core-device.c 32.7 KB
Newer Older
1 2
/*
 * Device probing and sysfs code.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/ctype.h>
22
#include <linux/delay.h>
23 24
#include <linux/device.h>
#include <linux/errno.h>
25 26
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
27
#include <linux/idr.h>
28
#include <linux/jiffies.h>
29 30
#include <linux/kobject.h>
#include <linux/list.h>
31
#include <linux/mod_devicetable.h>
S
Stefan Richter 已提交
32
#include <linux/module.h>
33
#include <linux/mutex.h>
34 35
#include <linux/rwsem.h>
#include <linux/semaphore.h>
J
Jay Fenlason 已提交
36
#include <linux/spinlock.h>
37 38 39
#include <linux/string.h>
#include <linux/workqueue.h>

S
Stefan Richter 已提交
40 41
#include <asm/atomic.h>
#include <asm/byteorder.h>
42
#include <asm/system.h>
43

44
#include "core.h"
45

46
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

62
static const u32 *search_leaf(const u32 *directory, int search_key)
63 64 65 66 67 68 69 70 71
{
	struct fw_csr_iterator ci;
	int last_key = 0, key, value;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (last_key == search_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			return ci.p - 1 + value;
72

73 74
		last_key = key;
	}
75

76 77 78
	return NULL;
}

79
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80
{
81 82
	unsigned int quadlets, i;
	char c;
83 84 85 86

	if (!size || !buf)
		return -EINVAL;

87
	quadlets = min(block[0] >> 16, 256U);
88 89 90 91 92 93 94 95 96
	if (quadlets < 2)
		return -ENODATA;

	if (block[1] != 0 || block[2] != 0)
		/* unknown language/character set */
		return -ENODATA;

	block += 3;
	quadlets -= 2;
97 98
	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
		c = block[i / 4] >> (24 - 8 * (i % 4));
99 100
		if (c == '\0')
			break;
101
		buf[i] = c;
102
	}
103 104 105
	buf[i] = '\0';

	return i;
106 107 108 109
}

/**
 * fw_csr_string - reads a string from the configuration ROM
110
 * @directory: e.g. root directory or unit directory
111 112 113 114
 * @key: the key of the preceding directory entry
 * @buf: where to put the string
 * @size: size of @buf, in bytes
 *
115 116 117
 * The string is taken from a minimal ASCII text descriptor leaf after
 * the immediate entry with @key.  The string is zero-terminated.
 * Returns strlen(buf) or a negative error code.
118
 */
119
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120
{
121
	const u32 *leaf = search_leaf(directory, key);
122 123
	if (!leaf)
		return -ENOENT;
124

125 126 127 128
	return textual_leaf_to_string(leaf, buf, size);
}
EXPORT_SYMBOL(fw_csr_string);

129
static bool is_fw_unit(struct device *dev);
130

131
static int match_unit_directory(const u32 *directory, u32 match_flags,
132
				const struct ieee1394_device_id *id)
133 134 135 136 137 138 139
{
	struct fw_csr_iterator ci;
	int key, value, match;

	match = 0;
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
140 141 142 143
		if (key == CSR_VENDOR && value == id->vendor_id)
			match |= IEEE1394_MATCH_VENDOR_ID;
		if (key == CSR_MODEL && value == id->model_id)
			match |= IEEE1394_MATCH_MODEL_ID;
144
		if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
145
			match |= IEEE1394_MATCH_SPECIFIER_ID;
146
		if (key == CSR_VERSION && value == id->version)
147
			match |= IEEE1394_MATCH_VERSION;
148 149
	}

150
	return (match & match_flags) == match_flags;
151 152 153 154 155
}

static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
	struct fw_unit *unit = fw_unit(dev);
156 157
	struct fw_device *device;
	const struct ieee1394_device_id *id;
158 159 160 161 162

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

163
	device = fw_parent_device(unit);
164
	id = container_of(drv, struct fw_driver, driver)->id_table;
165

166
	for (; id->match_flags != 0; id++) {
167 168 169 170 171 172 173 174 175
		if (match_unit_directory(unit->directory, id->match_flags, id))
			return 1;

		/* Also check vendor ID in the root directory. */
		if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) &&
		    match_unit_directory(&device->config_rom[5],
				IEEE1394_MATCH_VENDOR_ID, id) &&
		    match_unit_directory(unit->directory, id->match_flags
				& ~IEEE1394_MATCH_VENDOR_ID, id))
176 177 178 179 180 181 182 183
			return 1;
	}

	return 0;
}

static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
184
	struct fw_device *device = fw_parent_device(unit);
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	struct fw_csr_iterator ci;

	int key, value;
	int vendor = 0;
	int model = 0;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_VENDOR:
			vendor = value;
			break;
		case CSR_MODEL:
			model = value;
			break;
		}
	}

	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
			vendor, model, specifier_id, version);
}

222
static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
223 224 225 226
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];

227
	get_modalias(unit, modalias, sizeof(modalias));
228

229
	if (add_uevent_var(env, "MODALIAS=%s", modalias))
230 231 232 233 234 235
		return -ENOMEM;

	return 0;
}

struct bus_type fw_bus_type = {
236
	.name = "firewire",
237 238 239 240 241 242
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

int fw_device_enable_phys_dma(struct fw_device *device)
{
243 244 245 246 247
	int generation = device->generation;

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();

248 249
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
250
						     generation);
251 252 253
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

254 255 256 257 258
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

259 260
static ssize_t show_immediate(struct device *dev,
			      struct device_attribute *dattr, char *buf)
261 262 263 264
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
265
	const u32 *dir;
266 267 268
	int key, value, ret = -ENOENT;

	down_read(&fw_device_rwsem);
269 270 271 272 273 274 275 276

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
277 278 279 280 281 282 283
		if (attr->key == key) {
			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
				       "0x%06x\n", value);
			break;
		}

	up_read(&fw_device_rwsem);
284

285
	return ret;
286 287 288 289 290
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

291 292
static ssize_t show_text_leaf(struct device *dev,
			      struct device_attribute *dattr, char *buf)
293 294 295
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
296
	const u32 *dir;
297 298 299
	size_t bufsize;
	char dummy_buf[2];
	int ret;
300

301 302
	down_read(&fw_device_rwsem);

303 304 305 306 307
	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

308 309 310 311 312
	if (buf) {
		bufsize = PAGE_SIZE - 1;
	} else {
		buf = dummy_buf;
		bufsize = 1;
313 314
	}

315
	ret = fw_csr_string(dir, attr->key, buf, bufsize);
316

317 318 319 320 321 322
	if (ret >= 0) {
		/* Strip trailing whitespace and add newline. */
		while (ret > 0 && isspace(buf[ret - 1]))
			ret--;
		strcpy(buf + ret, "\n");
		ret++;
323
	}
324

325
	up_read(&fw_device_rwsem);
326

327
	return ret;
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

344 345 346
static void init_fw_attribute_group(struct device *dev,
				    struct device_attribute *attrs,
				    struct fw_attribute_group *group)
347 348
{
	struct device_attribute *attr;
349 350 351 352
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
353 354 355 356 357

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
358
		group->attrs[j++] = &attr->attr;
359 360
	}

361
	group->attrs[j] = NULL;
362 363 364
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
365
	dev->groups = (const struct attribute_group **) group->groups;
366 367
}

368 369
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
370 371 372 373 374 375 376 377 378 379
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

380 381
static ssize_t rom_index_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
382
{
383 384
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
385

386 387
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
388 389
}

390 391 392 393
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
394 395
};

396 397
static ssize_t config_rom_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
398
{
399
	struct fw_device *device = fw_device(dev);
400
	size_t length;
401

402 403 404 405
	down_read(&fw_device_rwsem);
	length = device->config_rom_length * 4;
	memcpy(buf, device->config_rom, length);
	up_read(&fw_device_rwsem);
406

407
	return length;
408 409
}

410 411
static ssize_t guid_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
412 413
{
	struct fw_device *device = fw_device(dev);
414 415 416 417 418 419
	int ret;

	down_read(&fw_device_rwsem);
	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
		       device->config_rom[3], device->config_rom[4]);
	up_read(&fw_device_rwsem);
420

421
	return ret;
422 423
}

424
static int units_sprintf(char *buf, const u32 *directory)
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
{
	struct fw_csr_iterator ci;
	int key, value;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
}

static ssize_t units_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);
	struct fw_csr_iterator ci;
	int key, value, i = 0;

	down_read(&fw_device_rwsem);
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;
		i += units_sprintf(&buf[i], ci.p + value - 1);
		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
			break;
	}
	up_read(&fw_device_rwsem);

	if (i)
		buf[i - 1] = '\n';

	return i;
}

470 471
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
472
	__ATTR_RO(guid),
473
	__ATTR_RO(units),
474
	__ATTR_NULL,
475 476
};

477 478
static int read_rom(struct fw_device *device,
		    int generation, int index, u32 *data)
479
{
J
Jay Fenlason 已提交
480
	int rcode;
481 482 483

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();
484

J
Jay Fenlason 已提交
485
	rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
486
			device->node_id, generation, device->max_speed,
J
Jay Fenlason 已提交
487 488 489
			(CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
			data, 4);
	be32_to_cpus(data);
490

J
Jay Fenlason 已提交
491
	return rcode;
492 493
}

494 495 496
#define READ_BIB_ROM_SIZE	256
#define READ_BIB_STACK_SIZE	16

497 498 499 500 501 502 503 504
/*
 * Read the bus info block, perform a speed probe, and read all of the rest of
 * the config ROM.  We do all this with a cached bus generation.  If the bus
 * generation changes under us, read_bus_info_block will fail and get retried.
 * It's better to start all over in this case because the node from which we
 * are reading the ROM may have changed the ROM during the reset.
 */
static int read_bus_info_block(struct fw_device *device, int generation)
505
{
506 507
	const u32 *old_rom, *new_rom;
	u32 *rom, *stack;
508 509 510 511 512 513 514 515 516
	u32 sp, key;
	int i, end, length, ret = -1;

	rom = kmalloc(sizeof(*rom) * READ_BIB_ROM_SIZE +
		      sizeof(*stack) * READ_BIB_STACK_SIZE, GFP_KERNEL);
	if (rom == NULL)
		return -ENOMEM;

	stack = &rom[READ_BIB_ROM_SIZE];
517

518 519
	device->max_speed = SCODE_100;

520 521
	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
522
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
523
			goto out;
524 525
		/*
		 * As per IEEE1212 7.2, during power-up, devices can
526 527 528 529
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
530 531
		 * retry mechanism will try again later.
		 */
532
		if (i == 0 && rom[i] == 0)
533
			goto out;
534 535
	}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	device->max_speed = device->node->max_speed;

	/*
	 * Determine the speed of
	 *   - devices with link speed less than PHY speed,
	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
	 *   - all devices if there are 1394b repeaters.
	 * Note, we cannot use the bus info block's link_spd as starting point
	 * because some buggy firmwares set it lower than necessary and because
	 * 1394-1995 nodes do not have the field.
	 */
	if ((rom[2] & 0x7) < device->max_speed ||
	    device->max_speed == SCODE_BETA ||
	    device->card->beta_repeaters_present) {
		u32 dummy;

		/* for S1600 and S3200 */
		if (device->max_speed == SCODE_BETA)
			device->max_speed = device->card->link_speed;

		while (device->max_speed > SCODE_100) {
557 558
			if (read_rom(device, generation, 0, &dummy) ==
			    RCODE_COMPLETE)
559 560 561 562 563
				break;
			device->max_speed--;
		}
	}

564 565
	/*
	 * Now parse the config rom.  The config rom is a recursive
566 567 568
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
569 570
	 * start things off.
	 */
571 572 573 574
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
575 576
		/*
		 * Pop the next block reference of the stack.  The
577 578
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
579 580
		 * block.
		 */
581 582
		key = stack[--sp];
		i = key & 0xffffff;
583
		if (i >= READ_BIB_ROM_SIZE)
584 585 586 587
			/*
			 * The reference points outside the standard
			 * config rom area, something's fishy.
			 */
588
			goto out;
589 590

		/* Read header quadlet for the block to get the length. */
591
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
592
			goto out;
593 594
		end = i + (rom[i] >> 16) + 1;
		i++;
595
		if (end > READ_BIB_ROM_SIZE)
596 597
			/*
			 * This block extends outside standard config
598 599
			 * area (and the array we're reading it
			 * into).  That's broken, so ignore this
600 601
			 * device.
			 */
602
			goto out;
603

604 605
		/*
		 * Now read in the block.  If this is a directory
606
		 * block, check the entries as we read them to see if
607 608
		 * it references another block, and push it in that case.
		 */
609
		while (i < end) {
610 611
			if (read_rom(device, generation, i, &rom[i]) !=
			    RCODE_COMPLETE)
612
				goto out;
613
			if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
614
			    sp < READ_BIB_STACK_SIZE)
615 616 617 618 619 620 621
				stack[sp++] = i + rom[i];
			i++;
		}
		if (length < i)
			length = i;
	}

622 623 624
	old_rom = device->config_rom;
	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
	if (new_rom == NULL)
625
		goto out;
626 627 628

	down_write(&fw_device_rwsem);
	device->config_rom = new_rom;
629
	device->config_rom_length = length;
630 631 632
	up_write(&fw_device_rwsem);

	kfree(old_rom);
633
	ret = 0;
634 635 636
	device->max_rec	= rom[2] >> 12 & 0xf;
	device->cmc	= rom[2] >> 30 & 1;
	device->irmc	= rom[2] >> 31 & 1;
637 638
 out:
	kfree(rom);
639

640
	return ret;
641 642 643 644 645 646 647 648 649
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

	kfree(unit);
}

650 651 652 653 654
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

655
static bool is_fw_unit(struct device *dev)
656
{
657
	return dev->type == &fw_unit_type;
658 659 660 661 662 663 664 665 666 667 668 669 670 671
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

672 673 674 675
		/*
		 * Get the address of the unit directory and try to
		 * match the drivers id_tables against it.
		 */
676
		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
677 678 679 680 681 682 683
		if (unit == NULL) {
			fw_error("failed to allocate memory for unit\n");
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
684
		unit->device.type = &fw_unit_type;
685
		unit->device.parent = &device->device;
686
		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
687

688 689 690
		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
				ARRAY_SIZE(fw_unit_attributes) +
				ARRAY_SIZE(config_rom_attributes));
691 692 693
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
694

695 696 697 698 699 700 701
		if (device_register(&unit->device) < 0)
			goto skip_unit;

		continue;

	skip_unit:
		kfree(unit);
702 703 704 705 706
	}
}

static int shutdown_unit(struct device *device, void *data)
{
707
	device_unregister(device);
708 709 710 711

	return 0;
}

712 713 714 715 716 717 718 719
/*
 * fw_device_rwsem acts as dual purpose mutex:
 *   - serializes accesses to fw_device_idr,
 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 *     fw_unit.directory, unless those accesses happen at safe occasions
 */
DECLARE_RWSEM(fw_device_rwsem);

720
DEFINE_IDR(fw_device_idr);
721 722
int fw_cdev_major;

723
struct fw_device *fw_device_get_by_devt(dev_t devt)
724 725 726
{
	struct fw_device *device;

727
	down_read(&fw_device_rwsem);
728
	device = idr_find(&fw_device_idr, MINOR(devt));
729 730
	if (device)
		fw_device_get(device);
731
	up_read(&fw_device_rwsem);
732 733 734 735

	return device;
}

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
/*
 * These defines control the retry behavior for reading the config
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
 * are plugged in, they're all getting read within one second.
 */

#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
#define INITIAL_DELAY	(HZ / 2)
#define SHUTDOWN_DELAY	(2 * HZ)

752 753 754 755
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
756 757
	int minor = MINOR(device->device.devt);

758 759
	if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
	    && !list_empty(&device->card->link)) {
760 761 762 763 764 765 766 767 768
		schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
		return;
	}

	if (atomic_cmpxchg(&device->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
		return;

769
	fw_device_cdev_remove(device);
770 771
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
772

773
	down_write(&fw_device_rwsem);
774
	idr_remove(&fw_device_idr, minor);
775
	up_write(&fw_device_rwsem);
776

777
	fw_device_put(device);
778 779
}

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
	struct fw_card *card = device->card;
	unsigned long flags;

	/*
	 * Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled or while the
	 * bus manager work looks at this node.
	 */
	spin_lock_irqsave(&card->lock, flags);
	device->node->data = NULL;
	spin_unlock_irqrestore(&card->lock, flags);

	fw_node_put(device->node);
	kfree(device->config_rom);
	kfree(device);
	fw_card_put(card);
}

801
static struct device_type fw_device_type = {
802
	.release = fw_device_release,
803 804
};

805 806 807 808 809
static bool is_fw_device(struct device *dev)
{
	return dev->type == &fw_device_type;
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
		down(&dev->sem);
		driver->update(unit);
		up(&dev->sem);
	}

	return 0;
}

static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

	fw_device_cdev_update(device);
	device_for_each_child(&device->device, NULL, update_unit);
}
832

833
/*
834 835 836 837
 * If a device was pending for deletion because its node went away but its
 * bus info block and root directory header matches that of a newly discovered
 * device, revive the existing fw_device.
 * The newly allocated fw_device becomes obsolete instead.
838
 */
839 840 841 842 843 844 845
static int lookup_existing_device(struct device *dev, void *data)
{
	struct fw_device *old = fw_device(dev);
	struct fw_device *new = data;
	struct fw_card *card = new->card;
	int match = 0;

846 847 848
	if (!is_fw_device(dev))
		return 0;

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	down_read(&fw_device_rwsem); /* serialize config_rom access */
	spin_lock_irq(&card->lock);  /* serialize node access */

	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
	    atomic_cmpxchg(&old->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		struct fw_node *current_node = new->node;
		struct fw_node *obsolete_node = old->node;

		new->node = obsolete_node;
		new->node->data = new;
		old->node = current_node;
		old->node->data = old;

		old->max_speed = new->max_speed;
		old->node_id = current_node->node_id;
		smp_wmb();  /* update node_id before generation */
		old->generation = card->generation;
		old->config_rom_retries = 0;
		fw_notify("rediscovered device %s\n", dev_name(dev));
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884
		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
		schedule_delayed_work(&old->work, 0);

		if (current_node == card->root_node)
			fw_schedule_bm_work(card, 0);

		match = 1;
	}

	spin_unlock_irq(&card->lock);
	up_read(&fw_device_rwsem);

	return match;
}
885

886 887
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };

888
static void set_broadcast_channel(struct fw_device *device, int generation)
889 890 891 892 893 894 895 896
{
	struct fw_card *card = device->card;
	__be32 data;
	int rcode;

	if (!card->broadcast_channel_allocated)
		return;

897 898 899 900 901 902 903 904 905 906 907 908 909 910
	/*
	 * The Broadcast_Channel Valid bit is required by nodes which want to
	 * transmit on this channel.  Such transmissions are practically
	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
	 * to narrow down to which nodes we send Broadcast_Channel updates.
	 */
	if (!device->irmc || device->max_rec < 8)
		return;

	/*
	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
	 * Perform a read test first.
	 */
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	if (device->bc_implemented == BC_UNKNOWN) {
		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
		switch (rcode) {
		case RCODE_COMPLETE:
			if (data & cpu_to_be32(1 << 31)) {
				device->bc_implemented = BC_IMPLEMENTED;
				break;
			}
			/* else fall through to case address error */
		case RCODE_ADDRESS_ERROR:
			device->bc_implemented = BC_UNIMPLEMENTED;
		}
	}

	if (device->bc_implemented == BC_IMPLEMENTED) {
		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
				   BROADCAST_CHANNEL_VALID);
		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
	}
}

938 939 940 941 942 943 944 945
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
{
	if (is_fw_device(dev))
		set_broadcast_channel(fw_device(dev), (long)gen);

	return 0;
}

946 947 948 949
static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
950
	struct device *revived_dev;
951
	int minor, ret;
952

953 954
	/*
	 * All failure paths here set node->data to NULL, so that we
955
	 * don't try to do device_for_each_child() on a kfree()'d
956 957
	 * device.
	 */
958

959
	if (read_bus_info_block(device, device->generation) < 0) {
960 961
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
962 963 964
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);
		} else {
965
			fw_notify("giving up on config rom for node id %x\n",
966
				  device->node_id);
967
			if (device->node == device->card->root_node)
968
				fw_schedule_bm_work(device->card, 0);
969 970 971 972 973
			fw_device_release(&device->device);
		}
		return;
	}

974 975 976 977 978 979 980 981 982
	revived_dev = device_find_child(device->card->device,
					device, lookup_existing_device);
	if (revived_dev) {
		put_device(revived_dev);
		fw_device_release(&device->device);

		return;
	}

983
	device_initialize(&device->device);
984 985

	fw_device_get(device);
986
	down_write(&fw_device_rwsem);
987
	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
988 989
	      idr_get_new(&fw_device_idr, device, &minor) :
	      -ENOMEM;
990
	up_write(&fw_device_rwsem);
991

992
	if (ret < 0)
993 994
		goto error;

995
	device->device.bus = &fw_bus_type;
996
	device->device.type = &fw_device_type;
997
	device->device.parent = device->card->device;
998
	device->device.devt = MKDEV(fw_cdev_major, minor);
999
	dev_set_name(&device->device, "fw%d", minor);
1000

1001 1002 1003
	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
			ARRAY_SIZE(fw_device_attributes) +
			ARRAY_SIZE(config_rom_attributes));
1004 1005 1006
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
1007

1008 1009
	if (device_add(&device->device)) {
		fw_error("Failed to add device.\n");
1010
		goto error_with_cdev;
1011 1012 1013 1014
	}

	create_units(device);

1015 1016
	/*
	 * Transition the device to running state.  If it got pulled
1017 1018 1019 1020 1021
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
1022 1023
	 * fw_node_event().
	 */
1024
	if (atomic_cmpxchg(&device->state,
1025 1026 1027 1028
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
		schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1029 1030 1031 1032
	} else {
		if (device->config_rom_retries)
			fw_notify("created device %s: GUID %08x%08x, S%d00, "
				  "%d config ROM retries\n",
1033
				  dev_name(&device->device),
1034 1035 1036 1037 1038
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed,
				  device->config_rom_retries);
		else
			fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1039
				  dev_name(&device->device),
1040 1041
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed);
1042
		device->config_rom_retries = 0;
1043

1044
		set_broadcast_channel(device, device->generation);
1045
	}
1046

1047 1048
	/*
	 * Reschedule the IRM work if we just finished reading the
1049 1050
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
1051 1052
	 * pretty harmless.
	 */
1053
	if (device->node == device->card->root_node)
1054
		fw_schedule_bm_work(device->card, 0);
1055 1056 1057

	return;

1058
 error_with_cdev:
1059
	down_write(&fw_device_rwsem);
1060
	idr_remove(&fw_device_idr, minor);
1061
	up_write(&fw_device_rwsem);
S
Stefan Richter 已提交
1062
 error:
1063 1064 1065
	fw_device_put(device);		/* fw_device_idr's reference */

	put_device(&device->device);	/* our reference */
1066 1067
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
enum {
	REREAD_BIB_ERROR,
	REREAD_BIB_GONE,
	REREAD_BIB_UNCHANGED,
	REREAD_BIB_CHANGED,
};

/* Reread and compare bus info block and header of root directory */
static int reread_bus_info_block(struct fw_device *device, int generation)
{
	u32 q;
	int i;

	for (i = 0; i < 6; i++) {
		if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
			return REREAD_BIB_ERROR;

		if (i == 0 && q == 0)
			return REREAD_BIB_GONE;

1088
		if (q != device->config_rom[i])
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
			return REREAD_BIB_CHANGED;
	}

	return REREAD_BIB_UNCHANGED;
}

static void fw_device_refresh(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
	struct fw_card *card = device->card;
	int node_id = device->node_id;

	switch (reread_bus_info_block(device, device->generation)) {
	case REREAD_BIB_ERROR:
		if (device->config_rom_retries < MAX_RETRIES / 2 &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY / 2);

			return;
		}
		goto give_up;

	case REREAD_BIB_GONE:
		goto gone;

	case REREAD_BIB_UNCHANGED:
		if (atomic_cmpxchg(&device->state,
1118 1119
				   FW_DEVICE_INITIALIZING,
				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
			goto gone;

		fw_device_update(work);
		device->config_rom_retries = 0;
		goto out;

	case REREAD_BIB_CHANGED:
		break;
	}

	/*
	 * Something changed.  We keep things simple and don't investigate
	 * further.  We just destroy all previous units and create new ones.
	 */
	device_for_each_child(&device->device, NULL, shutdown_unit);

	if (read_bus_info_block(device, device->generation) < 0) {
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);

			return;
		}
		goto give_up;
	}

	create_units(device);

1149 1150 1151
	/* Userspace may want to re-read attributes. */
	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);

1152
	if (atomic_cmpxchg(&device->state,
1153 1154
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1155 1156
		goto gone;

1157
	fw_notify("refreshed device %s\n", dev_name(&device->device));
1158 1159 1160 1161
	device->config_rom_retries = 0;
	goto out;

 give_up:
1162
	fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1163
 gone:
1164 1165 1166
	atomic_set(&device->state, FW_DEVICE_GONE);
	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
	schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1167 1168
 out:
	if (node_id == card->root_node->node_id)
1169
		fw_schedule_bm_work(card, 0);
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179 1180
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
	case FW_NODE_LINK_ON:
		if (!node->link_on)
			break;
1181
 create:
1182 1183 1184 1185
		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

1186 1187
		/*
		 * Do minimal intialization of the device here, the
1188 1189 1190 1191 1192 1193 1194
		 * rest will happen in fw_device_init().
		 *
		 * Attention:  A lot of things, even fw_device_get(),
		 * cannot be done before fw_device_init() finished!
		 * You can basically just check device->state and
		 * schedule work until then, but only while holding
		 * card->lock.
1195
		 */
1196
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1197
		device->card = fw_card_get(card);
1198 1199 1200
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
1201
		device->is_local = node == card->local_node;
1202
		mutex_init(&device->client_list_mutex);
1203
		INIT_LIST_HEAD(&device->client_list);
1204

1205 1206
		/*
		 * Set the node data to point back to this device so
1207
		 * FW_NODE_UPDATED callbacks can update the node_id
1208 1209
		 * and generation for the device.
		 */
1210 1211
		node->data = device;

1212 1213
		/*
		 * Many devices are slow to respond after bus resets,
1214 1215
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
1216 1217
		 * first config rom scan half a second after bus reset.
		 */
1218 1219 1220 1221
		INIT_DELAYED_WORK(&device->work, fw_device_init);
		schedule_delayed_work(&device->work, INITIAL_DELAY);
		break;

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	case FW_NODE_INITIATED_RESET:
		device = node->data;
		if (device == NULL)
			goto create;

		device->node_id = node->node_id;
		smp_wmb();  /* update node_id before generation */
		device->generation = card->generation;
		if (atomic_cmpxchg(&device->state,
			    FW_DEVICE_RUNNING,
			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
			schedule_delayed_work(&device->work,
1235
				device->is_local ? 0 : INITIAL_DELAY);
1236 1237 1238
		}
		break;

1239 1240 1241 1242 1243 1244
	case FW_NODE_UPDATED:
		if (!node->link_on || node->data == NULL)
			break;

		device = node->data;
		device->node_id = node->node_id;
1245
		smp_wmb();  /* update node_id before generation */
1246
		device->generation = card->generation;
1247 1248 1249 1250
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
			schedule_delayed_work(&device->work, 0);
		}
1251 1252 1253 1254 1255 1256 1257
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

1258 1259
		/*
		 * Destroy the device associated with the node.  There
1260 1261 1262 1263 1264 1265 1266 1267
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
1268 1269
		 * to create the device.
		 */
1270
		device = node->data;
1271
		if (atomic_xchg(&device->state,
1272
				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1273
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1274 1275
			schedule_delayed_work(&device->work,
				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1276 1277 1278 1279
		}
		break;
	}
}