arm-smmu.c 52.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- 4k and 64k pages, with contiguous pte hints.
27
 *	- Up to 42-bit addressing (dependent on VA_BITS)
28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
42
#include <linux/pci.h>
43 44 45 46 47 48 49 50 51
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

#include <asm/pgalloc.h>

/* Maximum number of stream IDs assigned to a single device */
52
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 54 55 56 57 58 59 60 61 62 63

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (smmu)->pagesize)

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74
/* Page table bits */
75
#define ARM_SMMU_PTE_XN			(((pteval_t)3) << 53)
76 77 78 79 80
#define ARM_SMMU_PTE_CONT		(((pteval_t)1) << 52)
#define ARM_SMMU_PTE_AF			(((pteval_t)1) << 10)
#define ARM_SMMU_PTE_SH_NS		(((pteval_t)0) << 8)
#define ARM_SMMU_PTE_SH_OS		(((pteval_t)2) << 8)
#define ARM_SMMU_PTE_SH_IS		(((pteval_t)3) << 8)
81
#define ARM_SMMU_PTE_PAGE		(((pteval_t)3) << 0)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

#if PAGE_SIZE == SZ_4K
#define ARM_SMMU_PTE_CONT_ENTRIES	16
#elif PAGE_SIZE == SZ_64K
#define ARM_SMMU_PTE_CONT_ENTRIES	32
#else
#define ARM_SMMU_PTE_CONT_ENTRIES	1
#endif

#define ARM_SMMU_PTE_CONT_SIZE		(PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
#define ARM_SMMU_PTE_CONT_MASK		(~(ARM_SMMU_PTE_CONT_SIZE - 1))

/* Stage-1 PTE */
#define ARM_SMMU_PTE_AP_UNPRIV		(((pteval_t)1) << 6)
#define ARM_SMMU_PTE_AP_RDONLY		(((pteval_t)2) << 6)
#define ARM_SMMU_PTE_ATTRINDX_SHIFT	2
98
#define ARM_SMMU_PTE_nG			(((pteval_t)1) << 11)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

/* Stage-2 PTE */
#define ARM_SMMU_PTE_HAP_FAULT		(((pteval_t)0) << 6)
#define ARM_SMMU_PTE_HAP_READ		(((pteval_t)1) << 6)
#define ARM_SMMU_PTE_HAP_WRITE		(((pteval_t)2) << 6)
#define ARM_SMMU_PTE_MEMATTR_OIWB	(((pteval_t)0xf) << 2)
#define ARM_SMMU_PTE_MEMATTR_NC		(((pteval_t)0x5) << 2)
#define ARM_SMMU_PTE_MEMATTR_DEV	(((pteval_t)0x1) << 2)

/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58
#define ARM_SMMU_GR0_PIDR0		0xfe0
#define ARM_SMMU_GR0_PIDR1		0xfe4
#define ARM_SMMU_GR0_PIDR2		0xfe8

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
#define ID0_PTFS_SHIFT			24
#define ID0_PTFS_MASK			0x2
#define ID0_PTFS_V8_ONLY		0x2
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
149 150
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

#define PIDR2_ARCH_SHIFT		4
#define PIDR2_ARCH_MASK			0xf

/* Global TLB invalidation */
#define ARM_SMMU_GR0_STLBIALL		0x60
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
206 207 208
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
#define ARM_SMMU_CB(smmu, n)		((n) * (smmu)->pagesize)

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
#define ARM_SMMU_CB_TTBR0_LO		0x20
#define ARM_SMMU_CB_TTBR0_HI		0x24
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
240
#define ARM_SMMU_CB_S1_TLBIASID		0x610
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR_EAE			(1 << 31)

#define TTBCR_PASIZE_SHIFT		16
#define TTBCR_PASIZE_MASK		0x7

#define TTBCR_TG0_4K			(0 << 14)
#define TTBCR_TG0_64K			(1 << 14)

#define TTBCR_SH0_SHIFT			12
#define TTBCR_SH0_MASK			0x3
#define TTBCR_SH_NS			0
#define TTBCR_SH_OS			2
#define TTBCR_SH_IS			3

#define TTBCR_ORGN0_SHIFT		10
#define TTBCR_IRGN0_SHIFT		8
#define TTBCR_RGN_MASK			0x3
#define TTBCR_RGN_NC			0
#define TTBCR_RGN_WBWA			1
#define TTBCR_RGN_WT			2
#define TTBCR_RGN_WB			3

#define TTBCR_SL0_SHIFT			6
#define TTBCR_SL0_MASK			0x3
#define TTBCR_SL0_LVL_2			0
#define TTBCR_SL0_LVL_1			1

#define TTBCR_T1SZ_SHIFT		16
#define TTBCR_T0SZ_SHIFT		0
#define TTBCR_SZ_MASK			0xf

#define TTBCR2_SEP_SHIFT		15
#define TTBCR2_SEP_MASK			0x7

#define TTBCR2_PASIZE_SHIFT		0
#define TTBCR2_PASIZE_MASK		0x7

/* Common definitions for PASize and SEP fields */
#define TTBCR2_ADDR_32			0
#define TTBCR2_ADDR_36			1
#define TTBCR2_ADDR_40			2
#define TTBCR2_ADDR_42			3
#define TTBCR2_ADDR_44			4
#define TTBCR2_ADDR_48			5

300 301
#define TTBRn_HI_ASID_SHIFT		16

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
#define MAIR_ATTR_SHIFT(n)		((n) << 3)
#define MAIR_ATTR_MASK			0xff
#define MAIR_ATTR_DEVICE		0x04
#define MAIR_ATTR_NC			0x44
#define MAIR_ATTR_WBRWA			0xff
#define MAIR_ATTR_IDX_NC		0
#define MAIR_ATTR_IDX_CACHE		1
#define MAIR_ATTR_IDX_DEV		2

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

322 323 324
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
325
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
326 327 328 329 330 331 332 333 334

#define FSYNR0_WNR			(1 << 4)

struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

335
struct arm_smmu_master_cfg {
336 337 338 339 340
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

341 342 343 344 345 346
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

347 348 349 350 351 352 353 354 355 356 357 358 359
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
	unsigned long			pagesize;

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
	u32				features;
360 361 362

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	int				version;

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

	unsigned long			input_size;
	unsigned long			s1_output_size;
	unsigned long			s2_output_size;

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
	pgd_t				*pgd;
};
391
#define INVALID_IRPTNDX			0xff
392

393 394 395
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

396
struct arm_smmu_domain {
397 398
	struct arm_smmu_device		*smmu;
	struct arm_smmu_cfg		cfg;
399
	spinlock_t			lock;
400 401 402 403 404
};

static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

405 406 407 408 409
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

410
static struct arm_smmu_option_prop arm_smmu_options[] = {
411 412 413 414 415 416 417
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
418

419 420 421 422 423 424 425 426 427 428
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

429 430 431 432
static struct device *dev_get_master_dev(struct device *dev)
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
433

434 435 436 437 438 439 440 441
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
		return bus->bridge->parent;
	}

	return dev;
}

442 443 444 445 446 447 448
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
449

450 451 452 453 454 455 456 457 458 459 460 461 462
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

463 464 465 466 467 468 469 470 471 472 473 474
static struct arm_smmu_master_cfg *
find_smmu_master_cfg(struct arm_smmu_device *smmu, struct device *dev)
{
	struct arm_smmu_master *master;

	if (dev_is_pci(dev))
		return dev->archdata.iommu;

	master = find_smmu_master(smmu, dev->of_node);
	return master ? &master->cfg : NULL;
}

475 476 477 478 479 480 481 482
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
483 484
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

526 527
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
528

529 530
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
531

532 533 534 535 536 537 538 539 540
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
541 542 543
	return insert_smmu_master(smmu, master);
}

544
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
545
{
546
	struct arm_smmu_device *smmu;
547 548
	struct arm_smmu_master *master = NULL;
	struct device_node *dev_node = dev_get_master_dev(dev)->of_node;
549 550

	spin_lock(&arm_smmu_devices_lock);
551
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
552 553 554 555
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
556
	spin_unlock(&arm_smmu_devices_lock);
557

558
	return master ? smmu : NULL;
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

598
static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
599
{
600 601
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
602 603 604 605 606
	void __iomem *base = ARM_SMMU_GR0(smmu);
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
607 608
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
609 610
	} else {
		base = ARM_SMMU_GR0(smmu);
611 612
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
613 614 615 616 617
	}

	arm_smmu_tlb_sync(smmu);
}

618 619 620 621 622 623 624
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
	struct arm_smmu_domain *smmu_domain = domain->priv;
625 626
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
627 628
	void __iomem *cb_base;

629
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
630 631 632 633 634 635 636
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
637
				    "Unexpected context fault (fsr 0x%x)\n",
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
654 655
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
656
		    iova, fsynr, cfg->cbndx);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
675
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
676 677 678 679 680 681

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

682 683 684
	if (!gfsr)
		return IRQ_NONE;

685 686 687 688 689 690 691
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
692
	return IRQ_HANDLED;
693 694
}

695 696 697 698 699 700 701 702
static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
				   size_t size)
{
	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;


	/* Ensure new page tables are visible to the hardware walker */
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
703
		dsb(ishst);
704 705 706 707 708 709 710 711 712 713 714 715 716
	} else {
		/*
		 * If the SMMU can't walk tables in the CPU caches, treat them
		 * like non-coherent DMA since we need to flush the new entries
		 * all the way out to memory. There's no possibility of
		 * recursion here as the SMMU table walker will not be wired
		 * through another SMMU.
		 */
		dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
				DMA_TO_DEVICE);
	}
}

717 718 719 720
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
{
	u32 reg;
	bool stage1;
721 722
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
723 724 725 726
	void __iomem *cb_base, *gr0_base, *gr1_base;

	gr0_base = ARM_SMMU_GR0(smmu);
	gr1_base = ARM_SMMU_GR1(smmu);
727 728
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
729 730

	/* CBAR */
731
	reg = cfg->cbar;
732
	if (smmu->version == 1)
733
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
734

735 736 737 738 739 740 741 742
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
743
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
744
	}
745
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
746 747 748 749 750 751 752 753 754

	if (smmu->version > 1) {
		/* CBA2R */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg,
755
			       gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

		/* TTBCR2 */
		switch (smmu->input_size) {
		case 32:
			reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
			break;
		case 36:
			reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
			break;
		case 39:
			reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
			break;
		case 42:
			reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
			break;
		case 44:
			reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
			break;
		case 48:
			reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
			break;
		}

		switch (smmu->s1_output_size) {
		case 32:
			reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
			break;
		case 36:
			reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
			break;
		case 39:
			reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
			break;
		case 42:
			reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
			break;
		case 44:
			reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
			break;
		case 48:
			reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
			break;
		}

		if (stage1)
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
	}

	/* TTBR0 */
805
	arm_smmu_flush_pgtable(smmu, cfg->pgd,
806
			       PTRS_PER_PGD * sizeof(pgd_t));
807
	reg = __pa(cfg->pgd);
808
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
809
	reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
810
	if (stage1)
811
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
812 813 814 815 816 817 818 819 820 821 822 823 824
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);

	/*
	 * TTBCR
	 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
	 */
	if (smmu->version > 1) {
		if (PAGE_SIZE == SZ_4K)
			reg = TTBCR_TG0_4K;
		else
			reg = TTBCR_TG0_64K;

		if (!stage1) {
825 826
			reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
			switch (smmu->s2_output_size) {
			case 32:
				reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
				break;
			case 36:
				reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
				break;
			case 40:
				reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
				break;
			case 42:
				reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
				break;
			case 44:
				reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
				break;
			case 48:
				reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
				break;
			}
		} else {
848
			reg |= (64 - smmu->input_size) << TTBCR_T0SZ_SHIFT;
849 850 851 852 853 854 855 856
		}
	} else {
		reg = 0;
	}

	reg |= TTBCR_EAE |
	      (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
	      (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
857 858 859 860 861
	      (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);

	if (!stage1)
		reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);

	/* MAIR0 (stage-1 only) */
	if (stage1) {
		reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
		      (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
		      (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
879
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
880 881 882
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
883
					struct arm_smmu_device *smmu)
884
{
885 886
	int irq, start, ret = 0;
	unsigned long flags;
887
	struct arm_smmu_domain *smmu_domain = domain->priv;
888
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
889

890 891 892 893
	spin_lock_irqsave(&smmu_domain->lock, flags);
	if (smmu_domain->smmu)
		goto out_unlock;

894 895 896 897 898
	if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
899
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
900
		start = smmu->num_s2_context_banks;
901
	} else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
902
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
903
		start = smmu->num_s2_context_banks;
904 905 906
	} else {
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
907 908 909 910 911
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
912
		goto out_unlock;
913

914
	cfg->cbndx = ret;
915
	if (smmu->version == 1) {
916 917
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
918
	} else {
919
		cfg->irptndx = cfg->cbndx;
920 921
	}

922 923 924 925
	ACCESS_ONCE(smmu_domain->smmu) = smmu;
	arm_smmu_init_context_bank(smmu_domain);
	spin_unlock_irqrestore(&smmu_domain->lock, flags);

926
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
927 928 929 930
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
931 932
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
933 934
	}

935
	return 0;
936

937 938
out_unlock:
	spin_unlock_irqrestore(&smmu_domain->lock, flags);
939 940 941 942 943 944
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
945 946
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
947
	void __iomem *cb_base;
948 949 950 951 952
	int irq;

	if (!smmu)
		return;

953
	/* Disable the context bank and nuke the TLB before freeing it. */
954
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
955
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
956
	arm_smmu_tlb_inv_context(smmu_domain);
957

958 959
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
960 961 962
		free_irq(irq, domain);
	}

963
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
}

static int arm_smmu_domain_init(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain;
	pgd_t *pgd;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return -ENOMEM;

980
	pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
981 982
	if (!pgd)
		goto out_free_domain;
983
	smmu_domain->cfg.pgd = pgd;
984

985
	spin_lock_init(&smmu_domain->lock);
986 987 988 989 990 991 992 993 994 995 996
	domain->priv = smmu_domain;
	return 0;

out_free_domain:
	kfree(smmu_domain);
	return -ENOMEM;
}

static void arm_smmu_free_ptes(pmd_t *pmd)
{
	pgtable_t table = pmd_pgtable(*pmd);
997

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	__free_page(table);
}

static void arm_smmu_free_pmds(pud_t *pud)
{
	int i;
	pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);

	pmd = pmd_base;
	for (i = 0; i < PTRS_PER_PMD; ++i) {
		if (pmd_none(*pmd))
			continue;

		arm_smmu_free_ptes(pmd);
		pmd++;
	}

	pmd_free(NULL, pmd_base);
}

static void arm_smmu_free_puds(pgd_t *pgd)
{
	int i;
	pud_t *pud, *pud_base = pud_offset(pgd, 0);

	pud = pud_base;
	for (i = 0; i < PTRS_PER_PUD; ++i) {
		if (pud_none(*pud))
			continue;

		arm_smmu_free_pmds(pud);
		pud++;
	}

	pud_free(NULL, pud_base);
}

static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
{
	int i;
1038 1039
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	pgd_t *pgd, *pgd_base = cfg->pgd;
1040 1041 1042

	/*
	 * Recursively free the page tables for this domain. We don't
1043 1044
	 * care about speculative TLB filling because the tables should
	 * not be active in any context bank at this point (SCTLR.M is 0).
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	 */
	pgd = pgd_base;
	for (i = 0; i < PTRS_PER_PGD; ++i) {
		if (pgd_none(*pgd))
			continue;
		arm_smmu_free_puds(pgd);
		pgd++;
	}

	kfree(pgd_base);
}

static void arm_smmu_domain_destroy(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1060 1061 1062 1063 1064

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1065 1066 1067 1068 1069 1070
	arm_smmu_destroy_domain_context(domain);
	arm_smmu_free_pgtables(smmu_domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1071
					  struct arm_smmu_master_cfg *cfg)
1072 1073 1074 1075 1076 1077 1078 1079
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1080
	if (cfg->smrs)
1081 1082
		return -EEXIST;

1083
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1084
	if (!smrs) {
1085 1086
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1087 1088 1089
		return -ENOMEM;
	}

1090
	/* Allocate the SMRs on the SMMU */
1091
	for (i = 0; i < cfg->num_streamids; ++i) {
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1102
			.id	= cfg->streamids[i],
1103 1104 1105 1106
		};
	}

	/* It worked! Now, poke the actual hardware */
1107
	for (i = 0; i < cfg->num_streamids; ++i) {
1108 1109 1110 1111 1112
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1113
	cfg->smrs = smrs;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1124
				      struct arm_smmu_master_cfg *cfg)
1125 1126 1127
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1128
	struct arm_smmu_smr *smrs = cfg->smrs;
1129

1130 1131 1132
	if (!smrs)
		return;

1133
	/* Invalidate the SMRs before freeing back to the allocator */
1134
	for (i = 0; i < cfg->num_streamids; ++i) {
1135
		u8 idx = smrs[i].idx;
1136

1137 1138 1139 1140
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1141
	cfg->smrs = NULL;
1142 1143 1144 1145
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1146
				      struct arm_smmu_master_cfg *cfg)
1147 1148
{
	int i, ret;
1149
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1150 1151
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1152
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1153 1154 1155
	if (ret)
		return ret;

1156
	for (i = 0; i < cfg->num_streamids; ++i) {
1157
		u32 idx, s2cr;
1158

1159
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1160
		s2cr = S2CR_TYPE_TRANS |
1161
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1162 1163 1164 1165 1166 1167 1168
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1169
					  struct arm_smmu_master_cfg *cfg)
1170
{
1171
	int i;
1172
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1173
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1174 1175 1176 1177 1178

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1179 1180 1181 1182 1183 1184 1185
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1186
	arm_smmu_master_free_smrs(smmu, cfg);
1187 1188 1189 1190
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1191
	int ret;
1192
	struct arm_smmu_domain *smmu_domain = domain->priv;
1193
	struct arm_smmu_device *smmu, *dom_smmu;
1194
	struct arm_smmu_master_cfg *cfg;
1195

1196 1197
	smmu = dev_get_master_dev(dev)->archdata.iommu;
	if (!smmu) {
1198 1199 1200 1201 1202
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

	/*
1203 1204
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1205
	 */
1206 1207
	dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
	if (!dom_smmu) {
1208
		/* Now that we have a master, we can finalise the domain */
1209
		ret = arm_smmu_init_domain_context(domain, smmu);
1210
		if (IS_ERR_VALUE(ret))
1211 1212 1213 1214 1215 1216
			return ret;

		dom_smmu = smmu_domain->smmu;
	}

	if (dom_smmu != smmu) {
1217 1218
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1219 1220
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1221 1222 1223
	}

	/* Looks ok, so add the device to the domain */
1224
	cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
1225
	if (!cfg)
1226 1227
		return -ENODEV;

1228
	return arm_smmu_domain_add_master(smmu_domain, cfg);
1229 1230 1231 1232 1233
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1234
	struct arm_smmu_master_cfg *cfg;
1235

1236
	cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
1237 1238
	if (cfg)
		arm_smmu_domain_remove_master(smmu_domain, cfg);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
}

static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
					     unsigned long end)
{
	return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
		(addr + ARM_SMMU_PTE_CONT_SIZE <= end);
}

static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
				   unsigned long addr, unsigned long end,
1250
				   unsigned long pfn, int prot, int stage)
1251 1252
{
	pte_t *pte, *start;
1253
	pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
1254 1255 1256

	if (pmd_none(*pmd)) {
		/* Allocate a new set of tables */
1257
		pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1258

1259 1260 1261
		if (!table)
			return -ENOMEM;

1262
		arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1263 1264 1265 1266 1267
		pmd_populate(NULL, pmd, table);
		arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
	}

	if (stage == 1) {
1268
		pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1269
		if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1270 1271
			pteval |= ARM_SMMU_PTE_AP_RDONLY;

1272
		if (prot & IOMMU_CACHE)
1273 1274 1275 1276
			pteval |= (MAIR_ATTR_IDX_CACHE <<
				   ARM_SMMU_PTE_ATTRINDX_SHIFT);
	} else {
		pteval |= ARM_SMMU_PTE_HAP_FAULT;
1277
		if (prot & IOMMU_READ)
1278
			pteval |= ARM_SMMU_PTE_HAP_READ;
1279
		if (prot & IOMMU_WRITE)
1280
			pteval |= ARM_SMMU_PTE_HAP_WRITE;
1281
		if (prot & IOMMU_CACHE)
1282 1283 1284 1285 1286 1287
			pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
		else
			pteval |= ARM_SMMU_PTE_MEMATTR_NC;
	}

	/* If no access, create a faulting entry to avoid TLB fills */
1288
	if (prot & IOMMU_EXEC)
1289
		pteval &= ~ARM_SMMU_PTE_XN;
1290
	else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		pteval &= ~ARM_SMMU_PTE_PAGE;

	pteval |= ARM_SMMU_PTE_SH_IS;
	start = pmd_page_vaddr(*pmd) + pte_index(addr);
	pte = start;

	/*
	 * Install the page table entries. This is fairly complicated
	 * since we attempt to make use of the contiguous hint in the
	 * ptes where possible. The contiguous hint indicates a series
	 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
	 * contiguous region with the following constraints:
	 *
	 *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
	 *   - Each pte in the region has the contiguous hint bit set
	 *
	 * This complicates unmapping (also handled by this code, when
	 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
	 * possible, yet highly unlikely, that a client may unmap only
	 * part of a contiguous range. This requires clearing of the
	 * contiguous hint bits in the range before installing the new
	 * faulting entries.
	 *
	 * Note that re-mapping an address range without first unmapping
	 * it is not supported, so TLB invalidation is not required here
	 * and is instead performed at unmap and domain-init time.
	 */
	do {
		int i = 1;
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		pteval &= ~ARM_SMMU_PTE_CONT;

		if (arm_smmu_pte_is_contiguous_range(addr, end)) {
			i = ARM_SMMU_PTE_CONT_ENTRIES;
			pteval |= ARM_SMMU_PTE_CONT;
		} else if (pte_val(*pte) &
			   (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
			int j;
			pte_t *cont_start;
			unsigned long idx = pte_index(addr);

			idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
			cont_start = pmd_page_vaddr(*pmd) + idx;
			for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1335 1336
				pte_val(*(cont_start + j)) &=
					~ARM_SMMU_PTE_CONT;
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

			arm_smmu_flush_pgtable(smmu, cont_start,
					       sizeof(*pte) *
					       ARM_SMMU_PTE_CONT_ENTRIES);
		}

		do {
			*pte = pfn_pte(pfn, __pgprot(pteval));
		} while (pte++, pfn++, addr += PAGE_SIZE, --i);
	} while (addr != end);

	arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
	return 0;
}

static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
				   unsigned long addr, unsigned long end,
1354
				   phys_addr_t phys, int prot, int stage)
1355 1356 1357 1358 1359 1360 1361
{
	int ret;
	pmd_t *pmd;
	unsigned long next, pfn = __phys_to_pfn(phys);

#ifndef __PAGETABLE_PMD_FOLDED
	if (pud_none(*pud)) {
1362
		pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1363 1364
		if (!pmd)
			return -ENOMEM;
1365

1366
		arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1367 1368 1369 1370
		pud_populate(NULL, pud, pmd);
		arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));

		pmd += pmd_index(addr);
1371 1372 1373 1374 1375 1376
	} else
#endif
		pmd = pmd_offset(pud, addr);

	do {
		next = pmd_addr_end(addr, end);
1377
		ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1378
					      prot, stage);
1379 1380 1381 1382 1383 1384 1385 1386
		phys += next - addr;
	} while (pmd++, addr = next, addr < end);

	return ret;
}

static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
1387
				   phys_addr_t phys, int prot, int stage)
1388 1389 1390 1391 1392 1393 1394
{
	int ret = 0;
	pud_t *pud;
	unsigned long next;

#ifndef __PAGETABLE_PUD_FOLDED
	if (pgd_none(*pgd)) {
1395
		pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1396 1397
		if (!pud)
			return -ENOMEM;
1398

1399
		arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1400 1401 1402 1403
		pgd_populate(NULL, pgd, pud);
		arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));

		pud += pud_index(addr);
1404 1405 1406 1407 1408 1409 1410
	} else
#endif
		pud = pud_offset(pgd, addr);

	do {
		next = pud_addr_end(addr, end);
		ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1411
					      prot, stage);
1412 1413 1414 1415 1416 1417 1418 1419
		phys += next - addr;
	} while (pud++, addr = next, addr < end);

	return ret;
}

static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
				   unsigned long iova, phys_addr_t paddr,
1420
				   size_t size, int prot)
1421 1422 1423 1424
{
	int ret, stage;
	unsigned long end;
	phys_addr_t input_mask, output_mask;
1425 1426 1427
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	pgd_t *pgd = cfg->pgd;
1428
	unsigned long flags;
1429

1430
	if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
		stage = 2;
		output_mask = (1ULL << smmu->s2_output_size) - 1;
	} else {
		stage = 1;
		output_mask = (1ULL << smmu->s1_output_size) - 1;
	}

	if (!pgd)
		return -EINVAL;

	if (size & ~PAGE_MASK)
		return -EINVAL;

	input_mask = (1ULL << smmu->input_size) - 1;
	if ((phys_addr_t)iova & ~input_mask)
		return -ERANGE;

	if (paddr & ~output_mask)
		return -ERANGE;

1451
	spin_lock_irqsave(&smmu_domain->lock, flags);
1452 1453 1454 1455 1456 1457
	pgd += pgd_index(iova);
	end = iova + size;
	do {
		unsigned long next = pgd_addr_end(iova, end);

		ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1458
					      prot, stage);
1459 1460 1461 1462 1463 1464 1465 1466
		if (ret)
			goto out_unlock;

		paddr += next - iova;
		iova = next;
	} while (pgd++, iova != end);

out_unlock:
1467
	spin_unlock_irqrestore(&smmu_domain->lock, flags);
1468 1469 1470 1471 1472

	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1473
			phys_addr_t paddr, size_t size, int prot)
1474 1475 1476
{
	struct arm_smmu_domain *smmu_domain = domain->priv;

1477
	if (!smmu_domain)
1478 1479
		return -ENODEV;

1480
	return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1481 1482 1483 1484 1485 1486 1487 1488 1489
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
	int ret;
	struct arm_smmu_domain *smmu_domain = domain->priv;

	ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1490
	arm_smmu_tlb_inv_context(smmu_domain);
1491
	return ret ? 0 : size;
1492 1493 1494 1495 1496
}

static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
					 dma_addr_t iova)
{
1497 1498 1499 1500
	pgd_t *pgdp, pgd;
	pud_t pud;
	pmd_t pmd;
	pte_t pte;
1501
	struct arm_smmu_domain *smmu_domain = domain->priv;
1502
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1503

1504
	pgdp = cfg->pgd;
1505 1506
	if (!pgdp)
		return 0;
1507

1508 1509 1510
	pgd = *(pgdp + pgd_index(iova));
	if (pgd_none(pgd))
		return 0;
1511

1512 1513 1514
	pud = *pud_offset(&pgd, iova);
	if (pud_none(pud))
		return 0;
1515

1516 1517 1518
	pmd = *pmd_offset(&pud, iova);
	if (pmd_none(pmd))
		return 0;
1519

1520
	pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1521
	if (pte_none(pte))
1522
		return 0;
1523

1524
	return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1525 1526 1527 1528 1529 1530
}

static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
				   unsigned long cap)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
1531 1532
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	u32 features = smmu ? smmu->features : 0;
1533 1534 1535 1536 1537 1538 1539 1540 1541

	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return features & ARM_SMMU_FEAT_COHERENT_WALK;
	case IOMMU_CAP_INTR_REMAP:
		return 1; /* MSIs are just memory writes */
	default:
		return 0;
	}
1542 1543
}

1544 1545 1546 1547
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1548 1549 1550 1551
}

static int arm_smmu_add_device(struct device *dev)
{
1552
	struct arm_smmu_device *smmu;
1553 1554 1555 1556 1557 1558 1559
	struct iommu_group *group;
	int ret;

	if (dev->archdata.iommu) {
		dev_warn(dev, "IOMMU driver already assigned to device\n");
		return -EINVAL;
	}
1560

1561
	smmu = find_smmu_for_device(dev);
1562
	if (!smmu)
1563 1564
		return -ENODEV;

1565 1566 1567 1568 1569 1570
	group = iommu_group_alloc();
	if (IS_ERR(group)) {
		dev_err(dev, "Failed to allocate IOMMU group\n");
		return PTR_ERR(group);
	}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	if (dev_is_pci(dev)) {
		struct arm_smmu_master_cfg *cfg;
		struct pci_dev *pdev = to_pci_dev(dev);

		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
		if (!cfg) {
			ret = -ENOMEM;
			goto out_put_group;
		}

		cfg->num_streamids = 1;
		/*
		 * Assume Stream ID == Requester ID for now.
		 * We need a way to describe the ID mappings in FDT.
		 */
		pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
				       &cfg->streamids[0]);
		dev->archdata.iommu = cfg;
	} else {
		dev->archdata.iommu = smmu;
	}

1593 1594
	ret = iommu_group_add_device(group, dev);

1595 1596
out_put_group:
	iommu_group_put(group);
1597
	return ret;
1598 1599 1600 1601
}

static void arm_smmu_remove_device(struct device *dev)
{
1602 1603 1604
	if (dev_is_pci(dev))
		kfree(dev->archdata.iommu);

1605
	dev->archdata.iommu = NULL;
1606
	iommu_group_remove_device(dev);
1607 1608
}

1609
static const struct iommu_ops arm_smmu_ops = {
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	.domain_init	= arm_smmu_domain_init,
	.domain_destroy	= arm_smmu_domain_destroy,
	.attach_dev	= arm_smmu_attach_dev,
	.detach_dev	= arm_smmu_detach_dev,
	.map		= arm_smmu_map,
	.unmap		= arm_smmu_unmap,
	.iova_to_phys	= arm_smmu_iova_to_phys,
	.domain_has_cap	= arm_smmu_domain_has_cap,
	.add_device	= arm_smmu_add_device,
	.remove_device	= arm_smmu_remove_device,
	.pgsize_bitmap	= (SECTION_SIZE |
			   ARM_SMMU_PTE_CONT_SIZE |
			   PAGE_SIZE),
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1628
	void __iomem *cb_base;
1629
	int i = 0;
1630 1631
	u32 reg;

1632 1633 1634
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1635 1636 1637

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1638
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1639 1640
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1641 1642
	}

1643 1644 1645 1646 1647 1648
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1649

1650 1651 1652 1653 1654
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1655
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1656

1657
	/* Enable fault reporting */
1658
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1659 1660

	/* Disable TLB broadcasting. */
1661
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1662 1663

	/* Enable client access, but bypass when no mapping is found */
1664
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1665 1666

	/* Disable forced broadcasting */
1667
	reg &= ~sCR0_FB;
1668 1669

	/* Don't upgrade barriers */
1670
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1671 1672 1673

	/* Push the button */
	arm_smmu_tlb_sync(smmu);
1674
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;

	dev_notice(smmu->dev, "probing hardware configuration...\n");

	/* Primecell ID */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
	smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
#ifndef CONFIG_64BIT
	if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
		dev_err(smmu->dev, "\tno v7 descriptor support!\n");
		return -ENODEV;
	}
#endif
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
		 ARM_SMMU_FEAT_TRANS_NESTED))) {
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

	if (id & ID0_CTTW) {
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
		dev_notice(smmu->dev, "\tcoherent table walk\n");
	}

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1773 1774 1775
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1776 1777 1778 1779 1780 1781
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
	smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;

1782
	/* Check for size mismatch of SMMU address space from mapped region */
1783 1784
	size = 1 <<
		(((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1785
	size *= (smmu->pagesize << 1);
1786
	if (smmu->size != size)
1787 1788 1789
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
				      ID1_NUMS2CB_MASK;
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);

	/*
	 * Stage-1 output limited by stage-2 input size due to pgd
	 * allocation (PTRS_PER_PGD).
	 */
#ifdef CONFIG_64BIT
1810
	smmu->s1_output_size = min_t(unsigned long, VA_BITS, size);
1811 1812 1813 1814 1815 1816
#else
	smmu->s1_output_size = min(32UL, size);
#endif

	/* The stage-2 output mask is also applied for bypass */
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1817
	smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1818 1819 1820 1821 1822 1823

	if (smmu->version == 1) {
		smmu->input_size = 32;
	} else {
#ifdef CONFIG_64BIT
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1824
		size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
#else
		size = 32;
#endif
		smmu->input_size = size;

		if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
		    (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
		    (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
			dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
				PAGE_SIZE);
			return -ENODEV;
		}
	}

	dev_notice(smmu->dev,
		   "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1841 1842
		   smmu->input_size, smmu->s1_output_size,
		   smmu->s2_output_size);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	return 0;
}

static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1863 1864 1865
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1881 1882 1883 1884
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1896

1897 1898 1899 1900 1901 1902 1903
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1904 1905 1906 1907
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1924 1925
	parse_driver_options(smmu);

1926 1927 1928 1929 1930
	if (smmu->version > 1 &&
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1931
		err = -ENODEV;
1932
		goto out_put_masters;
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1952 1953

	arm_smmu_device_reset(smmu);
1954 1955 1956 1957 1958 1959 1960 1961
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1962 1963
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1991 1992
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1993 1994 1995
		of_node_put(master->of_node);
	}

1996
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1997 1998 1999 2000 2001 2002
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
2003
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	return 0;
}

#ifdef CONFIG_OF
static struct of_device_id arm_smmu_of_match[] = {
	{ .compatible = "arm,smmu-v1", },
	{ .compatible = "arm,smmu-v2", },
	{ .compatible = "arm,mmu-400", },
	{ .compatible = "arm,mmu-500", },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
#endif

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.owner		= THIS_MODULE,
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
	int ret;

	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
2037
	if (!iommu_present(&platform_bus_type))
2038 2039
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

2040
#ifdef CONFIG_ARM_AMBA
2041
	if (!iommu_present(&amba_bustype))
2042
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2043
#endif
2044

2045 2046 2047 2048 2049
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

2050 2051 2052 2053 2054 2055 2056 2057
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2058
subsys_initcall(arm_smmu_init);
2059 2060 2061 2062 2063
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");