core-device.c 32.7 KB
Newer Older
1 2
/*
 * Device probing and sysfs code.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/ctype.h>
23
#include <linux/delay.h>
24 25
#include <linux/device.h>
#include <linux/errno.h>
26 27
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
28
#include <linux/idr.h>
29
#include <linux/jiffies.h>
30 31
#include <linux/kobject.h>
#include <linux/list.h>
32
#include <linux/mod_devicetable.h>
S
Stefan Richter 已提交
33
#include <linux/module.h>
34
#include <linux/mutex.h>
35 36
#include <linux/rwsem.h>
#include <linux/semaphore.h>
J
Jay Fenlason 已提交
37
#include <linux/spinlock.h>
38 39 40
#include <linux/string.h>
#include <linux/workqueue.h>

S
Stefan Richter 已提交
41 42
#include <asm/atomic.h>
#include <asm/byteorder.h>
43
#include <asm/system.h>
44

45
#include "core.h"
46

47
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

63
static const u32 *search_leaf(const u32 *directory, int search_key)
64 65 66 67 68 69 70 71 72
{
	struct fw_csr_iterator ci;
	int last_key = 0, key, value;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (last_key == search_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			return ci.p - 1 + value;
73

74 75
		last_key = key;
	}
76

77 78 79
	return NULL;
}

80
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81
{
82 83
	unsigned int quadlets, i;
	char c;
84 85 86 87

	if (!size || !buf)
		return -EINVAL;

88
	quadlets = min(block[0] >> 16, 256U);
89 90 91 92 93 94 95 96 97
	if (quadlets < 2)
		return -ENODATA;

	if (block[1] != 0 || block[2] != 0)
		/* unknown language/character set */
		return -ENODATA;

	block += 3;
	quadlets -= 2;
98 99
	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
		c = block[i / 4] >> (24 - 8 * (i % 4));
100 101
		if (c == '\0')
			break;
102
		buf[i] = c;
103
	}
104 105 106
	buf[i] = '\0';

	return i;
107 108 109 110
}

/**
 * fw_csr_string - reads a string from the configuration ROM
111
 * @directory: e.g. root directory or unit directory
112 113 114 115
 * @key: the key of the preceding directory entry
 * @buf: where to put the string
 * @size: size of @buf, in bytes
 *
116 117 118
 * The string is taken from a minimal ASCII text descriptor leaf after
 * the immediate entry with @key.  The string is zero-terminated.
 * Returns strlen(buf) or a negative error code.
119
 */
120
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121
{
122
	const u32 *leaf = search_leaf(directory, key);
123 124
	if (!leaf)
		return -ENOENT;
125

126 127 128 129
	return textual_leaf_to_string(leaf, buf, size);
}
EXPORT_SYMBOL(fw_csr_string);

130
static void get_ids(const u32 *directory, int *id)
131 132
{
	struct fw_csr_iterator ci;
133
	int key, value;
134 135 136

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
137 138 139 140 141 142
		switch (key) {
		case CSR_VENDOR:	id[0] = value; break;
		case CSR_MODEL:		id[1] = value; break;
		case CSR_SPECIFIER_ID:	id[2] = value; break;
		case CSR_VERSION:	id[3] = value; break;
		}
143
	}
144
}
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
static void get_modalias_ids(struct fw_unit *unit, int *id)
{
	get_ids(&fw_parent_device(unit)->config_rom[5], id);
	get_ids(unit->directory, id);
}

static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
{
	int match = 0;

	if (id[0] == id_table->vendor_id)
		match |= IEEE1394_MATCH_VENDOR_ID;
	if (id[1] == id_table->model_id)
		match |= IEEE1394_MATCH_MODEL_ID;
	if (id[2] == id_table->specifier_id)
		match |= IEEE1394_MATCH_SPECIFIER_ID;
	if (id[3] == id_table->version)
		match |= IEEE1394_MATCH_VERSION;

	return (match & id_table->match_flags) == id_table->match_flags;
166 167
}

168 169
static bool is_fw_unit(struct device *dev);

170 171
static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
172 173 174
	const struct ieee1394_device_id *id_table =
			container_of(drv, struct fw_driver, driver)->id_table;
	int id[] = {0, 0, 0, 0};
175 176 177 178 179

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

180
	get_modalias_ids(fw_unit(dev), id);
181

182 183
	for (; id_table->match_flags != 0; id_table++)
		if (match_ids(id_table, id))
184 185
			return 1;

186 187 188
	return 0;
}

189 190 191 192
static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
	int id[] = {0, 0, 0, 0};

193
	get_modalias_ids(unit, id);
194 195 196

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197
			id[0], id[1], id[2], id[3]);
198 199
}

200
static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201 202 203 204
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];

205
	get_modalias(unit, modalias, sizeof(modalias));
206

207
	if (add_uevent_var(env, "MODALIAS=%s", modalias))
208 209 210 211 212 213
		return -ENOMEM;

	return 0;
}

struct bus_type fw_bus_type = {
214
	.name = "firewire",
215 216 217 218 219 220
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

int fw_device_enable_phys_dma(struct fw_device *device)
{
221 222 223 224 225
	int generation = device->generation;

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();

226 227
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
228
						     generation);
229 230 231
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

232 233 234 235 236
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

237 238
static ssize_t show_immediate(struct device *dev,
			      struct device_attribute *dattr, char *buf)
239 240 241 242
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
243
	const u32 *dir;
244 245 246
	int key, value, ret = -ENOENT;

	down_read(&fw_device_rwsem);
247 248 249 250 251 252 253 254

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
255 256 257 258 259 260 261
		if (attr->key == key) {
			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
				       "0x%06x\n", value);
			break;
		}

	up_read(&fw_device_rwsem);
262

263
	return ret;
264 265 266 267 268
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

269 270
static ssize_t show_text_leaf(struct device *dev,
			      struct device_attribute *dattr, char *buf)
271 272 273
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
274
	const u32 *dir;
275 276 277
	size_t bufsize;
	char dummy_buf[2];
	int ret;
278

279 280
	down_read(&fw_device_rwsem);

281 282 283 284 285
	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

286 287 288 289 290
	if (buf) {
		bufsize = PAGE_SIZE - 1;
	} else {
		buf = dummy_buf;
		bufsize = 1;
291 292
	}

293
	ret = fw_csr_string(dir, attr->key, buf, bufsize);
294

295 296 297 298 299 300
	if (ret >= 0) {
		/* Strip trailing whitespace and add newline. */
		while (ret > 0 && isspace(buf[ret - 1]))
			ret--;
		strcpy(buf + ret, "\n");
		ret++;
301
	}
302

303
	up_read(&fw_device_rwsem);
304

305
	return ret;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

322 323 324
static void init_fw_attribute_group(struct device *dev,
				    struct device_attribute *attrs,
				    struct fw_attribute_group *group)
325 326
{
	struct device_attribute *attr;
327 328 329 330
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
331 332 333 334 335

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
336
		group->attrs[j++] = &attr->attr;
337 338
	}

339
	group->attrs[j] = NULL;
340 341 342
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
343
	dev->groups = (const struct attribute_group **) group->groups;
344 345
}

346 347
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
348 349 350 351 352 353 354 355 356 357
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

358 359
static ssize_t rom_index_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
360
{
361 362
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
363

364 365
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
366 367
}

368 369 370 371
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
372 373
};

374 375
static ssize_t config_rom_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
376
{
377
	struct fw_device *device = fw_device(dev);
378
	size_t length;
379

380 381 382 383
	down_read(&fw_device_rwsem);
	length = device->config_rom_length * 4;
	memcpy(buf, device->config_rom, length);
	up_read(&fw_device_rwsem);
384

385
	return length;
386 387
}

388 389
static ssize_t guid_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
390 391
{
	struct fw_device *device = fw_device(dev);
392 393 394 395 396 397
	int ret;

	down_read(&fw_device_rwsem);
	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
		       device->config_rom[3], device->config_rom[4]);
	up_read(&fw_device_rwsem);
398

399
	return ret;
400 401
}

402
static int units_sprintf(char *buf, const u32 *directory)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
{
	struct fw_csr_iterator ci;
	int key, value;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
}

static ssize_t units_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);
	struct fw_csr_iterator ci;
	int key, value, i = 0;

	down_read(&fw_device_rwsem);
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;
		i += units_sprintf(&buf[i], ci.p + value - 1);
		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
			break;
	}
	up_read(&fw_device_rwsem);

	if (i)
		buf[i - 1] = '\n';

	return i;
}

448 449
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
450
	__ATTR_RO(guid),
451
	__ATTR_RO(units),
452
	__ATTR_NULL,
453 454
};

455 456
static int read_rom(struct fw_device *device,
		    int generation, int index, u32 *data)
457
{
J
Jay Fenlason 已提交
458
	int rcode;
459 460 461

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();
462

J
Jay Fenlason 已提交
463
	rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
464
			device->node_id, generation, device->max_speed,
J
Jay Fenlason 已提交
465 466 467
			(CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
			data, 4);
	be32_to_cpus(data);
468

J
Jay Fenlason 已提交
469
	return rcode;
470 471
}

472
#define MAX_CONFIG_ROM_SIZE 256
473

474 475 476
/*
 * Read the bus info block, perform a speed probe, and read all of the rest of
 * the config ROM.  We do all this with a cached bus generation.  If the bus
477
 * generation changes under us, read_config_rom will fail and get retried.
478 479 480
 * It's better to start all over in this case because the node from which we
 * are reading the ROM may have changed the ROM during the reset.
 */
481
static int read_config_rom(struct fw_device *device, int generation)
482
{
483 484
	const u32 *old_rom, *new_rom;
	u32 *rom, *stack;
485 486 487
	u32 sp, key;
	int i, end, length, ret = -1;

488 489
	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
490 491 492
	if (rom == NULL)
		return -ENOMEM;

493 494
	stack = &rom[MAX_CONFIG_ROM_SIZE];
	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
495

496 497
	device->max_speed = SCODE_100;

498 499
	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
500
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
501
			goto out;
502 503
		/*
		 * As per IEEE1212 7.2, during power-up, devices can
504 505 506 507
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
508 509
		 * retry mechanism will try again later.
		 */
510
		if (i == 0 && rom[i] == 0)
511
			goto out;
512 513
	}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	device->max_speed = device->node->max_speed;

	/*
	 * Determine the speed of
	 *   - devices with link speed less than PHY speed,
	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
	 *   - all devices if there are 1394b repeaters.
	 * Note, we cannot use the bus info block's link_spd as starting point
	 * because some buggy firmwares set it lower than necessary and because
	 * 1394-1995 nodes do not have the field.
	 */
	if ((rom[2] & 0x7) < device->max_speed ||
	    device->max_speed == SCODE_BETA ||
	    device->card->beta_repeaters_present) {
		u32 dummy;

		/* for S1600 and S3200 */
		if (device->max_speed == SCODE_BETA)
			device->max_speed = device->card->link_speed;

		while (device->max_speed > SCODE_100) {
535 536
			if (read_rom(device, generation, 0, &dummy) ==
			    RCODE_COMPLETE)
537 538 539 540 541
				break;
			device->max_speed--;
		}
	}

542 543
	/*
	 * Now parse the config rom.  The config rom is a recursive
544 545 546
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
547 548
	 * start things off.
	 */
549 550 551 552
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
553 554
		/*
		 * Pop the next block reference of the stack.  The
555 556
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
557 558
		 * block.
		 */
559 560
		key = stack[--sp];
		i = key & 0xffffff;
561
		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
562
			goto out;
563 564

		/* Read header quadlet for the block to get the length. */
565
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
566
			goto out;
567
		end = i + (rom[i] >> 16) + 1;
568
		if (end > MAX_CONFIG_ROM_SIZE) {
569
			/*
570 571 572
			 * This block extends outside the config ROM which is
			 * a firmware bug.  Ignore this whole block, i.e.
			 * simply set a fake block length of 0.
573
			 */
574 575 576 577 578 579 580
			fw_error("skipped invalid ROM block %x at %llx\n",
				 rom[i],
				 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
			rom[i] = 0;
			end = i;
		}
		i++;
581

582 583
		/*
		 * Now read in the block.  If this is a directory
584
		 * block, check the entries as we read them to see if
585 586
		 * it references another block, and push it in that case.
		 */
587
		for (; i < end; i++) {
588 589
			if (read_rom(device, generation, i, &rom[i]) !=
			    RCODE_COMPLETE)
590
				goto out;
591

592
			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
593 594 595 596 597 598 599 600
				continue;
			/*
			 * Offset points outside the ROM.  May be a firmware
			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
			 * 7.7.18).  Simply overwrite this pointer here by a
			 * fake immediate entry so that later iterators over
			 * the ROM don't have to check offsets all the time.
			 */
601
			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
602 603 604 605 606 607 608
				fw_error("skipped unsupported ROM entry %x at %llx\n",
					 rom[i],
					 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
				rom[i] = 0;
				continue;
			}
			stack[sp++] = i + rom[i];
609 610 611 612 613
		}
		if (length < i)
			length = i;
	}

614 615 616
	old_rom = device->config_rom;
	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
	if (new_rom == NULL)
617
		goto out;
618 619 620

	down_write(&fw_device_rwsem);
	device->config_rom = new_rom;
621
	device->config_rom_length = length;
622 623 624
	up_write(&fw_device_rwsem);

	kfree(old_rom);
625
	ret = 0;
626 627 628
	device->max_rec	= rom[2] >> 12 & 0xf;
	device->cmc	= rom[2] >> 30 & 1;
	device->irmc	= rom[2] >> 31 & 1;
629 630
 out:
	kfree(rom);
631

632
	return ret;
633 634 635 636 637 638 639 640 641
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

	kfree(unit);
}

642 643 644 645 646
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

647
static bool is_fw_unit(struct device *dev)
648
{
649
	return dev->type == &fw_unit_type;
650 651 652 653 654 655 656 657 658 659 660 661 662 663
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

664 665 666 667
		/*
		 * Get the address of the unit directory and try to
		 * match the drivers id_tables against it.
		 */
668
		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
669 670 671 672 673 674 675
		if (unit == NULL) {
			fw_error("failed to allocate memory for unit\n");
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
676
		unit->device.type = &fw_unit_type;
677
		unit->device.parent = &device->device;
678
		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
679

680 681 682
		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
				ARRAY_SIZE(fw_unit_attributes) +
				ARRAY_SIZE(config_rom_attributes));
683 684 685
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
686

687 688 689 690 691 692 693
		if (device_register(&unit->device) < 0)
			goto skip_unit;

		continue;

	skip_unit:
		kfree(unit);
694 695 696 697 698
	}
}

static int shutdown_unit(struct device *device, void *data)
{
699
	device_unregister(device);
700 701 702 703

	return 0;
}

704 705 706 707 708 709 710 711
/*
 * fw_device_rwsem acts as dual purpose mutex:
 *   - serializes accesses to fw_device_idr,
 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 *     fw_unit.directory, unless those accesses happen at safe occasions
 */
DECLARE_RWSEM(fw_device_rwsem);

712
DEFINE_IDR(fw_device_idr);
713 714
int fw_cdev_major;

715
struct fw_device *fw_device_get_by_devt(dev_t devt)
716 717 718
{
	struct fw_device *device;

719
	down_read(&fw_device_rwsem);
720
	device = idr_find(&fw_device_idr, MINOR(devt));
721 722
	if (device)
		fw_device_get(device);
723
	up_read(&fw_device_rwsem);
724 725 726 727

	return device;
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
/*
 * These defines control the retry behavior for reading the config
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
 * are plugged in, they're all getting read within one second.
 */

#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
#define INITIAL_DELAY	(HZ / 2)
#define SHUTDOWN_DELAY	(2 * HZ)

744 745 746 747
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
748 749
	int minor = MINOR(device->device.devt);

750 751
	if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
	    && !list_empty(&device->card->link)) {
752 753 754 755 756 757 758 759 760
		schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
		return;
	}

	if (atomic_cmpxchg(&device->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
		return;

761
	fw_device_cdev_remove(device);
762 763
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
764

765
	down_write(&fw_device_rwsem);
766
	idr_remove(&fw_device_idr, minor);
767
	up_write(&fw_device_rwsem);
768

769
	fw_device_put(device);
770 771
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
	struct fw_card *card = device->card;
	unsigned long flags;

	/*
	 * Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled or while the
	 * bus manager work looks at this node.
	 */
	spin_lock_irqsave(&card->lock, flags);
	device->node->data = NULL;
	spin_unlock_irqrestore(&card->lock, flags);

	fw_node_put(device->node);
	kfree(device->config_rom);
	kfree(device);
	fw_card_put(card);
}

793
static struct device_type fw_device_type = {
794
	.release = fw_device_release,
795 796
};

797 798 799 800 801
static bool is_fw_device(struct device *dev)
{
	return dev->type == &fw_device_type;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
		down(&dev->sem);
		driver->update(unit);
		up(&dev->sem);
	}

	return 0;
}

static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

	fw_device_cdev_update(device);
	device_for_each_child(&device->device, NULL, update_unit);
}
824

825
/*
826 827 828 829
 * If a device was pending for deletion because its node went away but its
 * bus info block and root directory header matches that of a newly discovered
 * device, revive the existing fw_device.
 * The newly allocated fw_device becomes obsolete instead.
830
 */
831 832 833 834 835 836 837
static int lookup_existing_device(struct device *dev, void *data)
{
	struct fw_device *old = fw_device(dev);
	struct fw_device *new = data;
	struct fw_card *card = new->card;
	int match = 0;

838 839 840
	if (!is_fw_device(dev))
		return 0;

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	down_read(&fw_device_rwsem); /* serialize config_rom access */
	spin_lock_irq(&card->lock);  /* serialize node access */

	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
	    atomic_cmpxchg(&old->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		struct fw_node *current_node = new->node;
		struct fw_node *obsolete_node = old->node;

		new->node = obsolete_node;
		new->node->data = new;
		old->node = current_node;
		old->node->data = old;

		old->max_speed = new->max_speed;
		old->node_id = current_node->node_id;
		smp_wmb();  /* update node_id before generation */
		old->generation = card->generation;
		old->config_rom_retries = 0;
		fw_notify("rediscovered device %s\n", dev_name(dev));
862

863 864 865 866 867 868 869 870 871 872 873 874 875 876
		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
		schedule_delayed_work(&old->work, 0);

		if (current_node == card->root_node)
			fw_schedule_bm_work(card, 0);

		match = 1;
	}

	spin_unlock_irq(&card->lock);
	up_read(&fw_device_rwsem);

	return match;
}
877

878 879
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };

880
static void set_broadcast_channel(struct fw_device *device, int generation)
881 882 883 884 885 886 887 888
{
	struct fw_card *card = device->card;
	__be32 data;
	int rcode;

	if (!card->broadcast_channel_allocated)
		return;

889 890 891 892 893 894 895 896 897 898 899 900 901 902
	/*
	 * The Broadcast_Channel Valid bit is required by nodes which want to
	 * transmit on this channel.  Such transmissions are practically
	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
	 * to narrow down to which nodes we send Broadcast_Channel updates.
	 */
	if (!device->irmc || device->max_rec < 8)
		return;

	/*
	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
	 * Perform a read test first.
	 */
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	if (device->bc_implemented == BC_UNKNOWN) {
		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
		switch (rcode) {
		case RCODE_COMPLETE:
			if (data & cpu_to_be32(1 << 31)) {
				device->bc_implemented = BC_IMPLEMENTED;
				break;
			}
			/* else fall through to case address error */
		case RCODE_ADDRESS_ERROR:
			device->bc_implemented = BC_UNIMPLEMENTED;
		}
	}

	if (device->bc_implemented == BC_IMPLEMENTED) {
		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
				   BROADCAST_CHANNEL_VALID);
		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
	}
}

930 931 932 933 934 935 936 937
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
{
	if (is_fw_device(dev))
		set_broadcast_channel(fw_device(dev), (long)gen);

	return 0;
}

938 939 940 941
static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
942
	struct device *revived_dev;
943
	int minor, ret;
944

945 946
	/*
	 * All failure paths here set node->data to NULL, so that we
947
	 * don't try to do device_for_each_child() on a kfree()'d
948 949
	 * device.
	 */
950

951
	if (read_config_rom(device, device->generation) < 0) {
952 953
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
954 955 956
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);
		} else {
957
			fw_notify("giving up on config rom for node id %x\n",
958
				  device->node_id);
959
			if (device->node == device->card->root_node)
960
				fw_schedule_bm_work(device->card, 0);
961 962 963 964 965
			fw_device_release(&device->device);
		}
		return;
	}

966 967 968 969 970 971 972 973 974
	revived_dev = device_find_child(device->card->device,
					device, lookup_existing_device);
	if (revived_dev) {
		put_device(revived_dev);
		fw_device_release(&device->device);

		return;
	}

975
	device_initialize(&device->device);
976 977

	fw_device_get(device);
978
	down_write(&fw_device_rwsem);
979
	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
980 981
	      idr_get_new(&fw_device_idr, device, &minor) :
	      -ENOMEM;
982
	up_write(&fw_device_rwsem);
983

984
	if (ret < 0)
985 986
		goto error;

987
	device->device.bus = &fw_bus_type;
988
	device->device.type = &fw_device_type;
989
	device->device.parent = device->card->device;
990
	device->device.devt = MKDEV(fw_cdev_major, minor);
991
	dev_set_name(&device->device, "fw%d", minor);
992

993 994 995
	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
			ARRAY_SIZE(fw_device_attributes) +
			ARRAY_SIZE(config_rom_attributes));
996 997 998
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
999

1000 1001
	if (device_add(&device->device)) {
		fw_error("Failed to add device.\n");
1002
		goto error_with_cdev;
1003 1004 1005 1006
	}

	create_units(device);

1007 1008
	/*
	 * Transition the device to running state.  If it got pulled
1009 1010 1011 1012 1013
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
1014 1015
	 * fw_node_event().
	 */
1016
	if (atomic_cmpxchg(&device->state,
1017 1018 1019 1020
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
		schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1021 1022 1023 1024
	} else {
		if (device->config_rom_retries)
			fw_notify("created device %s: GUID %08x%08x, S%d00, "
				  "%d config ROM retries\n",
1025
				  dev_name(&device->device),
1026 1027 1028 1029 1030
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed,
				  device->config_rom_retries);
		else
			fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1031
				  dev_name(&device->device),
1032 1033
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed);
1034
		device->config_rom_retries = 0;
1035

1036
		set_broadcast_channel(device, device->generation);
1037
	}
1038

1039 1040
	/*
	 * Reschedule the IRM work if we just finished reading the
1041 1042
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
1043 1044
	 * pretty harmless.
	 */
1045
	if (device->node == device->card->root_node)
1046
		fw_schedule_bm_work(device->card, 0);
1047 1048 1049

	return;

1050
 error_with_cdev:
1051
	down_write(&fw_device_rwsem);
1052
	idr_remove(&fw_device_idr, minor);
1053
	up_write(&fw_device_rwsem);
S
Stefan Richter 已提交
1054
 error:
1055 1056 1057
	fw_device_put(device);		/* fw_device_idr's reference */

	put_device(&device->device);	/* our reference */
1058 1059
}

1060 1061 1062 1063 1064 1065 1066 1067
enum {
	REREAD_BIB_ERROR,
	REREAD_BIB_GONE,
	REREAD_BIB_UNCHANGED,
	REREAD_BIB_CHANGED,
};

/* Reread and compare bus info block and header of root directory */
1068
static int reread_config_rom(struct fw_device *device, int generation)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
{
	u32 q;
	int i;

	for (i = 0; i < 6; i++) {
		if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
			return REREAD_BIB_ERROR;

		if (i == 0 && q == 0)
			return REREAD_BIB_GONE;

1080
		if (q != device->config_rom[i])
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
			return REREAD_BIB_CHANGED;
	}

	return REREAD_BIB_UNCHANGED;
}

static void fw_device_refresh(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
	struct fw_card *card = device->card;
	int node_id = device->node_id;

1094
	switch (reread_config_rom(device, device->generation)) {
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	case REREAD_BIB_ERROR:
		if (device->config_rom_retries < MAX_RETRIES / 2 &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY / 2);

			return;
		}
		goto give_up;

	case REREAD_BIB_GONE:
		goto gone;

	case REREAD_BIB_UNCHANGED:
		if (atomic_cmpxchg(&device->state,
1110 1111
				   FW_DEVICE_INITIALIZING,
				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
			goto gone;

		fw_device_update(work);
		device->config_rom_retries = 0;
		goto out;

	case REREAD_BIB_CHANGED:
		break;
	}

	/*
	 * Something changed.  We keep things simple and don't investigate
	 * further.  We just destroy all previous units and create new ones.
	 */
	device_for_each_child(&device->device, NULL, shutdown_unit);

1128
	if (read_config_rom(device, device->generation) < 0) {
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);

			return;
		}
		goto give_up;
	}

	create_units(device);

1141 1142 1143
	/* Userspace may want to re-read attributes. */
	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);

1144
	if (atomic_cmpxchg(&device->state,
1145 1146
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1147 1148
		goto gone;

1149
	fw_notify("refreshed device %s\n", dev_name(&device->device));
1150 1151 1152 1153
	device->config_rom_retries = 0;
	goto out;

 give_up:
1154
	fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1155
 gone:
1156 1157 1158
	atomic_set(&device->state, FW_DEVICE_GONE);
	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
	schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1159 1160
 out:
	if (node_id == card->root_node->node_id)
1161
		fw_schedule_bm_work(card, 0);
1162 1163
}

1164 1165 1166 1167 1168 1169 1170 1171 1172
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
	case FW_NODE_LINK_ON:
		if (!node->link_on)
			break;
1173
 create:
1174 1175 1176 1177
		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

1178 1179
		/*
		 * Do minimal intialization of the device here, the
1180 1181 1182 1183 1184 1185 1186
		 * rest will happen in fw_device_init().
		 *
		 * Attention:  A lot of things, even fw_device_get(),
		 * cannot be done before fw_device_init() finished!
		 * You can basically just check device->state and
		 * schedule work until then, but only while holding
		 * card->lock.
1187
		 */
1188
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1189
		device->card = fw_card_get(card);
1190 1191 1192
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
1193
		device->is_local = node == card->local_node;
1194
		mutex_init(&device->client_list_mutex);
1195
		INIT_LIST_HEAD(&device->client_list);
1196

1197 1198
		/*
		 * Set the node data to point back to this device so
1199
		 * FW_NODE_UPDATED callbacks can update the node_id
1200 1201
		 * and generation for the device.
		 */
1202 1203
		node->data = device;

1204 1205
		/*
		 * Many devices are slow to respond after bus resets,
1206 1207
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
1208 1209
		 * first config rom scan half a second after bus reset.
		 */
1210 1211 1212 1213
		INIT_DELAYED_WORK(&device->work, fw_device_init);
		schedule_delayed_work(&device->work, INITIAL_DELAY);
		break;

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	case FW_NODE_INITIATED_RESET:
		device = node->data;
		if (device == NULL)
			goto create;

		device->node_id = node->node_id;
		smp_wmb();  /* update node_id before generation */
		device->generation = card->generation;
		if (atomic_cmpxchg(&device->state,
			    FW_DEVICE_RUNNING,
			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
			schedule_delayed_work(&device->work,
1227
				device->is_local ? 0 : INITIAL_DELAY);
1228 1229 1230
		}
		break;

1231 1232 1233 1234 1235 1236
	case FW_NODE_UPDATED:
		if (!node->link_on || node->data == NULL)
			break;

		device = node->data;
		device->node_id = node->node_id;
1237
		smp_wmb();  /* update node_id before generation */
1238
		device->generation = card->generation;
1239 1240 1241 1242
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
			schedule_delayed_work(&device->work, 0);
		}
1243 1244 1245 1246 1247 1248 1249
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

1250 1251
		/*
		 * Destroy the device associated with the node.  There
1252 1253 1254 1255 1256 1257 1258 1259
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
1260 1261
		 * to create the device.
		 */
1262
		device = node->data;
1263
		if (atomic_xchg(&device->state,
1264
				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1265
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1266 1267
			schedule_delayed_work(&device->work,
				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1268 1269 1270 1271
		}
		break;
	}
}