core-device.c 33.3 KB
Newer Older
1 2
/*
 * Device probing and sysfs code.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/ctype.h>
23
#include <linux/delay.h>
24 25
#include <linux/device.h>
#include <linux/errno.h>
26 27
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
28
#include <linux/idr.h>
29
#include <linux/jiffies.h>
30 31
#include <linux/kobject.h>
#include <linux/list.h>
32
#include <linux/mod_devicetable.h>
S
Stefan Richter 已提交
33
#include <linux/module.h>
34
#include <linux/mutex.h>
35 36
#include <linux/rwsem.h>
#include <linux/semaphore.h>
J
Jay Fenlason 已提交
37
#include <linux/spinlock.h>
38 39 40
#include <linux/string.h>
#include <linux/workqueue.h>

S
Stefan Richter 已提交
41 42
#include <asm/atomic.h>
#include <asm/byteorder.h>
43
#include <asm/system.h>
44

45
#include "core.h"
46

47
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

63
static const u32 *search_leaf(const u32 *directory, int search_key)
64 65 66 67 68 69 70 71 72
{
	struct fw_csr_iterator ci;
	int last_key = 0, key, value;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (last_key == search_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			return ci.p - 1 + value;
73

74 75
		last_key = key;
	}
76

77 78 79
	return NULL;
}

80
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81
{
82 83
	unsigned int quadlets, i;
	char c;
84 85 86 87

	if (!size || !buf)
		return -EINVAL;

88
	quadlets = min(block[0] >> 16, 256U);
89 90 91 92 93 94 95 96 97
	if (quadlets < 2)
		return -ENODATA;

	if (block[1] != 0 || block[2] != 0)
		/* unknown language/character set */
		return -ENODATA;

	block += 3;
	quadlets -= 2;
98 99
	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
		c = block[i / 4] >> (24 - 8 * (i % 4));
100 101
		if (c == '\0')
			break;
102
		buf[i] = c;
103
	}
104 105 106
	buf[i] = '\0';

	return i;
107 108 109 110
}

/**
 * fw_csr_string - reads a string from the configuration ROM
111
 * @directory: e.g. root directory or unit directory
112 113 114 115
 * @key: the key of the preceding directory entry
 * @buf: where to put the string
 * @size: size of @buf, in bytes
 *
116 117 118
 * The string is taken from a minimal ASCII text descriptor leaf after
 * the immediate entry with @key.  The string is zero-terminated.
 * Returns strlen(buf) or a negative error code.
119
 */
120
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121
{
122
	const u32 *leaf = search_leaf(directory, key);
123 124
	if (!leaf)
		return -ENOENT;
125

126 127 128 129
	return textual_leaf_to_string(leaf, buf, size);
}
EXPORT_SYMBOL(fw_csr_string);

130
static bool is_fw_unit(struct device *dev);
131

132
static int match_unit_directory(const u32 *directory, u32 match_flags,
133
				const struct ieee1394_device_id *id)
134 135 136 137 138 139 140
{
	struct fw_csr_iterator ci;
	int key, value, match;

	match = 0;
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
141 142 143 144
		if (key == CSR_VENDOR && value == id->vendor_id)
			match |= IEEE1394_MATCH_VENDOR_ID;
		if (key == CSR_MODEL && value == id->model_id)
			match |= IEEE1394_MATCH_MODEL_ID;
145
		if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
146
			match |= IEEE1394_MATCH_SPECIFIER_ID;
147
		if (key == CSR_VERSION && value == id->version)
148
			match |= IEEE1394_MATCH_VERSION;
149 150
	}

151
	return (match & match_flags) == match_flags;
152 153 154 155 156
}

static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
	struct fw_unit *unit = fw_unit(dev);
157 158
	struct fw_device *device;
	const struct ieee1394_device_id *id;
159 160 161 162 163

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

164
	device = fw_parent_device(unit);
165
	id = container_of(drv, struct fw_driver, driver)->id_table;
166

167
	for (; id->match_flags != 0; id++) {
168 169 170 171 172 173 174 175 176
		if (match_unit_directory(unit->directory, id->match_flags, id))
			return 1;

		/* Also check vendor ID in the root directory. */
		if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) &&
		    match_unit_directory(&device->config_rom[5],
				IEEE1394_MATCH_VENDOR_ID, id) &&
		    match_unit_directory(unit->directory, id->match_flags
				& ~IEEE1394_MATCH_VENDOR_ID, id))
177 178 179 180 181 182 183 184
			return 1;
	}

	return 0;
}

static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
185
	struct fw_device *device = fw_parent_device(unit);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
	struct fw_csr_iterator ci;

	int key, value;
	int vendor = 0;
	int model = 0;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_VENDOR:
			vendor = value;
			break;
		case CSR_MODEL:
			model = value;
			break;
		}
	}

	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
			vendor, model, specifier_id, version);
}

223
static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
224 225 226 227
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];

228
	get_modalias(unit, modalias, sizeof(modalias));
229

230
	if (add_uevent_var(env, "MODALIAS=%s", modalias))
231 232 233 234 235 236
		return -ENOMEM;

	return 0;
}

struct bus_type fw_bus_type = {
237
	.name = "firewire",
238 239 240 241 242 243
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

int fw_device_enable_phys_dma(struct fw_device *device)
{
244 245 246 247 248
	int generation = device->generation;

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();

249 250
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
251
						     generation);
252 253 254
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

255 256 257 258 259
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

260 261
static ssize_t show_immediate(struct device *dev,
			      struct device_attribute *dattr, char *buf)
262 263 264 265
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
266
	const u32 *dir;
267 268 269
	int key, value, ret = -ENOENT;

	down_read(&fw_device_rwsem);
270 271 272 273 274 275 276 277

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
278 279 280 281 282 283 284
		if (attr->key == key) {
			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
				       "0x%06x\n", value);
			break;
		}

	up_read(&fw_device_rwsem);
285

286
	return ret;
287 288 289 290 291
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

292 293
static ssize_t show_text_leaf(struct device *dev,
			      struct device_attribute *dattr, char *buf)
294 295 296
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
297
	const u32 *dir;
298 299 300
	size_t bufsize;
	char dummy_buf[2];
	int ret;
301

302 303
	down_read(&fw_device_rwsem);

304 305 306 307 308
	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

309 310 311 312 313
	if (buf) {
		bufsize = PAGE_SIZE - 1;
	} else {
		buf = dummy_buf;
		bufsize = 1;
314 315
	}

316
	ret = fw_csr_string(dir, attr->key, buf, bufsize);
317

318 319 320 321 322 323
	if (ret >= 0) {
		/* Strip trailing whitespace and add newline. */
		while (ret > 0 && isspace(buf[ret - 1]))
			ret--;
		strcpy(buf + ret, "\n");
		ret++;
324
	}
325

326
	up_read(&fw_device_rwsem);
327

328
	return ret;
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

345 346 347
static void init_fw_attribute_group(struct device *dev,
				    struct device_attribute *attrs,
				    struct fw_attribute_group *group)
348 349
{
	struct device_attribute *attr;
350 351 352 353
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
354 355 356 357 358

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
359
		group->attrs[j++] = &attr->attr;
360 361
	}

362
	group->attrs[j] = NULL;
363 364 365
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
366
	dev->groups = (const struct attribute_group **) group->groups;
367 368
}

369 370
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
371 372 373 374 375 376 377 378 379 380
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

381 382
static ssize_t rom_index_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
383
{
384 385
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
386

387 388
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
389 390
}

391 392 393 394
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
395 396
};

397 398
static ssize_t config_rom_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
399
{
400
	struct fw_device *device = fw_device(dev);
401
	size_t length;
402

403 404 405 406
	down_read(&fw_device_rwsem);
	length = device->config_rom_length * 4;
	memcpy(buf, device->config_rom, length);
	up_read(&fw_device_rwsem);
407

408
	return length;
409 410
}

411 412
static ssize_t guid_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
413 414
{
	struct fw_device *device = fw_device(dev);
415 416 417 418 419 420
	int ret;

	down_read(&fw_device_rwsem);
	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
		       device->config_rom[3], device->config_rom[4]);
	up_read(&fw_device_rwsem);
421

422
	return ret;
423 424
}

425
static int units_sprintf(char *buf, const u32 *directory)
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
{
	struct fw_csr_iterator ci;
	int key, value;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
}

static ssize_t units_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);
	struct fw_csr_iterator ci;
	int key, value, i = 0;

	down_read(&fw_device_rwsem);
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;
		i += units_sprintf(&buf[i], ci.p + value - 1);
		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
			break;
	}
	up_read(&fw_device_rwsem);

	if (i)
		buf[i - 1] = '\n';

	return i;
}

471 472
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
473
	__ATTR_RO(guid),
474
	__ATTR_RO(units),
475
	__ATTR_NULL,
476 477
};

478 479
static int read_rom(struct fw_device *device,
		    int generation, int index, u32 *data)
480
{
J
Jay Fenlason 已提交
481
	int rcode;
482 483 484

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();
485

J
Jay Fenlason 已提交
486
	rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
487
			device->node_id, generation, device->max_speed,
J
Jay Fenlason 已提交
488 489 490
			(CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
			data, 4);
	be32_to_cpus(data);
491

J
Jay Fenlason 已提交
492
	return rcode;
493 494
}

495 496 497
#define READ_BIB_ROM_SIZE	256
#define READ_BIB_STACK_SIZE	16

498 499 500 501 502 503 504 505
/*
 * Read the bus info block, perform a speed probe, and read all of the rest of
 * the config ROM.  We do all this with a cached bus generation.  If the bus
 * generation changes under us, read_bus_info_block will fail and get retried.
 * It's better to start all over in this case because the node from which we
 * are reading the ROM may have changed the ROM during the reset.
 */
static int read_bus_info_block(struct fw_device *device, int generation)
506
{
507 508
	const u32 *old_rom, *new_rom;
	u32 *rom, *stack;
509 510 511 512 513 514 515 516 517
	u32 sp, key;
	int i, end, length, ret = -1;

	rom = kmalloc(sizeof(*rom) * READ_BIB_ROM_SIZE +
		      sizeof(*stack) * READ_BIB_STACK_SIZE, GFP_KERNEL);
	if (rom == NULL)
		return -ENOMEM;

	stack = &rom[READ_BIB_ROM_SIZE];
518

519 520
	device->max_speed = SCODE_100;

521 522
	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
523
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
524
			goto out;
525 526
		/*
		 * As per IEEE1212 7.2, during power-up, devices can
527 528 529 530
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
531 532
		 * retry mechanism will try again later.
		 */
533
		if (i == 0 && rom[i] == 0)
534
			goto out;
535 536
	}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	device->max_speed = device->node->max_speed;

	/*
	 * Determine the speed of
	 *   - devices with link speed less than PHY speed,
	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
	 *   - all devices if there are 1394b repeaters.
	 * Note, we cannot use the bus info block's link_spd as starting point
	 * because some buggy firmwares set it lower than necessary and because
	 * 1394-1995 nodes do not have the field.
	 */
	if ((rom[2] & 0x7) < device->max_speed ||
	    device->max_speed == SCODE_BETA ||
	    device->card->beta_repeaters_present) {
		u32 dummy;

		/* for S1600 and S3200 */
		if (device->max_speed == SCODE_BETA)
			device->max_speed = device->card->link_speed;

		while (device->max_speed > SCODE_100) {
558 559
			if (read_rom(device, generation, 0, &dummy) ==
			    RCODE_COMPLETE)
560 561 562 563 564
				break;
			device->max_speed--;
		}
	}

565 566
	/*
	 * Now parse the config rom.  The config rom is a recursive
567 568 569
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
570 571
	 * start things off.
	 */
572 573 574 575
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
576 577
		/*
		 * Pop the next block reference of the stack.  The
578 579
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
580 581
		 * block.
		 */
582 583
		key = stack[--sp];
		i = key & 0xffffff;
584
		if (WARN_ON(i >= READ_BIB_ROM_SIZE))
585
			goto out;
586 587

		/* Read header quadlet for the block to get the length. */
588
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
589
			goto out;
590
		end = i + (rom[i] >> 16) + 1;
591
		if (end > READ_BIB_ROM_SIZE) {
592
			/*
593 594 595
			 * This block extends outside the config ROM which is
			 * a firmware bug.  Ignore this whole block, i.e.
			 * simply set a fake block length of 0.
596
			 */
597 598 599 600 601 602 603
			fw_error("skipped invalid ROM block %x at %llx\n",
				 rom[i],
				 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
			rom[i] = 0;
			end = i;
		}
		i++;
604

605 606
		/*
		 * Now read in the block.  If this is a directory
607
		 * block, check the entries as we read them to see if
608 609
		 * it references another block, and push it in that case.
		 */
610
		for (; i < end; i++) {
611 612
			if (read_rom(device, generation, i, &rom[i]) !=
			    RCODE_COMPLETE)
613
				goto out;
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

			if ((key >> 30) != 3 || (rom[i] >> 30) < 2 ||
			    sp >= READ_BIB_STACK_SIZE)
				continue;
			/*
			 * Offset points outside the ROM.  May be a firmware
			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
			 * 7.7.18).  Simply overwrite this pointer here by a
			 * fake immediate entry so that later iterators over
			 * the ROM don't have to check offsets all the time.
			 */
			if (i + (rom[i] & 0xffffff) >= READ_BIB_ROM_SIZE) {
				fw_error("skipped unsupported ROM entry %x at %llx\n",
					 rom[i],
					 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
				rom[i] = 0;
				continue;
			}
			stack[sp++] = i + rom[i];
633 634 635 636 637
		}
		if (length < i)
			length = i;
	}

638 639 640
	old_rom = device->config_rom;
	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
	if (new_rom == NULL)
641
		goto out;
642 643 644

	down_write(&fw_device_rwsem);
	device->config_rom = new_rom;
645
	device->config_rom_length = length;
646 647 648
	up_write(&fw_device_rwsem);

	kfree(old_rom);
649
	ret = 0;
650 651 652
	device->max_rec	= rom[2] >> 12 & 0xf;
	device->cmc	= rom[2] >> 30 & 1;
	device->irmc	= rom[2] >> 31 & 1;
653 654
 out:
	kfree(rom);
655

656
	return ret;
657 658 659 660 661 662 663 664 665
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

	kfree(unit);
}

666 667 668 669 670
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

671
static bool is_fw_unit(struct device *dev)
672
{
673
	return dev->type == &fw_unit_type;
674 675 676 677 678 679 680 681 682 683 684 685 686 687
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

688 689 690 691
		/*
		 * Get the address of the unit directory and try to
		 * match the drivers id_tables against it.
		 */
692
		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
693 694 695 696 697 698 699
		if (unit == NULL) {
			fw_error("failed to allocate memory for unit\n");
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
700
		unit->device.type = &fw_unit_type;
701
		unit->device.parent = &device->device;
702
		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
703

704 705 706
		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
				ARRAY_SIZE(fw_unit_attributes) +
				ARRAY_SIZE(config_rom_attributes));
707 708 709
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
710

711 712 713 714 715 716 717
		if (device_register(&unit->device) < 0)
			goto skip_unit;

		continue;

	skip_unit:
		kfree(unit);
718 719 720 721 722
	}
}

static int shutdown_unit(struct device *device, void *data)
{
723
	device_unregister(device);
724 725 726 727

	return 0;
}

728 729 730 731 732 733 734 735
/*
 * fw_device_rwsem acts as dual purpose mutex:
 *   - serializes accesses to fw_device_idr,
 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 *     fw_unit.directory, unless those accesses happen at safe occasions
 */
DECLARE_RWSEM(fw_device_rwsem);

736
DEFINE_IDR(fw_device_idr);
737 738
int fw_cdev_major;

739
struct fw_device *fw_device_get_by_devt(dev_t devt)
740 741 742
{
	struct fw_device *device;

743
	down_read(&fw_device_rwsem);
744
	device = idr_find(&fw_device_idr, MINOR(devt));
745 746
	if (device)
		fw_device_get(device);
747
	up_read(&fw_device_rwsem);
748 749 750 751

	return device;
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
/*
 * These defines control the retry behavior for reading the config
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
 * are plugged in, they're all getting read within one second.
 */

#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
#define INITIAL_DELAY	(HZ / 2)
#define SHUTDOWN_DELAY	(2 * HZ)

768 769 770 771
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
772 773
	int minor = MINOR(device->device.devt);

774 775
	if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
	    && !list_empty(&device->card->link)) {
776 777 778 779 780 781 782 783 784
		schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
		return;
	}

	if (atomic_cmpxchg(&device->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
		return;

785
	fw_device_cdev_remove(device);
786 787
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
788

789
	down_write(&fw_device_rwsem);
790
	idr_remove(&fw_device_idr, minor);
791
	up_write(&fw_device_rwsem);
792

793
	fw_device_put(device);
794 795
}

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
	struct fw_card *card = device->card;
	unsigned long flags;

	/*
	 * Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled or while the
	 * bus manager work looks at this node.
	 */
	spin_lock_irqsave(&card->lock, flags);
	device->node->data = NULL;
	spin_unlock_irqrestore(&card->lock, flags);

	fw_node_put(device->node);
	kfree(device->config_rom);
	kfree(device);
	fw_card_put(card);
}

817
static struct device_type fw_device_type = {
818
	.release = fw_device_release,
819 820
};

821 822 823 824 825
static bool is_fw_device(struct device *dev)
{
	return dev->type == &fw_device_type;
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
		down(&dev->sem);
		driver->update(unit);
		up(&dev->sem);
	}

	return 0;
}

static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

	fw_device_cdev_update(device);
	device_for_each_child(&device->device, NULL, update_unit);
}
848

849
/*
850 851 852 853
 * If a device was pending for deletion because its node went away but its
 * bus info block and root directory header matches that of a newly discovered
 * device, revive the existing fw_device.
 * The newly allocated fw_device becomes obsolete instead.
854
 */
855 856 857 858 859 860 861
static int lookup_existing_device(struct device *dev, void *data)
{
	struct fw_device *old = fw_device(dev);
	struct fw_device *new = data;
	struct fw_card *card = new->card;
	int match = 0;

862 863 864
	if (!is_fw_device(dev))
		return 0;

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	down_read(&fw_device_rwsem); /* serialize config_rom access */
	spin_lock_irq(&card->lock);  /* serialize node access */

	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
	    atomic_cmpxchg(&old->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		struct fw_node *current_node = new->node;
		struct fw_node *obsolete_node = old->node;

		new->node = obsolete_node;
		new->node->data = new;
		old->node = current_node;
		old->node->data = old;

		old->max_speed = new->max_speed;
		old->node_id = current_node->node_id;
		smp_wmb();  /* update node_id before generation */
		old->generation = card->generation;
		old->config_rom_retries = 0;
		fw_notify("rediscovered device %s\n", dev_name(dev));
886

887 888 889 890 891 892 893 894 895 896 897 898 899 900
		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
		schedule_delayed_work(&old->work, 0);

		if (current_node == card->root_node)
			fw_schedule_bm_work(card, 0);

		match = 1;
	}

	spin_unlock_irq(&card->lock);
	up_read(&fw_device_rwsem);

	return match;
}
901

902 903
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };

904
static void set_broadcast_channel(struct fw_device *device, int generation)
905 906 907 908 909 910 911 912
{
	struct fw_card *card = device->card;
	__be32 data;
	int rcode;

	if (!card->broadcast_channel_allocated)
		return;

913 914 915 916 917 918 919 920 921 922 923 924 925 926
	/*
	 * The Broadcast_Channel Valid bit is required by nodes which want to
	 * transmit on this channel.  Such transmissions are practically
	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
	 * to narrow down to which nodes we send Broadcast_Channel updates.
	 */
	if (!device->irmc || device->max_rec < 8)
		return;

	/*
	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
	 * Perform a read test first.
	 */
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	if (device->bc_implemented == BC_UNKNOWN) {
		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
		switch (rcode) {
		case RCODE_COMPLETE:
			if (data & cpu_to_be32(1 << 31)) {
				device->bc_implemented = BC_IMPLEMENTED;
				break;
			}
			/* else fall through to case address error */
		case RCODE_ADDRESS_ERROR:
			device->bc_implemented = BC_UNIMPLEMENTED;
		}
	}

	if (device->bc_implemented == BC_IMPLEMENTED) {
		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
				   BROADCAST_CHANNEL_VALID);
		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
	}
}

954 955 956 957 958 959 960 961
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
{
	if (is_fw_device(dev))
		set_broadcast_channel(fw_device(dev), (long)gen);

	return 0;
}

962 963 964 965
static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
966
	struct device *revived_dev;
967
	int minor, ret;
968

969 970
	/*
	 * All failure paths here set node->data to NULL, so that we
971
	 * don't try to do device_for_each_child() on a kfree()'d
972 973
	 * device.
	 */
974

975
	if (read_bus_info_block(device, device->generation) < 0) {
976 977
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
978 979 980
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);
		} else {
981
			fw_notify("giving up on config rom for node id %x\n",
982
				  device->node_id);
983
			if (device->node == device->card->root_node)
984
				fw_schedule_bm_work(device->card, 0);
985 986 987 988 989
			fw_device_release(&device->device);
		}
		return;
	}

990 991 992 993 994 995 996 997 998
	revived_dev = device_find_child(device->card->device,
					device, lookup_existing_device);
	if (revived_dev) {
		put_device(revived_dev);
		fw_device_release(&device->device);

		return;
	}

999
	device_initialize(&device->device);
1000 1001

	fw_device_get(device);
1002
	down_write(&fw_device_rwsem);
1003
	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1004 1005
	      idr_get_new(&fw_device_idr, device, &minor) :
	      -ENOMEM;
1006
	up_write(&fw_device_rwsem);
1007

1008
	if (ret < 0)
1009 1010
		goto error;

1011
	device->device.bus = &fw_bus_type;
1012
	device->device.type = &fw_device_type;
1013
	device->device.parent = device->card->device;
1014
	device->device.devt = MKDEV(fw_cdev_major, minor);
1015
	dev_set_name(&device->device, "fw%d", minor);
1016

1017 1018 1019
	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
			ARRAY_SIZE(fw_device_attributes) +
			ARRAY_SIZE(config_rom_attributes));
1020 1021 1022
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
1023

1024 1025
	if (device_add(&device->device)) {
		fw_error("Failed to add device.\n");
1026
		goto error_with_cdev;
1027 1028 1029 1030
	}

	create_units(device);

1031 1032
	/*
	 * Transition the device to running state.  If it got pulled
1033 1034 1035 1036 1037
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
1038 1039
	 * fw_node_event().
	 */
1040
	if (atomic_cmpxchg(&device->state,
1041 1042 1043 1044
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
		schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1045 1046 1047 1048
	} else {
		if (device->config_rom_retries)
			fw_notify("created device %s: GUID %08x%08x, S%d00, "
				  "%d config ROM retries\n",
1049
				  dev_name(&device->device),
1050 1051 1052 1053 1054
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed,
				  device->config_rom_retries);
		else
			fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1055
				  dev_name(&device->device),
1056 1057
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed);
1058
		device->config_rom_retries = 0;
1059

1060
		set_broadcast_channel(device, device->generation);
1061
	}
1062

1063 1064
	/*
	 * Reschedule the IRM work if we just finished reading the
1065 1066
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
1067 1068
	 * pretty harmless.
	 */
1069
	if (device->node == device->card->root_node)
1070
		fw_schedule_bm_work(device->card, 0);
1071 1072 1073

	return;

1074
 error_with_cdev:
1075
	down_write(&fw_device_rwsem);
1076
	idr_remove(&fw_device_idr, minor);
1077
	up_write(&fw_device_rwsem);
S
Stefan Richter 已提交
1078
 error:
1079 1080 1081
	fw_device_put(device);		/* fw_device_idr's reference */

	put_device(&device->device);	/* our reference */
1082 1083
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
enum {
	REREAD_BIB_ERROR,
	REREAD_BIB_GONE,
	REREAD_BIB_UNCHANGED,
	REREAD_BIB_CHANGED,
};

/* Reread and compare bus info block and header of root directory */
static int reread_bus_info_block(struct fw_device *device, int generation)
{
	u32 q;
	int i;

	for (i = 0; i < 6; i++) {
		if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
			return REREAD_BIB_ERROR;

		if (i == 0 && q == 0)
			return REREAD_BIB_GONE;

1104
		if (q != device->config_rom[i])
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
			return REREAD_BIB_CHANGED;
	}

	return REREAD_BIB_UNCHANGED;
}

static void fw_device_refresh(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
	struct fw_card *card = device->card;
	int node_id = device->node_id;

	switch (reread_bus_info_block(device, device->generation)) {
	case REREAD_BIB_ERROR:
		if (device->config_rom_retries < MAX_RETRIES / 2 &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY / 2);

			return;
		}
		goto give_up;

	case REREAD_BIB_GONE:
		goto gone;

	case REREAD_BIB_UNCHANGED:
		if (atomic_cmpxchg(&device->state,
1134 1135
				   FW_DEVICE_INITIALIZING,
				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
			goto gone;

		fw_device_update(work);
		device->config_rom_retries = 0;
		goto out;

	case REREAD_BIB_CHANGED:
		break;
	}

	/*
	 * Something changed.  We keep things simple and don't investigate
	 * further.  We just destroy all previous units and create new ones.
	 */
	device_for_each_child(&device->device, NULL, shutdown_unit);

	if (read_bus_info_block(device, device->generation) < 0) {
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);

			return;
		}
		goto give_up;
	}

	create_units(device);

1165 1166 1167
	/* Userspace may want to re-read attributes. */
	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);

1168
	if (atomic_cmpxchg(&device->state,
1169 1170
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1171 1172
		goto gone;

1173
	fw_notify("refreshed device %s\n", dev_name(&device->device));
1174 1175 1176 1177
	device->config_rom_retries = 0;
	goto out;

 give_up:
1178
	fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1179
 gone:
1180 1181 1182
	atomic_set(&device->state, FW_DEVICE_GONE);
	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
	schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1183 1184
 out:
	if (node_id == card->root_node->node_id)
1185
		fw_schedule_bm_work(card, 0);
1186 1187
}

1188 1189 1190 1191 1192 1193 1194 1195 1196
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
	case FW_NODE_LINK_ON:
		if (!node->link_on)
			break;
1197
 create:
1198 1199 1200 1201
		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

1202 1203
		/*
		 * Do minimal intialization of the device here, the
1204 1205 1206 1207 1208 1209 1210
		 * rest will happen in fw_device_init().
		 *
		 * Attention:  A lot of things, even fw_device_get(),
		 * cannot be done before fw_device_init() finished!
		 * You can basically just check device->state and
		 * schedule work until then, but only while holding
		 * card->lock.
1211
		 */
1212
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1213
		device->card = fw_card_get(card);
1214 1215 1216
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
1217
		device->is_local = node == card->local_node;
1218
		mutex_init(&device->client_list_mutex);
1219
		INIT_LIST_HEAD(&device->client_list);
1220

1221 1222
		/*
		 * Set the node data to point back to this device so
1223
		 * FW_NODE_UPDATED callbacks can update the node_id
1224 1225
		 * and generation for the device.
		 */
1226 1227
		node->data = device;

1228 1229
		/*
		 * Many devices are slow to respond after bus resets,
1230 1231
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
1232 1233
		 * first config rom scan half a second after bus reset.
		 */
1234 1235 1236 1237
		INIT_DELAYED_WORK(&device->work, fw_device_init);
		schedule_delayed_work(&device->work, INITIAL_DELAY);
		break;

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	case FW_NODE_INITIATED_RESET:
		device = node->data;
		if (device == NULL)
			goto create;

		device->node_id = node->node_id;
		smp_wmb();  /* update node_id before generation */
		device->generation = card->generation;
		if (atomic_cmpxchg(&device->state,
			    FW_DEVICE_RUNNING,
			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
			schedule_delayed_work(&device->work,
1251
				device->is_local ? 0 : INITIAL_DELAY);
1252 1253 1254
		}
		break;

1255 1256 1257 1258 1259 1260
	case FW_NODE_UPDATED:
		if (!node->link_on || node->data == NULL)
			break;

		device = node->data;
		device->node_id = node->node_id;
1261
		smp_wmb();  /* update node_id before generation */
1262
		device->generation = card->generation;
1263 1264 1265 1266
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
			schedule_delayed_work(&device->work, 0);
		}
1267 1268 1269 1270 1271 1272 1273
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

1274 1275
		/*
		 * Destroy the device associated with the node.  There
1276 1277 1278 1279 1280 1281 1282 1283
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
1284 1285
		 * to create the device.
		 */
1286
		device = node->data;
1287
		if (atomic_xchg(&device->state,
1288
				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1289
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1290 1291
			schedule_delayed_work(&device->work,
				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1292 1293 1294 1295
		}
		break;
	}
}