed_data)
		ret = 1;
	else
652
		ret = !ext4_test_bit(nr, jh->b_committed_data);
653 654 655 656 657 658 659 660 661 662 663 664 665 666
	jbd_unlock_bh_state(bh);
	return ret;
}

/**
 * bitmap_search_next_usable_block()
 * @start:		the starting block (group relative) of the search
 * @bh:			bufferhead contains the block group bitmap
 * @maxblocks:		the ending block (group relative) of the reservation
 *
 * The bitmap search --- search forward alternately through the actual
 * bitmap on disk and the last-committed copy in journal, until we find a
 * bit free in both bitmaps.
 */
667 668 669
static ext4_grpblk_t
bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
					ext4_grpblk_t maxblocks)
670
{
671
	ext4_grpblk_t next;
672 673 674
	struct journal_head *jh = bh2jh(bh);

	while (start < maxblocks) {
675
		next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
676 677
		if (next >= maxblocks)
			return -1;
678
		if (ext4_test_allocatable(next, bh))
679 680 681
			return next;
		jbd_lock_bh_state(bh);
		if (jh->b_committed_data)
682
			start = ext4_find_next_zero_bit(jh->b_committed_data,
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
							maxblocks, next);
		jbd_unlock_bh_state(bh);
	}
	return -1;
}

/**
 * find_next_usable_block()
 * @start:		the starting block (group relative) to find next
 *			allocatable block in bitmap.
 * @bh:			bufferhead contains the block group bitmap
 * @maxblocks:		the ending block (group relative) for the search
 *
 * Find an allocatable block in a bitmap.  We honor both the bitmap and
 * its last-committed copy (if that exists), and perform the "most
 * appropriate allocation" algorithm of looking for a free block near
 * the initial goal; then for a free byte somewhere in the bitmap; then
 * for any free bit in the bitmap.
 */
702 703 704
static ext4_grpblk_t
find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
			ext4_grpblk_t maxblocks)
705
{
706
	ext4_grpblk_t here, next;
707 708 709 710 711 712 713 714
	char *p, *r;

	if (start > 0) {
		/*
		 * The goal was occupied; search forward for a free
		 * block within the next XX blocks.
		 *
		 * end_goal is more or less random, but it has to be
715
		 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
716 717
		 * next 64-bit boundary is simple..
		 */
718
		ext4_grpblk_t end_goal = (start + 63) & ~63;
719 720
		if (end_goal > maxblocks)
			end_goal = maxblocks;
721 722
		here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
		if (here < end_goal && ext4_test_allocatable(here, bh))
723
			return here;
724
		ext4_debug("Bit not found near goal\n");
725 726 727 728 729 730 731 732 733 734
	}

	here = start;
	if (here < 0)
		here = 0;

	p = ((char *)bh->b_data) + (here >> 3);
	r = memscan(p, 0, (maxblocks - here + 7) >> 3);
	next = (r - ((char *)bh->b_data)) << 3;

735
	if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
		return next;

	/*
	 * The bitmap search --- search forward alternately through the actual
	 * bitmap and the last-committed copy until we find a bit free in
	 * both
	 */
	here = bitmap_search_next_usable_block(here, bh, maxblocks);
	return here;
}

/**
 * claim_block()
 * @block:		the free block (group relative) to allocate
 * @bh:			the bufferhead containts the block group bitmap
 *
 * We think we can allocate this block in this bitmap.  Try to set the bit.
 * If that succeeds then check that nobody has allocated and then freed the
 * block since we saw that is was not marked in b_committed_data.  If it _was_
 * allocated and freed then clear the bit in the bitmap again and return
 * zero (failure).
 */
static inline int
759
claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
760 761 762 763
{
	struct journal_head *jh = bh2jh(bh);
	int ret;

764
	if (ext4_set_bit_atomic(lock, block, bh->b_data))
765 766
		return 0;
	jbd_lock_bh_state(bh);
767 768
	if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
		ext4_clear_bit_atomic(lock, block, bh->b_data);
769 770 771 772 773 774 775 776 777
		ret = 0;
	} else {
		ret = 1;
	}
	jbd_unlock_bh_state(bh);
	return ret;
}

/**
778
 * ext4_try_to_allocate()
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
 * @sb:			superblock
 * @handle:		handle to this transaction
 * @group:		given allocation block group
 * @bitmap_bh:		bufferhead holds the block bitmap
 * @grp_goal:		given target block within the group
 * @count:		target number of blocks to allocate
 * @my_rsv:		reservation window
 *
 * Attempt to allocate blocks within a give range. Set the range of allocation
 * first, then find the first free bit(s) from the bitmap (within the range),
 * and at last, allocate the blocks by claiming the found free bit as allocated.
 *
 * To set the range of this allocation:
 *	if there is a reservation window, only try to allocate block(s) from the
 *	file's own reservation window;
 *	Otherwise, the allocation range starts from the give goal block, ends at
 *	the block group's last block.
 *
 * If we failed to allocate the desired block then we may end up crossing to a
 * new bitmap.  In that case we must release write access to the old one via
799
 * ext4_journal_release_buffer(), else we'll run out of credits.
800
 */
801 802 803 804
static ext4_grpblk_t
ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
			struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
			unsigned long *count, struct ext4_reserve_window *my_rsv)
805
{
806 807
	ext4_fsblk_t group_first_block;
	ext4_grpblk_t start, end;
808 809 810 811
	unsigned long num = 0;

	/* we do allocation within the reservation window if we have a window */
	if (my_rsv) {
812
		group_first_block = ext4_group_first_block_no(sb, group);
813 814 815 816 817 818
		if (my_rsv->_rsv_start >= group_first_block)
			start = my_rsv->_rsv_start - group_first_block;
		else
			/* reservation window cross group boundary */
			start = 0;
		end = my_rsv->_rsv_end - group_first_block + 1;
819
		if (end > EXT4_BLOCKS_PER_GROUP(sb))
820
			/* reservation window crosses group boundary */
821
			end = EXT4_BLOCKS_PER_GROUP(sb);
822 823 824 825 826 827 828 829 830
		if ((start <= grp_goal) && (grp_goal < end))
			start = grp_goal;
		else
			grp_goal = -1;
	} else {
		if (grp_goal > 0)
			start = grp_goal;
		else
			start = 0;
831
		end = EXT4_BLOCKS_PER_GROUP(sb);
832 833
	}

834
	BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
835 836

repeat:
837
	if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
838 839 840 841 842 843 844
		grp_goal = find_next_usable_block(start, bitmap_bh, end);
		if (grp_goal < 0)
			goto fail_access;
		if (!my_rsv) {
			int i;

			for (i = 0; i < 7 && grp_goal > start &&
845
					ext4_test_allocatable(grp_goal - 1,
846 847 848 849 850 851 852
								bitmap_bh);
					i++, grp_goal--)
				;
		}
	}
	start = grp_goal;

853
	if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
854 855 856 857 858 859 860 861 862 863 864 865 866 867
		grp_goal, bitmap_bh)) {
		/*
		 * The block was allocated by another thread, or it was
		 * allocated and then freed by another thread
		 */
		start++;
		grp_goal++;
		if (start >= end)
			goto fail_access;
		goto repeat;
	}
	num++;
	grp_goal++;
	while (num < *count && grp_goal < end
868 869
		&& ext4_test_allocatable(grp_goal, bitmap_bh)
		&& claim_block(sb_bgl_lock(EXT4_SB(sb), group),
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
				grp_goal, bitmap_bh)) {
		num++;
		grp_goal++;
	}
	*count = num;
	return grp_goal - num;
fail_access:
	*count = num;
	return -1;
}

/**
 *	find_next_reservable_window():
 *		find a reservable space within the given range.
 *		It does not allocate the reservation window for now:
 *		alloc_new_reservation() will do the work later.
 *
 *	@search_head: the head of the searching list;
 *		This is not necessarily the list head of the whole filesystem
 *
 *		We have both head and start_block to assist the search
 *		for the reservable space. The list starts from head,
 *		but we will shift to the place where start_block is,
 *		then start from there, when looking for a reservable space.
 *
 *	@size: the target new reservation window size
 *
 *	@group_first_block: the first block we consider to start
 *			the real search from
 *
 *	@last_block:
 *		the maximum block number that our goal reservable space
 *		could start from. This is normally the last block in this
 *		group. The search will end when we found the start of next
 *		possible reservable space is out of this boundary.
 *		This could handle the cross boundary reservation window
 *		request.
 *
 *	basically we search from the given range, rather than the whole
 *	reservation double linked list, (start_block, last_block)
 *	to find a free region that is of my size and has not
 *	been reserved.
 *
 */
static int find_next_reservable_window(
915 916
				struct ext4_reserve_window_node *search_head,
				struct ext4_reserve_window_node *my_rsv,
917
				struct super_block * sb,
918 919
				ext4_fsblk_t start_block,
				ext4_fsblk_t last_block)
920 921
{
	struct rb_node *next;
922 923
	struct ext4_reserve_window_node *rsv, *prev;
	ext4_fsblk_t cur;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	int size = my_rsv->rsv_goal_size;

	/* TODO: make the start of the reservation window byte-aligned */
	/* cur = *start_block & ~7;*/
	cur = start_block;
	rsv = search_head;
	if (!rsv)
		return -1;

	while (1) {
		if (cur <= rsv->rsv_end)
			cur = rsv->rsv_end + 1;

		/* TODO?
		 * in the case we could not find a reservable space
		 * that is what is expected, during the re-search, we could
		 * remember what's the largest reservable space we could have
		 * and return that one.
		 *
		 * For now it will fail if we could not find the reservable
		 * space with expected-size (or more)...
		 */
		if (cur > last_block)
			return -1;		/* fail */

		prev = rsv;
		next = rb_next(&rsv->rsv_node);
951
		rsv = list_entry(next,struct ext4_reserve_window_node,rsv_node);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993

		/*
		 * Reached the last reservation, we can just append to the
		 * previous one.
		 */
		if (!next)
			break;

		if (cur + size <= rsv->rsv_start) {
			/*
			 * Found a reserveable space big enough.  We could
			 * have a reservation across the group boundary here
			 */
			break;
		}
	}
	/*
	 * we come here either :
	 * when we reach the end of the whole list,
	 * and there is empty reservable space after last entry in the list.
	 * append it to the end of the list.
	 *
	 * or we found one reservable space in the middle of the list,
	 * return the reservation window that we could append to.
	 * succeed.
	 */

	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
		rsv_window_remove(sb, my_rsv);

	/*
	 * Let's book the whole avaliable window for now.  We will check the
	 * disk bitmap later and then, if there are free blocks then we adjust
	 * the window size if it's larger than requested.
	 * Otherwise, we will remove this node from the tree next time
	 * call find_next_reservable_window.
	 */
	my_rsv->rsv_start = cur;
	my_rsv->rsv_end = cur + size - 1;
	my_rsv->rsv_alloc_hit = 0;

	if (prev != my_rsv)
994
		ext4_rsv_window_add(sb, my_rsv);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

	return 0;
}

/**
 *	alloc_new_reservation()--allocate a new reservation window
 *
 *		To make a new reservation, we search part of the filesystem
 *		reservation list (the list that inside the group). We try to
 *		allocate a new reservation window near the allocation goal,
 *		or the beginning of the group, if there is no goal.
 *
 *		We first find a reservable space after the goal, then from
 *		there, we check the bitmap for the first free block after
 *		it. If there is no free block until the end of group, then the
 *		whole group is full, we failed. Otherwise, check if the free
 *		block is inside the expected reservable space, if so, we
 *		succeed.
 *		If the first free block is outside the reservable space, then
 *		start from the first free block, we search for next available
 *		space, and go on.
 *
 *	on succeed, a new reservation will be found and inserted into the list
 *	It contains at least one free block, and it does not overlap with other
 *	reservation windows.
 *
 *	failed: we failed to find a reservation window in this group
 *
 *	@rsv: the reservation
 *
 *	@grp_goal: The goal (group-relative).  It is where the search for a
 *		free reservable space should start from.
 *		if we have a grp_goal(grp_goal >0 ), then start from there,
 *		no grp_goal(grp_goal = -1), we start from the first block
 *		of the group.
 *
 *	@sb: the super block
 *	@group: the group we are trying to allocate in
 *	@bitmap_bh: the block group block bitmap
 *
 */
1036 1037
static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
		ext4_grpblk_t grp_goal, struct super_block *sb,
1038 1039
		unsigned int group, struct buffer_head *bitmap_bh)
{
1040 1041 1042 1043
	struct ext4_reserve_window_node *search_head;
	ext4_fsblk_t group_first_block, group_end_block, start_block;
	ext4_grpblk_t first_free_block;
	struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1044 1045
	unsigned long size;
	int ret;
1046
	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1047

1048 1049
	group_first_block = ext4_group_first_block_no(sb, group);
	group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

	if (grp_goal < 0)
		start_block = group_first_block;
	else
		start_block = grp_goal + group_first_block;

	size = my_rsv->rsv_goal_size;

	if (!rsv_is_empty(&my_rsv->rsv_window)) {
		/*
		 * if the old reservation is cross group boundary
		 * and if the goal is inside the old reservation window,
		 * we will come here when we just failed to allocate from
		 * the first part of the window. We still have another part
		 * that belongs to the next group. In this case, there is no
		 * point to discard our window and try to allocate a new one
		 * in this group(which will fail). we should
		 * keep the reservation window, just simply move on.
		 *
		 * Maybe we could shift the start block of the reservation
		 * window to the first block of next group.
		 */

		if ((my_rsv->rsv_start <= group_end_block) &&
				(my_rsv->rsv_end > group_end_block) &&
				(start_block >= my_rsv->rsv_start))
			return -1;

		if ((my_rsv->rsv_alloc_hit >
		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
			/*
			 * if the previously allocation hit ratio is
			 * greater than 1/2, then we double the size of
			 * the reservation window the next time,
			 * otherwise we keep the same size window
			 */
			size = size * 2;
1087 1088
			if (size > EXT4_MAX_RESERVE_BLOCKS)
				size = EXT4_MAX_RESERVE_BLOCKS;
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
			my_rsv->rsv_goal_size= size;
		}
	}

	spin_lock(rsv_lock);
	/*
	 * shift the search start to the window near the goal block
	 */
	search_head = search_reserve_window(fs_rsv_root, start_block);

	/*
	 * find_next_reservable_window() simply finds a reservable window
	 * inside the given range(start_block, group_end_block).
	 *
	 * To make sure the reservation window has a free bit inside it, we
	 * need to check the bitmap after we found a reservable window.
	 */
retry:
	ret = find_next_reservable_window(search_head, my_rsv, sb,
						start_block, group_end_block);

	if (ret == -1) {
		if (!rsv_is_empty(&my_rsv->rsv_window))
			rsv_window_remove(sb, my_rsv);
		spin_unlock(rsv_lock);
		return -1;
	}

	/*
	 * On success, find_next_reservable_window() returns the
	 * reservation window where there is a reservable space after it.
	 * Before we reserve this reservable space, we need
	 * to make sure there is at least a free block inside this region.
	 *
	 * searching the first free bit on the block bitmap and copy of
	 * last committed bitmap alternatively, until we found a allocatable
	 * block. Search start from the start block of the reservable space
	 * we just found.
	 */
	spin_unlock(rsv_lock);
	first_free_block = bitmap_search_next_usable_block(
			my_rsv->rsv_start - group_first_block,
			bitmap_bh, group_end_block - group_first_block + 1);

	if (first_free_block < 0) {
		/*
		 * no free block left on the bitmap, no point
		 * to reserve the space. return failed.
		 */
		spin_lock(rsv_lock);
		if (!rsv_is_empty(&my_rsv->rsv_window))
			rsv_window_remove(sb, my_rsv);
		spin_unlock(rsv_lock);
		return -1;		/* failed */
	}

	start_block = first_free_block + group_first_block;
	/*
	 * check if the first free block is within the
	 * free space we just reserved
	 */
	if (start_block >= my_rsv->rsv_start && start_block < my_rsv->rsv_end)
		return 0;		/* success */
	/*
	 * if the first free bit we found is out of the reservable space
	 * continue search for next reservable space,
	 * start from where the free block is,
	 * we also shift the list head to where we stopped last time
	 */
	search_head = my_rsv;
	spin_lock(rsv_lock);
	goto retry;
}

/**
 * try_to_extend_reservation()
 * @my_rsv:		given reservation window
 * @sb:			super block
 * @size:		the delta to extend
 *
 * Attempt to expand the reservation window large enough to have
 * required number of free blocks
 *
1172
 * Since ext4_try_to_allocate() will always allocate blocks within
1173 1174 1175 1176 1177
 * the reservation window range, if the window size is too small,
 * multiple blocks allocation has to stop at the end of the reservation
 * window. To make this more efficient, given the total number of
 * blocks needed and the current size of the window, we try to
 * expand the reservation window size if necessary on a best-effort
1178
 * basis before ext4_new_blocks() tries to allocate blocks,
1179
 */
1180
static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1181 1182
			struct super_block *sb, int size)
{
1183
	struct ext4_reserve_window_node *next_rsv;
1184
	struct rb_node *next;
1185
	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1186 1187 1188 1189 1190 1191 1192 1193 1194

	if (!spin_trylock(rsv_lock))
		return;

	next = rb_next(&my_rsv->rsv_node);

	if (!next)
		my_rsv->rsv_end += size;
	else {
1195
		next_rsv = list_entry(next, struct ext4_reserve_window_node, rsv_node);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
			my_rsv->rsv_end += size;
		else
			my_rsv->rsv_end = next_rsv->rsv_start - 1;
	}
	spin_unlock(rsv_lock);
}

/**
1206
 * ext4_try_to_allocate_with_rsv()
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
 * @sb:			superblock
 * @handle:		handle to this transaction
 * @group:		given allocation block group
 * @bitmap_bh:		bufferhead holds the block bitmap
 * @grp_goal:		given target block within the group
 * @count:		target number of blocks to allocate
 * @my_rsv:		reservation window
 * @errp:		pointer to store the error code
 *
 * This is the main function used to allocate a new block and its reservation
 * window.
 *
 * Each time when a new block allocation is need, first try to allocate from
 * its own reservation.  If it does not have a reservation window, instead of
 * looking for a free bit on bitmap first, then look up the reservation list to
 * see if it is inside somebody else's reservation window, we try to allocate a
 * reservation window for it starting from the goal first. Then do the block
 * allocation within the reservation window.
 *
 * This will avoid keeping on searching the reservation list again and
 * again when somebody is looking for a free block (without
 * reservation), and there are lots of free blocks, but they are all
 * being reserved.
 *
 * We use a red-black tree for the per-filesystem reservation list.
 *
 */
1234 1235
static ext4_grpblk_t
ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1236
			unsigned int group, struct buffer_head *bitmap_bh,
1237 1238
			ext4_grpblk_t grp_goal,
			struct ext4_reserve_window_node * my_rsv,
1239 1240
			unsigned long *count, int *errp)
{
1241 1242
	ext4_fsblk_t group_first_block, group_last_block;
	ext4_grpblk_t ret = 0;
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	int fatal;
	unsigned long num = *count;

	*errp = 0;

	/*
	 * Make sure we use undo access for the bitmap, because it is critical
	 * that we do the frozen_data COW on bitmap buffers in all cases even
	 * if the buffer is in BJ_Forget state in the committing transaction.
	 */
	BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1254
	fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	if (fatal) {
		*errp = fatal;
		return -1;
	}

	/*
	 * we don't deal with reservation when
	 * filesystem is mounted without reservation
	 * or the file is not a regular file
	 * or last attempt to allocate a block with reservation turned on failed
	 */
	if (my_rsv == NULL ) {
1267
		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1268 1269 1270 1271 1272
						grp_goal, count, NULL);
		goto out;
	}
	/*
	 * grp_goal is a group relative block number (if there is a goal)
1273
	 * 0 < grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1274 1275 1276
	 * first block is a filesystem wide block number
	 * first block is the block number of the first block in this group
	 */
1277 1278
	group_first_block = ext4_group_first_block_no(sb, group);
	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

	/*
	 * Basically we will allocate a new block from inode's reservation
	 * window.
	 *
	 * We need to allocate a new reservation window, if:
	 * a) inode does not have a reservation window; or
	 * b) last attempt to allocate a block from existing reservation
	 *    failed; or
	 * c) we come here with a goal and with a reservation window
	 *
	 * We do not need to allocate a new reservation window if we come here
	 * at the beginning with a goal and the goal is inside the window, or
	 * we don't have a goal but already have a reservation window.
	 * then we could go to allocate from the reservation window directly.
	 */
	while (1) {
		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
			!goal_in_my_reservation(&my_rsv->rsv_window,
						grp_goal, group, sb)) {
			if (my_rsv->rsv_goal_size < *count)
				my_rsv->rsv_goal_size = *count;
			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
							group, bitmap_bh);
			if (ret < 0)
				break;			/* failed */

			if (!goal_in_my_reservation(&my_rsv->rsv_window,
							grp_goal, group, sb))
				grp_goal = -1;
		} else if (grp_goal > 0 &&
			  (my_rsv->rsv_end-grp_goal+1) < *count)
			try_to_extend_reservation(my_rsv, sb,
					*count-my_rsv->rsv_end + grp_goal - 1);

		if ((my_rsv->rsv_start > group_last_block) ||
				(my_rsv->rsv_end < group_first_block)) {
1316
			rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1317 1318
			BUG();
		}
1319
		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
					   grp_goal, &num, &my_rsv->rsv_window);
		if (ret >= 0) {
			my_rsv->rsv_alloc_hit += num;
			*count = num;
			break;				/* succeed */
		}
		num = *count;
	}
out:
	if (ret >= 0) {
		BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
					"bitmap block");
1332
		fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1333 1334 1335 1336 1337 1338 1339 1340
		if (fatal) {
			*errp = fatal;
			return -1;
		}
		return ret;
	}

	BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1341
	ext4_journal_release_buffer(handle, bitmap_bh);
1342 1343 1344 1345
	return ret;
}

/**
1346
 * ext4_has_free_blocks()
1347 1348 1349 1350
 * @sbi:		in-core super block structure.
 *
 * Check if filesystem has at least 1 free block available for allocation.
 */
1351
static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1352
{
1353
	ext4_fsblk_t free_blocks, root_blocks;
1354 1355

	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
L
Laurent Vivier 已提交
1356
	root_blocks = ext4_r_blocks_count(sbi->s_es);
1357 1358 1359 1360 1361 1362 1363 1364 1365
	if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
		sbi->s_resuid != current->fsuid &&
		(sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
		return 0;
	}
	return 1;
}

/**
1366
 * ext4_should_retry_alloc()
1367 1368 1369
 * @sb:			super block
 * @retries		number of attemps has been made
 *
1370
 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1371 1372 1373 1374 1375 1376
 * it is profitable to retry the operation, this function will wait
 * for the current or commiting transaction to complete, and then
 * return TRUE.
 *
 * if the total number of retries exceed three times, return FALSE.
 */
1377
int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1378
{
1379
	if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1380 1381 1382 1383
		return 0;

	jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);

1384
	return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1385 1386 1387
}

/**
1388
 * ext4_new_blocks() -- core block(s) allocation function
1389 1390 1391 1392 1393 1394
 * @handle:		handle to this transaction
 * @inode:		file inode
 * @goal:		given target block(filesystem wide)
 * @count:		target number of blocks to allocate
 * @errp:		error code
 *
1395
 * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1396 1397 1398 1399 1400
 * allocate block(s) from the block group contains the goal block first. If that
 * fails, it will try to allocate block(s) from other block groups without
 * any specific goal block.
 *
 */
1401 1402
ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
			ext4_fsblk_t goal, unsigned long *count, int *errp)
1403 1404 1405
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gdp_bh;
1406
	unsigned long group_no;
1407
	int goal_group;
1408 1409 1410
	ext4_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
	ext4_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
	ext4_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1411 1412 1413
	int bgi;			/* blockgroup iteration index */
	int fatal = 0, err;
	int performed_allocation = 0;
1414
	ext4_grpblk_t free_blocks;	/* number of free blocks in a group */
1415
	struct super_block *sb;
1416 1417 1418 1419 1420
	struct ext4_group_desc *gdp;
	struct ext4_super_block *es;
	struct ext4_sb_info *sbi;
	struct ext4_reserve_window_node *my_rsv = NULL;
	struct ext4_block_alloc_info *block_i;
1421
	unsigned short windowsz = 0;
1422
#ifdef EXT4FS_DEBUG
1423 1424 1425 1426 1427 1428 1429 1430
	static int goal_hits, goal_attempts;
#endif
	unsigned long ngroups;
	unsigned long num = *count;

	*errp = -ENOSPC;
	sb = inode->i_sb;
	if (!sb) {
1431
		printk("ext4_new_block: nonexistent device");
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		return 0;
	}

	/*
	 * Check quota for allocation of this block.
	 */
	if (DQUOT_ALLOC_BLOCK(inode, num)) {
		*errp = -EDQUOT;
		return 0;
	}

1443 1444 1445
	sbi = EXT4_SB(sb);
	es = EXT4_SB(sb)->s_es;
	ext4_debug("goal=%lu.\n", goal);
1446 1447 1448 1449 1450
	/*
	 * Allocate a block from reservation only when
	 * filesystem is mounted with reservation(default,-o reservation), and
	 * it's a regular file, and
	 * the desired window size is greater than 0 (One could use ioctl
1451
	 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1452 1453
	 * reservation on that particular file)
	 */
1454
	block_i = EXT4_I(inode)->i_block_alloc_info;
1455 1456 1457
	if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
		my_rsv = &block_i->rsv_window_node;

1458
	if (!ext4_has_free_blocks(sbi)) {
1459 1460 1461 1462 1463 1464 1465 1466
		*errp = -ENOSPC;
		goto out;
	}

	/*
	 * First, test whether the goal block is free.
	 */
	if (goal < le32_to_cpu(es->s_first_data_block) ||
L
Laurent Vivier 已提交
1467
	    goal >= ext4_blocks_count(es))
1468
		goal = le32_to_cpu(es->s_first_data_block);
1469
	ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1470 1471
	goal_group = group_no;
retry_alloc:
1472
	gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	if (!gdp)
		goto io_error;

	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
	/*
	 * if there is not enough free blocks to make a new resevation
	 * turn off reservation for this allocation
	 */
	if (my_rsv && (free_blocks < windowsz)
		&& (rsv_is_empty(&my_rsv->rsv_window)))
		my_rsv = NULL;

	if (free_blocks > 0) {
		bitmap_bh = read_block_bitmap(sb, group_no);
		if (!bitmap_bh)
			goto io_error;
1489
		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1490 1491 1492 1493 1494 1495 1496 1497
					group_no, bitmap_bh, grp_target_blk,
					my_rsv,	&num, &fatal);
		if (fatal)
			goto out;
		if (grp_alloc_blk >= 0)
			goto allocated;
	}

1498
	ngroups = EXT4_SB(sb)->s_groups_count;
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	smp_rmb();

	/*
	 * Now search the rest of the groups.  We assume that
	 * i and gdp correctly point to the last group visited.
	 */
	for (bgi = 0; bgi < ngroups; bgi++) {
		group_no++;
		if (group_no >= ngroups)
			group_no = 0;
1509
		gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
		if (!gdp) {
			*errp = -EIO;
			goto out;
		}
		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
		/*
		 * skip this group if the number of
		 * free blocks is less than half of the reservation
		 * window size.
		 */
		if (free_blocks <= (windowsz/2))
			continue;

		brelse(bitmap_bh);
		bitmap_bh = read_block_bitmap(sb, group_no);
		if (!bitmap_bh)
			goto io_error;
		/*
		 * try to allocate block(s) from this group, without a goal(-1).
		 */
1530
		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
					group_no, bitmap_bh, -1, my_rsv,
					&num, &fatal);
		if (fatal)
			goto out;
		if (grp_alloc_blk >= 0)
			goto allocated;
	}
	/*
	 * We may end up a bogus ealier ENOSPC error due to
	 * filesystem is "full" of reservations, but
	 * there maybe indeed free blocks avaliable on disk
	 * In this case, we just forget about the reservations
	 * just do block allocation as without reservations.
	 */
	if (my_rsv) {
		my_rsv = NULL;
		group_no = goal_group;
		goto retry_alloc;
	}
	/* No space left on the device */
	*errp = -ENOSPC;
	goto out;

allocated:

1556
	ext4_debug("using block group %d(%d)\n",
1557 1558 1559
			group_no, gdp->bg_free_blocks_count);

	BUFFER_TRACE(gdp_bh, "get_write_access");
1560
	fatal = ext4_journal_get_write_access(handle, gdp_bh);
1561 1562 1563
	if (fatal)
		goto out;

1564
	ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1565

L
Laurent Vivier 已提交
1566 1567 1568 1569 1570 1571
	if (in_range(ext4_block_bitmap(gdp), ret_block, num) ||
	    in_range(ext4_block_bitmap(gdp), ret_block, num) ||
	    in_range(ret_block, ext4_inode_table(gdp),
		     EXT4_SB(sb)->s_itb_per_group) ||
	    in_range(ret_block + num - 1, ext4_inode_table(gdp),
		     EXT4_SB(sb)->s_itb_per_group))
1572
		ext4_error(sb, "ext4_new_block",
1573
			    "Allocating block in system zone - "
1574
			    "blocks from %llu, length %lu",
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
			     ret_block, num);

	performed_allocation = 1;

#ifdef CONFIG_JBD_DEBUG
	{
		struct buffer_head *debug_bh;

		/* Record bitmap buffer state in the newly allocated block */
		debug_bh = sb_find_get_block(sb, ret_block);
		if (debug_bh) {
			BUFFER_TRACE(debug_bh, "state when allocated");
			BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
			brelse(debug_bh);
		}
	}
	jbd_lock_bh_state(bitmap_bh);
	spin_lock(sb_bgl_lock(sbi, group_no));
	if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
		int i;

		for (i = 0; i < num; i++) {
1597
			if (ext4_test_bit(grp_alloc_blk+i,
1598 1599 1600 1601 1602 1603
					bh2jh(bitmap_bh)->b_committed_data)) {
				printk("%s: block was unexpectedly set in "
					"b_committed_data\n", __FUNCTION__);
			}
		}
	}
1604
	ext4_debug("found bit %d\n", grp_alloc_blk);
1605 1606 1607 1608
	spin_unlock(sb_bgl_lock(sbi, group_no));
	jbd_unlock_bh_state(bitmap_bh);
#endif

L
Laurent Vivier 已提交
1609
	if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1610
		ext4_error(sb, "ext4_new_block",
1611
			    "block(%llu) >= blocks count(%llu) - "
1612
			    "block_group = %lu, es == %p ", ret_block,
L
Laurent Vivier 已提交
1613
			ext4_blocks_count(es), group_no, es);
1614 1615 1616 1617 1618 1619 1620 1621
		goto out;
	}

	/*
	 * It is up to the caller to add the new buffer to a journal
	 * list of some description.  We don't know in advance whether
	 * the caller wants to use it as metadata or data.
	 */
1622
	ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1623 1624 1625 1626 1627 1628 1629 1630 1631
			ret_block, goal_hits, goal_attempts);

	spin_lock(sb_bgl_lock(sbi, group_no));
	gdp->bg_free_blocks_count =
			cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
	spin_unlock(sb_bgl_lock(sbi, group_no));
	percpu_counter_mod(&sbi->s_freeblocks_counter, -num);

	BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1632
	err = ext4_journal_dirty_metadata(handle, gdp_bh);
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	if (!fatal)
		fatal = err;

	sb->s_dirt = 1;
	if (fatal)
		goto out;

	*errp = 0;
	brelse(bitmap_bh);
	DQUOT_FREE_BLOCK(inode, *count-num);
	*count = num;
	return ret_block;

io_error:
	*errp = -EIO;
out:
	if (fatal) {
		*errp = fatal;
1651
		ext4_std_error(sb, fatal);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	}
	/*
	 * Undo the block allocation
	 */
	if (!performed_allocation)
		DQUOT_FREE_BLOCK(inode, *count);
	brelse(bitmap_bh);
	return 0;
}

1662 1663
ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
			ext4_fsblk_t goal, int *errp)
1664 1665 1666
{
	unsigned long count = 1;

1667
	return ext4_new_blocks(handle, inode, goal, &count, errp);
1668 1669 1670
}

/**
1671
 * ext4_count_free_blocks() -- count filesystem free blocks
1672 1673 1674 1675
 * @sb:		superblock
 *
 * Adds up the number of free blocks from each block group.
 */
1676
ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1677
{
1678 1679
	ext4_fsblk_t desc_count;
	struct ext4_group_desc *gdp;
1680
	int i;
1681 1682 1683 1684
	unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
#ifdef EXT4FS_DEBUG
	struct ext4_super_block *es;
	ext4_fsblk_t bitmap_count;
1685 1686 1687
	unsigned long x;
	struct buffer_head *bitmap_bh = NULL;

1688
	es = EXT4_SB(sb)->s_es;
1689 1690 1691 1692 1693 1694
	desc_count = 0;
	bitmap_count = 0;
	gdp = NULL;

	smp_rmb();
	for (i = 0; i < ngroups; i++) {
1695
		gdp = ext4_get_group_desc(sb, i, NULL);
1696 1697 1698 1699 1700 1701 1702 1703
		if (!gdp)
			continue;
		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
		brelse(bitmap_bh);
		bitmap_bh = read_block_bitmap(sb, i);
		if (bitmap_bh == NULL)
			continue;

1704
		x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1705 1706 1707 1708 1709
		printk("group %d: stored = %d, counted = %lu\n",
			i, le16_to_cpu(gdp->bg_free_blocks_count), x);
		bitmap_count += x;
	}
	brelse(bitmap_bh);
1710 1711
	printk("ext4_count_free_blocks: stored = %llu"
		", computed = %llu, %llu\n",
L
Laurent Vivier 已提交
1712
	       EXT4_FREE_BLOCKS_COUNT(es),
1713 1714 1715 1716 1717 1718
		desc_count, bitmap_count);
	return bitmap_count;
#else
	desc_count = 0;
	smp_rmb();
	for (i = 0; i < ngroups; i++) {
1719
		gdp = ext4_get_group_desc(sb, i, NULL);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
		if (!gdp)
			continue;
		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
	}

	return desc_count;
#endif
}

static inline int
1730
block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map)
1731
{
1732 1733 1734 1735
	ext4_grpblk_t offset;

	ext4_get_group_no_and_offset(sb, block, NULL, &offset);
	return ext4_test_bit (offset, map);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
}

static inline int test_root(int a, int b)
{
	int num = b;

	while (a > num)
		num *= b;
	return num == a;
}

1747
static int ext4_group_sparse(int group)
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
{
	if (group <= 1)
		return 1;
	if (!(group & 1))
		return 0;
	return (test_root(group, 7) || test_root(group, 5) ||
		test_root(group, 3));
}

/**
1758
 *	ext4_bg_has_super - number of blocks used by the superblock in group
1759 1760 1761 1762 1763 1764
 *	@sb: superblock for filesystem
 *	@group: group number to check
 *
 *	Return the number of blocks used by the superblock (primary or backup)
 *	in this group.  Currently this will be only 0 or 1.
 */
1765
int ext4_bg_has_super(struct super_block *sb, int group)
1766
{
1767 1768 1769
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
			!ext4_group_sparse(group))
1770 1771 1772 1773
		return 0;
	return 1;
}

1774
static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1775
{
1776 1777 1778
	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
	unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
	unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1779 1780 1781 1782 1783 1784

	if (group == first || group == first + 1 || group == last)
		return 1;
	return 0;
}

1785
static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1786
{
1787 1788 1789
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
			!ext4_group_sparse(group))
1790
		return 0;
1791
	return EXT4_SB(sb)->s_gdb_count;
1792 1793 1794
}

/**
1795
 *	ext4_bg_num_gdb - number of blocks used by the group table in group
1796 1797 1798 1799 1800 1801 1802
 *	@sb: superblock for filesystem
 *	@group: group number to check
 *
 *	Return the number of blocks used by the group descriptor table
 *	(primary or backup) in this group.  In the future there may be a
 *	different number of descriptor blocks in each group.
 */
1803
unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1804 1805
{
	unsigned long first_meta_bg =
1806 1807
			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1808

1809
	if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1810
			metagroup < first_meta_bg)
1811
		return ext4_bg_num_gdb_nometa(sb,group);
1812

1813
	return ext4_bg_num_gdb_meta(sb,group);
1814 1815

}