traps.c 50.2 KB
Newer Older
1 2
/*
 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3
 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 *  Modified by Cort Dougan (cort@cs.nmt.edu)
 *  and Paul Mackerras (paulus@samba.org)
 */

/*
 * This file handles the architecture-dependent parts of hardware exceptions
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
P
Paul Mackerras 已提交
24
#include <linux/ptrace.h>
25 26 27 28
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/module.h>
P
Paul Mackerras 已提交
29
#include <linux/prctl.h>
30 31
#include <linux/delay.h>
#include <linux/kprobes.h>
32
#include <linux/kexec.h>
33
#include <linux/backlight.h>
34
#include <linux/bug.h>
35
#include <linux/kdebug.h>
36
#include <linux/debugfs.h>
37
#include <linux/ratelimit.h>
38
#include <linux/context_tracking.h>
39

40
#include <asm/emulated_ops.h>
41 42 43
#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
44 45
#include <asm/machdep.h>
#include <asm/rtas.h>
46
#include <asm/pmc.h>
47 48 49 50
#include <asm/reg.h>
#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif
51
#ifdef CONFIG_PPC64
52
#include <asm/firmware.h>
53
#include <asm/processor.h>
54
#include <asm/tm.h>
55
#endif
56
#include <asm/kexec.h>
57
#include <asm/ppc-opcode.h>
58
#include <asm/rio.h>
59
#include <asm/fadump.h>
60
#include <asm/switch_to.h>
61
#include <asm/tm.h>
62
#include <asm/debug.h>
63
#include <asm/hmi.h>
64
#include <sysdev/fsl_pci.h>
65

66
#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
67 68 69 70 71
int (*__debugger)(struct pt_regs *regs) __read_mostly;
int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
72
int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
73
int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
74 75 76 77 78 79

EXPORT_SYMBOL(__debugger);
EXPORT_SYMBOL(__debugger_ipi);
EXPORT_SYMBOL(__debugger_bpt);
EXPORT_SYMBOL(__debugger_sstep);
EXPORT_SYMBOL(__debugger_iabr_match);
80
EXPORT_SYMBOL(__debugger_break_match);
81 82 83
EXPORT_SYMBOL(__debugger_fault_handler);
#endif

84 85 86 87 88 89 90
/* Transactional Memory trap debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

91 92 93 94
/*
 * Trap & Exception support
 */

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#ifdef CONFIG_PMAC_BACKLIGHT
static void pmac_backlight_unblank(void)
{
	mutex_lock(&pmac_backlight_mutex);
	if (pmac_backlight) {
		struct backlight_properties *props;

		props = &pmac_backlight->props;
		props->brightness = props->max_brightness;
		props->power = FB_BLANK_UNBLANK;
		backlight_update_status(pmac_backlight);
	}
	mutex_unlock(&pmac_backlight_mutex);
}
#else
static inline void pmac_backlight_unblank(void) { }
#endif

A
Anton Blanchard 已提交
113 114 115 116 117 118
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static int die_owner = -1;
static unsigned int die_nest_count;
static int die_counter;

static unsigned __kprobes long oops_begin(struct pt_regs *regs)
119
{
A
Anton Blanchard 已提交
120
	int cpu;
121
	unsigned long flags;
122 123 124 125

	if (debugger(regs))
		return 1;

126 127
	oops_enter();

A
Anton Blanchard 已提交
128 129 130 131 132 133 134 135
	/* racy, but better than risking deadlock. */
	raw_local_irq_save(flags);
	cpu = smp_processor_id();
	if (!arch_spin_trylock(&die_lock)) {
		if (cpu == die_owner)
			/* nested oops. should stop eventually */;
		else
			arch_spin_lock(&die_lock);
136
	}
A
Anton Blanchard 已提交
137 138 139 140 141 142 143 144
	die_nest_count++;
	die_owner = cpu;
	console_verbose();
	bust_spinlocks(1);
	if (machine_is(powermac))
		pmac_backlight_unblank();
	return flags;
}
145

A
Anton Blanchard 已提交
146 147 148
static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
			       int signr)
{
149
	bust_spinlocks(0);
A
Anton Blanchard 已提交
150
	die_owner = -1;
151
	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
A
Anton Blanchard 已提交
152
	die_nest_count--;
153 154
	oops_exit();
	printk("\n");
A
Anton Blanchard 已提交
155 156 157 158
	if (!die_nest_count)
		/* Nest count reaches zero, release the lock. */
		arch_spin_unlock(&die_lock);
	raw_local_irq_restore(flags);
159

160 161
	crash_fadump(regs, "die oops");

162 163 164 165 166
	/*
	 * A system reset (0x100) is a request to dump, so we always send
	 * it through the crashdump code.
	 */
	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
167
		crash_kexec(regs);
168 169 170 171 172 173 174 175

		/*
		 * We aren't the primary crash CPU. We need to send it
		 * to a holding pattern to avoid it ending up in the panic
		 * code.
		 */
		crash_kexec_secondary(regs);
	}
176

A
Anton Blanchard 已提交
177 178 179
	if (!signr)
		return;

180 181 182 183 184 185 186 187 188 189 190
	/*
	 * While our oops output is serialised by a spinlock, output
	 * from panic() called below can race and corrupt it. If we
	 * know we are going to panic, delay for 1 second so we have a
	 * chance to get clean backtraces from all CPUs that are oopsing.
	 */
	if (in_interrupt() || panic_on_oops || !current->pid ||
	    is_global_init(current)) {
		mdelay(MSEC_PER_SEC);
	}

191 192
	if (in_interrupt())
		panic("Fatal exception in interrupt");
H
Horms 已提交
193
	if (panic_on_oops)
194
		panic("Fatal exception");
A
Anton Blanchard 已提交
195 196
	do_exit(signr);
}
H
Horms 已提交
197

A
Anton Blanchard 已提交
198 199 200 201 202 203 204 205 206
static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
{
	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
#ifdef CONFIG_PREEMPT
	printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
	printk("SMP NR_CPUS=%d ", NR_CPUS);
#endif
207 208
	if (debug_pagealloc_enabled())
		printk("DEBUG_PAGEALLOC ");
A
Anton Blanchard 已提交
209 210 211 212 213 214 215 216 217 218
#ifdef CONFIG_NUMA
	printk("NUMA ");
#endif
	printk("%s\n", ppc_md.name ? ppc_md.name : "");

	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
		return 1;

	print_modules();
	show_regs(regs);
219 220 221 222

	return 0;
}

A
Anton Blanchard 已提交
223 224 225 226 227 228 229 230 231
void die(const char *str, struct pt_regs *regs, long err)
{
	unsigned long flags = oops_begin(regs);

	if (__die(str, regs, err))
		err = 0;
	oops_end(flags, regs, err);
}

232 233 234 235 236 237 238 239 240
void user_single_step_siginfo(struct task_struct *tsk,
				struct pt_regs *regs, siginfo_t *info)
{
	memset(info, 0, sizeof(*info));
	info->si_signo = SIGTRAP;
	info->si_code = TRAP_TRACE;
	info->si_addr = (void __user *)regs->nip;
}

241 242 243
void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
{
	siginfo_t info;
244 245 246 247
	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %08lx nip %08lx lr %08lx code %x\n";
	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %016lx nip %016lx lr %016lx code %x\n";
248 249

	if (!user_mode(regs)) {
A
Anton Blanchard 已提交
250 251 252 253 254
		die("Exception in kernel mode", regs, signr);
		return;
	}

	if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 256 257 258
		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
				   current->comm, current->pid, signr,
				   addr, regs->nip, regs->link, code);
	}
259

260
	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 262
		local_irq_enable();

263
	current->thread.trap_nr = code;
264 265 266 267 268 269 270 271 272 273 274
	memset(&info, 0, sizeof(info));
	info.si_signo = signr;
	info.si_code = code;
	info.si_addr = (void __user *) addr;
	force_sig_info(signr, &info, current);
}

#ifdef CONFIG_PPC64
void system_reset_exception(struct pt_regs *regs)
{
	/* See if any machine dependent calls */
275 276 277 278
	if (ppc_md.system_reset_exception) {
		if (ppc_md.system_reset_exception(regs))
			return;
	}
279

P
Paul Mackerras 已提交
280
	die("System Reset", regs, SIGABRT);
281 282 283 284 285 286 287

	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable System Reset");

	/* What should we do here? We could issue a shutdown or hard reset. */
}
288 289 290 291 292 293 294 295

/*
 * This function is called in real mode. Strictly no printk's please.
 *
 * regs->nip and regs->msr contains srr0 and ssr1.
 */
long machine_check_early(struct pt_regs *regs)
{
296 297
	long handled = 0;

298
	__this_cpu_inc(irq_stat.mce_exceptions);
299

300 301
	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);

302 303 304
	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
		handled = cur_cpu_spec->machine_check_early(regs);
	return handled;
305 306
}

307 308
long hmi_exception_realmode(struct pt_regs *regs)
{
309
	__this_cpu_inc(irq_stat.hmi_exceptions);
310

311 312
	wait_for_subcore_guest_exit();

313 314 315
	if (ppc_md.hmi_exception_early)
		ppc_md.hmi_exception_early(regs);

316 317
	wait_for_tb_resync();

318 319 320
	return 0;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334
#endif

/*
 * I/O accesses can cause machine checks on powermacs.
 * Check if the NIP corresponds to the address of a sync
 * instruction for which there is an entry in the exception
 * table.
 * Note that the 601 only takes a machine check on TEA
 * (transfer error ack) signal assertion, and does not
 * set any of the top 16 bits of SRR1.
 *  -- paulus.
 */
static inline int check_io_access(struct pt_regs *regs)
{
335
#ifdef CONFIG_PPC32
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	unsigned long msr = regs->msr;
	const struct exception_table_entry *entry;
	unsigned int *nip = (unsigned int *)regs->nip;

	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
	    && (entry = search_exception_tables(regs->nip)) != NULL) {
		/*
		 * Check that it's a sync instruction, or somewhere
		 * in the twi; isync; nop sequence that inb/inw/inl uses.
		 * As the address is in the exception table
		 * we should be able to read the instr there.
		 * For the debug message, we look at the preceding
		 * load or store.
		 */
		if (*nip == 0x60000000)		/* nop */
			nip -= 2;
		else if (*nip == 0x4c00012c)	/* isync */
			--nip;
		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
			/* sync or twi */
			unsigned int rb;

			--nip;
			rb = (*nip >> 11) & 0x1f;
			printk(KERN_DEBUG "%s bad port %lx at %p\n",
			       (*nip & 0x100)? "OUT to": "IN from",
			       regs->gpr[rb] - _IO_BASE, nip);
			regs->msr |= MSR_RI;
			regs->nip = entry->fixup;
			return 1;
		}
	}
368
#endif /* CONFIG_PPC32 */
369 370 371
	return 0;
}

372
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
373 374 375 376 377 378
/* On 4xx, the reason for the machine check or program exception
   is in the ESR. */
#define get_reason(regs)	((regs)->dsisr)
#ifndef CONFIG_FSL_BOOKE
#define get_mc_reason(regs)	((regs)->dsisr)
#else
379
#define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
380 381 382 383 384 385 386
#endif
#define REASON_FP		ESR_FP
#define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
#define REASON_PRIVILEGED	ESR_PPR
#define REASON_TRAP		ESR_PTR

/* single-step stuff */
387 388
#define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
#define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
389 390 391 392 393 394

#else
/* On non-4xx, the reason for the machine check or program
   exception is in the MSR. */
#define get_reason(regs)	((regs)->msr)
#define get_mc_reason(regs)	((regs)->msr)
395
#define REASON_TM		0x200000
396 397 398 399 400 401 402 403 404
#define REASON_FP		0x100000
#define REASON_ILLEGAL		0x80000
#define REASON_PRIVILEGED	0x40000
#define REASON_TRAP		0x20000

#define single_stepping(regs)	((regs)->msr & MSR_SE)
#define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
#endif

405 406
#if defined(CONFIG_4xx)
int machine_check_4xx(struct pt_regs *regs)
407
{
408
	unsigned long reason = get_mc_reason(regs);
409 410 411 412 413 414 415

	if (reason & ESR_IMCP) {
		printk("Instruction");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	} else
		printk("Data");
	printk(" machine check in kernel mode.\n");
416 417 418 419 420 421 422 423

	return 0;
}

int machine_check_440A(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	printk("Machine check in kernel mode.\n");
	if (reason & ESR_IMCP){
		printk("Instruction Synchronous Machine Check exception\n");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	}
	else {
		u32 mcsr = mfspr(SPRN_MCSR);
		if (mcsr & MCSR_IB)
			printk("Instruction Read PLB Error\n");
		if (mcsr & MCSR_DRB)
			printk("Data Read PLB Error\n");
		if (mcsr & MCSR_DWB)
			printk("Data Write PLB Error\n");
		if (mcsr & MCSR_TLBP)
			printk("TLB Parity Error\n");
		if (mcsr & MCSR_ICP){
			flush_instruction_cache();
			printk("I-Cache Parity Error\n");
		}
		if (mcsr & MCSR_DCSP)
			printk("D-Cache Search Parity Error\n");
		if (mcsr & MCSR_DCFP)
			printk("D-Cache Flush Parity Error\n");
		if (mcsr & MCSR_IMPE)
			printk("Machine Check exception is imprecise\n");

		/* Clear MCSR */
		mtspr(SPRN_MCSR, mcsr);
	}
453 454
	return 0;
}
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

int machine_check_47x(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);
	u32 mcsr;

	printk(KERN_ERR "Machine check in kernel mode.\n");
	if (reason & ESR_IMCP) {
		printk(KERN_ERR
		       "Instruction Synchronous Machine Check exception\n");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
		return 0;
	}
	mcsr = mfspr(SPRN_MCSR);
	if (mcsr & MCSR_IB)
		printk(KERN_ERR "Instruction Read PLB Error\n");
	if (mcsr & MCSR_DRB)
		printk(KERN_ERR "Data Read PLB Error\n");
	if (mcsr & MCSR_DWB)
		printk(KERN_ERR "Data Write PLB Error\n");
	if (mcsr & MCSR_TLBP)
		printk(KERN_ERR "TLB Parity Error\n");
	if (mcsr & MCSR_ICP) {
		flush_instruction_cache();
		printk(KERN_ERR "I-Cache Parity Error\n");
	}
	if (mcsr & MCSR_DCSP)
		printk(KERN_ERR "D-Cache Search Parity Error\n");
	if (mcsr & PPC47x_MCSR_GPR)
		printk(KERN_ERR "GPR Parity Error\n");
	if (mcsr & PPC47x_MCSR_FPR)
		printk(KERN_ERR "FPR Parity Error\n");
	if (mcsr & PPC47x_MCSR_IPR)
		printk(KERN_ERR "Machine Check exception is imprecise\n");

	/* Clear MCSR */
	mtspr(SPRN_MCSR, mcsr);

	return 0;
}
495
#elif defined(CONFIG_E500)
496 497 498 499 500 501
int machine_check_e500mc(struct pt_regs *regs)
{
	unsigned long mcsr = mfspr(SPRN_MCSR);
	unsigned long reason = mcsr;
	int recoverable = 1;

502
	if (reason & MCSR_LD) {
503 504 505 506 507
		recoverable = fsl_rio_mcheck_exception(regs);
		if (recoverable == 1)
			goto silent_out;
	}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");

	if (reason & MCSR_ICPERR) {
		printk("Instruction Cache Parity Error\n");

		/*
		 * This is recoverable by invalidating the i-cache.
		 */
		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
			;

		/*
		 * This will generally be accompanied by an instruction
		 * fetch error report -- only treat MCSR_IF as fatal
		 * if it wasn't due to an L1 parity error.
		 */
		reason &= ~MCSR_IF;
	}

	if (reason & MCSR_DCPERR_MC) {
		printk("Data Cache Parity Error\n");
534 535 536 537 538 539 540 541

		/*
		 * In write shadow mode we auto-recover from the error, but it
		 * may still get logged and cause a machine check.  We should
		 * only treat the non-write shadow case as non-recoverable.
		 */
		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
			recoverable = 0;
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	}

	if (reason & MCSR_L2MMU_MHIT) {
		printk("Hit on multiple TLB entries\n");
		recoverable = 0;
	}

	if (reason & MCSR_NMI)
		printk("Non-maskable interrupt\n");

	if (reason & MCSR_IF) {
		printk("Instruction Fetch Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_LD) {
		printk("Load Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_ST) {
		printk("Store Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_LDG) {
		printk("Guarded Load Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_TLBSYNC)
		printk("Simultaneous tlbsync operations\n");

	if (reason & MCSR_BSL2_ERR) {
		printk("Level 2 Cache Error\n");
		recoverable = 0;
	}

	if (reason & MCSR_MAV) {
		u64 addr;

		addr = mfspr(SPRN_MCAR);
		addr |= (u64)mfspr(SPRN_MCARU) << 32;

		printk("Machine Check %s Address: %#llx\n",
		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
	}

590
silent_out:
591 592 593 594
	mtspr(SPRN_MCSR, mcsr);
	return mfspr(SPRN_MCSR) == 0 && recoverable;
}

595 596 597 598
int machine_check_e500(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

599 600 601
	if (reason & MCSR_BUS_RBERR) {
		if (fsl_rio_mcheck_exception(regs))
			return 1;
602 603
		if (fsl_pci_mcheck_exception(regs))
			return 1;
604 605
	}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_ICPERR)
		printk("Instruction Cache Parity Error\n");
	if (reason & MCSR_DCP_PERR)
		printk("Data Cache Push Parity Error\n");
	if (reason & MCSR_DCPERR)
		printk("Data Cache Parity Error\n");
	if (reason & MCSR_BUS_IAERR)
		printk("Bus - Instruction Address Error\n");
	if (reason & MCSR_BUS_RAERR)
		printk("Bus - Read Address Error\n");
	if (reason & MCSR_BUS_WAERR)
		printk("Bus - Write Address Error\n");
	if (reason & MCSR_BUS_IBERR)
		printk("Bus - Instruction Data Error\n");
	if (reason & MCSR_BUS_RBERR)
		printk("Bus - Read Data Bus Error\n");
	if (reason & MCSR_BUS_WBERR)
628
		printk("Bus - Write Data Bus Error\n");
629 630 631 632
	if (reason & MCSR_BUS_IPERR)
		printk("Bus - Instruction Parity Error\n");
	if (reason & MCSR_BUS_RPERR)
		printk("Bus - Read Parity Error\n");
633 634 635

	return 0;
}
636 637 638 639 640

int machine_check_generic(struct pt_regs *regs)
{
	return 0;
}
641 642 643 644 645
#elif defined(CONFIG_E200)
int machine_check_e200(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_CP_PERR)
		printk("Cache Push Parity Error\n");
	if (reason & MCSR_CPERR)
		printk("Cache Parity Error\n");
	if (reason & MCSR_EXCP_ERR)
		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
	if (reason & MCSR_BUS_IRERR)
		printk("Bus - Read Bus Error on instruction fetch\n");
	if (reason & MCSR_BUS_DRERR)
		printk("Bus - Read Bus Error on data load\n");
	if (reason & MCSR_BUS_WRERR)
		printk("Bus - Write Bus Error on buffered store or cache line push\n");
663 664 665 666 667 668 669 670

	return 0;
}
#else
int machine_check_generic(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from SRR1=%lx): ", reason);
	switch (reason & 0x601F0000) {
	case 0x80000:
		printk("Machine check signal\n");
		break;
	case 0:		/* for 601 */
	case 0x40000:
	case 0x140000:	/* 7450 MSS error and TEA */
		printk("Transfer error ack signal\n");
		break;
	case 0x20000:
		printk("Data parity error signal\n");
		break;
	case 0x10000:
		printk("Address parity error signal\n");
		break;
	case 0x20000000:
		printk("L1 Data Cache error\n");
		break;
	case 0x40000000:
		printk("L1 Instruction Cache error\n");
		break;
	case 0x00100000:
		printk("L2 data cache parity error\n");
		break;
	default:
		printk("Unknown values in msr\n");
	}
700 701
	return 0;
}
702
#endif /* everything else */
703 704 705

void machine_check_exception(struct pt_regs *regs)
{
706
	enum ctx_state prev_state = exception_enter();
707 708
	int recover = 0;

709
	__this_cpu_inc(irq_stat.mce_exceptions);
710

711 712 713 714 715 716
	/* See if any machine dependent calls. In theory, we would want
	 * to call the CPU first, and call the ppc_md. one if the CPU
	 * one returns a positive number. However there is existing code
	 * that assumes the board gets a first chance, so let's keep it
	 * that way for now and fix things later. --BenH.
	 */
717 718
	if (ppc_md.machine_check_exception)
		recover = ppc_md.machine_check_exception(regs);
719 720
	else if (cur_cpu_spec->machine_check)
		recover = cur_cpu_spec->machine_check(regs);
721

722
	if (recover > 0)
723
		goto bail;
724 725

#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
726 727 728 729 730 731
	/* the qspan pci read routines can cause machine checks -- Cort
	 *
	 * yuck !!! that totally needs to go away ! There are better ways
	 * to deal with that than having a wart in the mcheck handler.
	 * -- BenH
	 */
732
	bad_page_fault(regs, regs->dar, SIGBUS);
733
	goto bail;
734 735
#endif

736
	if (debugger_fault_handler(regs))
737
		goto bail;
738 739

	if (check_io_access(regs))
740
		goto bail;
741

P
Paul Mackerras 已提交
742
	die("Machine check", regs, SIGBUS);
743 744 745 746

	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable Machine check");
747 748 749

bail:
	exception_exit(prev_state);
750 751 752 753 754 755 756
}

void SMIException(struct pt_regs *regs)
{
	die("System Management Interrupt", regs, SIGABRT);
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770
void handle_hmi_exception(struct pt_regs *regs)
{
	struct pt_regs *old_regs;

	old_regs = set_irq_regs(regs);
	irq_enter();

	if (ppc_md.handle_hmi_exception)
		ppc_md.handle_hmi_exception(regs);

	irq_exit();
	set_irq_regs(old_regs);
}

771
void unknown_exception(struct pt_regs *regs)
772
{
773 774
	enum ctx_state prev_state = exception_enter();

775 776 777 778
	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
	       regs->nip, regs->msr, regs->trap);

	_exception(SIGTRAP, regs, 0, 0);
779 780

	exception_exit(prev_state);
781 782
}

783
void instruction_breakpoint_exception(struct pt_regs *regs)
784
{
785 786
	enum ctx_state prev_state = exception_enter();

787 788
	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
789
		goto bail;
790
	if (debugger_iabr_match(regs))
791
		goto bail;
792
	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
793 794 795

bail:
	exception_exit(prev_state);
796 797 798 799 800 801 802
}

void RunModeException(struct pt_regs *regs)
{
	_exception(SIGTRAP, regs, 0, 0);
}

P
Paul Mackerras 已提交
803
void __kprobes single_step_exception(struct pt_regs *regs)
804
{
805 806
	enum ctx_state prev_state = exception_enter();

807
	clear_single_step(regs);
808 809 810

	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
811
		goto bail;
812
	if (debugger_sstep(regs))
813
		goto bail;
814 815

	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
816 817 818

bail:
	exception_exit(prev_state);
819 820 821 822 823 824 825 826
}

/*
 * After we have successfully emulated an instruction, we have to
 * check if the instruction was being single-stepped, and if so,
 * pretend we got a single-step exception.  This was pointed out
 * by Kumar Gala.  -- paulus
 */
P
Paul Mackerras 已提交
827
static void emulate_single_step(struct pt_regs *regs)
828
{
829 830
	if (single_stepping(regs))
		single_step_exception(regs);
831 832
}

833
static inline int __parse_fpscr(unsigned long fpscr)
834
{
835
	int ret = 0;
836 837 838

	/* Invalid operation */
	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
839
		ret = FPE_FLTINV;
840 841 842

	/* Overflow */
	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
843
		ret = FPE_FLTOVF;
844 845 846

	/* Underflow */
	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
847
		ret = FPE_FLTUND;
848 849 850

	/* Divide by zero */
	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
851
		ret = FPE_FLTDIV;
852 853 854

	/* Inexact result */
	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
855 856 857 858 859 860 861 862 863 864 865
		ret = FPE_FLTRES;

	return ret;
}

static void parse_fpe(struct pt_regs *regs)
{
	int code = 0;

	flush_fp_to_thread(current);

866
	code = __parse_fpscr(current->thread.fp_state.fpscr);
867 868 869 870 871 872

	_exception(SIGFPE, regs, code, regs->nip);
}

/*
 * Illegal instruction emulation support.  Originally written to
873 874 875 876 877 878 879
 * provide the PVR to user applications using the mfspr rd, PVR.
 * Return non-zero if we can't emulate, or -EFAULT if the associated
 * memory access caused an access fault.  Return zero on success.
 *
 * There are a couple of ways to do this, either "decode" the instruction
 * or directly match lots of bits.  In this case, matching lots of
 * bits is faster and easier.
880
 *
881 882 883 884 885 886 887 888 889 890 891
 */
static int emulate_string_inst(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 NB_RB = (instword >> 11) & 0x1f;
	u32 num_bytes;
	unsigned long EA;
	int pos = 0;

	/* Early out if we are an invalid form of lswx */
892
	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
893 894 895 896 897
		if ((rT == rA) || (rT == NB_RB))
			return -EINVAL;

	EA = (rA == 0) ? 0 : regs->gpr[rA];

898 899 900
	switch (instword & PPC_INST_STRING_MASK) {
		case PPC_INST_LSWX:
		case PPC_INST_STSWX:
901 902 903
			EA += NB_RB;
			num_bytes = regs->xer & 0x7f;
			break;
904 905
		case PPC_INST_LSWI:
		case PPC_INST_STSWI:
906 907 908 909 910 911 912 913 914 915 916
			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
			break;
		default:
			return -EINVAL;
	}

	while (num_bytes != 0)
	{
		u8 val;
		u32 shift = 8 * (3 - (pos & 0x3));

917 918 919 920
		/* if process is 32-bit, clear upper 32 bits of EA */
		if ((regs->msr & MSR_64BIT) == 0)
			EA &= 0xFFFFFFFF;

921 922 923
		switch ((instword & PPC_INST_STRING_MASK)) {
			case PPC_INST_LSWX:
			case PPC_INST_LSWI:
924 925 926 927 928 929 930 931
				if (get_user(val, (u8 __user *)EA))
					return -EFAULT;
				/* first time updating this reg,
				 * zero it out */
				if (pos == 0)
					regs->gpr[rT] = 0;
				regs->gpr[rT] |= val << shift;
				break;
932 933
			case PPC_INST_STSWI:
			case PPC_INST_STSWX:
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
				val = regs->gpr[rT] >> shift;
				if (put_user(val, (u8 __user *)EA))
					return -EFAULT;
				break;
		}
		/* move EA to next address */
		EA += 1;
		num_bytes--;

		/* manage our position within the register */
		if (++pos == 4) {
			pos = 0;
			if (++rT == 32)
				rT = 0;
		}
	}

	return 0;
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
{
	u32 ra,rs;
	unsigned long tmp;

	ra = (instword >> 16) & 0x1f;
	rs = (instword >> 21) & 0x1f;

	tmp = regs->gpr[rs];
	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
	regs->gpr[ra] = tmp;

	return 0;
}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
static int emulate_isel(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 rB = (instword >> 11) & 0x1f;
	u8 BC = (instword >> 6) & 0x1f;
	u8 bit;
	unsigned long tmp;

	tmp = (rA == 0) ? 0 : regs->gpr[rA];
	bit = (regs->ccr >> (31 - BC)) & 0x1;

	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];

	return 0;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline bool tm_abort_check(struct pt_regs *regs, int cause)
{
        /* If we're emulating a load/store in an active transaction, we cannot
         * emulate it as the kernel operates in transaction suspended context.
         * We need to abort the transaction.  This creates a persistent TM
         * abort so tell the user what caused it with a new code.
	 */
	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
		tm_enable();
		tm_abort(cause);
		return true;
	}
	return false;
}
#else
static inline bool tm_abort_check(struct pt_regs *regs, int reason)
{
	return false;
}
#endif

1010 1011 1012 1013 1014
static int emulate_instruction(struct pt_regs *regs)
{
	u32 instword;
	u32 rd;

1015
	if (!user_mode(regs))
1016 1017 1018 1019 1020 1021 1022
		return -EINVAL;
	CHECK_FULL_REGS(regs);

	if (get_user(instword, (u32 __user *)(regs->nip)))
		return -EFAULT;

	/* Emulate the mfspr rD, PVR. */
1023
	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1024
		PPC_WARN_EMULATED(mfpvr, regs);
1025 1026 1027 1028 1029 1030
		rd = (instword >> 21) & 0x1f;
		regs->gpr[rd] = mfspr(SPRN_PVR);
		return 0;
	}

	/* Emulating the dcba insn is just a no-op.  */
1031
	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1032
		PPC_WARN_EMULATED(dcba, regs);
1033
		return 0;
1034
	}
1035 1036

	/* Emulate the mcrxr insn.  */
1037
	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1038
		int shift = (instword >> 21) & 0x1c;
1039 1040
		unsigned long msk = 0xf0000000UL >> shift;

1041
		PPC_WARN_EMULATED(mcrxr, regs);
1042 1043 1044 1045 1046 1047
		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
		regs->xer &= ~0xf0000000UL;
		return 0;
	}

	/* Emulate load/store string insn. */
1048
	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1049 1050 1051
		if (tm_abort_check(regs,
				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
			return -EINVAL;
1052
		PPC_WARN_EMULATED(string, regs);
1053
		return emulate_string_inst(regs, instword);
1054
	}
1055

1056
	/* Emulate the popcntb (Population Count Bytes) instruction. */
1057
	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1058
		PPC_WARN_EMULATED(popcntb, regs);
1059 1060 1061
		return emulate_popcntb_inst(regs, instword);
	}

1062
	/* Emulate isel (Integer Select) instruction */
1063
	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1064
		PPC_WARN_EMULATED(isel, regs);
1065 1066 1067
		return emulate_isel(regs, instword);
	}

1068 1069 1070 1071 1072 1073 1074
	/* Emulate sync instruction variants */
	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
		PPC_WARN_EMULATED(sync, regs);
		asm volatile("sync");
		return 0;
	}

1075 1076
#ifdef CONFIG_PPC64
	/* Emulate the mfspr rD, DSCR. */
1077 1078 1079 1080
	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
		PPC_INST_MFSPR_DSCR_USER) ||
	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
		PPC_INST_MFSPR_DSCR)) &&
1081 1082 1083 1084 1085 1086 1087
			cpu_has_feature(CPU_FTR_DSCR)) {
		PPC_WARN_EMULATED(mfdscr, regs);
		rd = (instword >> 21) & 0x1f;
		regs->gpr[rd] = mfspr(SPRN_DSCR);
		return 0;
	}
	/* Emulate the mtspr DSCR, rD. */
1088 1089 1090 1091
	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
		PPC_INST_MTSPR_DSCR_USER) ||
	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
		PPC_INST_MTSPR_DSCR)) &&
1092 1093 1094
			cpu_has_feature(CPU_FTR_DSCR)) {
		PPC_WARN_EMULATED(mtdscr, regs);
		rd = (instword >> 21) & 0x1f;
1095
		current->thread.dscr = regs->gpr[rd];
1096
		current->thread.dscr_inherit = 1;
1097
		mtspr(SPRN_DSCR, current->thread.dscr);
1098 1099 1100 1101
		return 0;
	}
#endif

1102 1103 1104
	return -EINVAL;
}

1105
int is_valid_bugaddr(unsigned long addr)
1106
{
1107
	return is_kernel_addr(addr);
1108 1109
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
#ifdef CONFIG_MATH_EMULATION
static int emulate_math(struct pt_regs *regs)
{
	int ret;
	extern int do_mathemu(struct pt_regs *regs);

	ret = do_mathemu(regs);
	if (ret >= 0)
		PPC_WARN_EMULATED(math, regs);

	switch (ret) {
	case 0:
		emulate_single_step(regs);
		return 0;
	case 1: {
			int code = 0;
1126
			code = __parse_fpscr(current->thread.fp_state.fpscr);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
			_exception(SIGFPE, regs, code, regs->nip);
			return 0;
		}
	case -EFAULT:
		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
		return 0;
	}

	return -1;
}
#else
static inline int emulate_math(struct pt_regs *regs) { return -1; }
#endif

P
Paul Mackerras 已提交
1141
void __kprobes program_check_exception(struct pt_regs *regs)
1142
{
1143
	enum ctx_state prev_state = exception_enter();
1144 1145
	unsigned int reason = get_reason(regs);

1146
	/* We can now get here via a FP Unavailable exception if the core
1147
	 * has no FPU, in that case the reason flags will be 0 */
1148

1149 1150 1151
	if (reason & REASON_FP) {
		/* IEEE FP exception */
		parse_fpe(regs);
1152
		goto bail;
P
Paul Mackerras 已提交
1153 1154
	}
	if (reason & REASON_TRAP) {
1155
		unsigned long bugaddr;
1156 1157 1158
		/* Debugger is first in line to stop recursive faults in
		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
		if (debugger_bpt(regs))
1159
			goto bail;
1160

1161
		/* trap exception */
1162 1163
		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
				== NOTIFY_STOP)
1164
			goto bail;
1165

1166 1167 1168 1169 1170 1171 1172
		bugaddr = regs->nip;
		/*
		 * Fixup bugaddr for BUG_ON() in real mode
		 */
		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
			bugaddr += PAGE_OFFSET;

1173
		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1174
		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1175
			regs->nip += 4;
1176
			goto bail;
1177
		}
P
Paul Mackerras 已提交
1178
		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1179
		goto bail;
P
Paul Mackerras 已提交
1180
	}
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (reason & REASON_TM) {
		/* This is a TM "Bad Thing Exception" program check.
		 * This occurs when:
		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
		 *    transition in TM states.
		 * -  A trechkpt is attempted when transactional.
		 * -  A treclaim is attempted when non transactional.
		 * -  A tend is illegally attempted.
		 * -  writing a TM SPR when transactional.
		 */
		if (!user_mode(regs) &&
		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
			regs->nip += 4;
1195
			goto bail;
1196 1197 1198 1199 1200 1201 1202 1203 1204
		}
		/* If usermode caused this, it's done something illegal and
		 * gets a SIGILL slap on the wrist.  We call it an illegal
		 * operand to distinguish from the instruction just being bad
		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
		 * illegal /placement/ of a valid instruction.
		 */
		if (user_mode(regs)) {
			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1205
			goto bail;
1206 1207 1208 1209 1210 1211 1212
		} else {
			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
			       "at %lx (msr 0x%x)\n", regs->nip, reason);
			die("Unrecoverable exception", regs, SIGABRT);
		}
	}
#endif
P
Paul Mackerras 已提交
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	/*
	 * If we took the program check in the kernel skip down to sending a
	 * SIGILL. The subsequent cases all relate to emulating instructions
	 * which we should only do for userspace. We also do not want to enable
	 * interrupts for kernel faults because that might lead to further
	 * faults, and loose the context of the original exception.
	 */
	if (!user_mode(regs))
		goto sigill;

1224 1225 1226
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();
1227

1228 1229 1230 1231 1232 1233
	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
	 * but there seems to be a hardware bug on the 405GP (RevD)
	 * that means ESR is sometimes set incorrectly - either to
	 * ESR_DST (!?) or 0.  In the process of chasing this with the
	 * hardware people - not sure if it can happen on any illegal
	 * instruction or only on FP instructions, whether there is a
1234 1235
	 * pattern to occurrences etc. -dgibson 31/Mar/2003
	 */
1236
	if (!emulate_math(regs))
1237
		goto bail;
1238

P
Paul Mackerras 已提交
1239 1240
	/* Try to emulate it if we should. */
	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1241 1242 1243 1244
		switch (emulate_instruction(regs)) {
		case 0:
			regs->nip += 4;
			emulate_single_step(regs);
1245
			goto bail;
1246 1247
		case -EFAULT:
			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1248
			goto bail;
1249 1250
		}
	}
P
Paul Mackerras 已提交
1251

1252
sigill:
P
Paul Mackerras 已提交
1253 1254 1255 1256
	if (reason & REASON_PRIVILEGED)
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	else
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1257 1258 1259

bail:
	exception_exit(prev_state);
1260 1261
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/*
 * This occurs when running in hypervisor mode on POWER6 or later
 * and an illegal instruction is encountered.
 */
void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
{
	regs->msr |= REASON_ILLEGAL;
	program_check_exception(regs);
}

1272
void alignment_exception(struct pt_regs *regs)
1273
{
1274
	enum ctx_state prev_state = exception_enter();
1275
	int sig, code, fixed = 0;
1276

1277 1278 1279 1280
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

1281 1282 1283
	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
		goto bail;

1284 1285 1286
	/* we don't implement logging of alignment exceptions */
	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
		fixed = fix_alignment(regs);
1287 1288 1289 1290

	if (fixed == 1) {
		regs->nip += 4;	/* skip over emulated instruction */
		emulate_single_step(regs);
1291
		goto bail;
1292 1293
	}

1294
	/* Operand address was bad */
1295
	if (fixed == -EFAULT) {
1296 1297 1298 1299 1300
		sig = SIGSEGV;
		code = SEGV_ACCERR;
	} else {
		sig = SIGBUS;
		code = BUS_ADRALN;
1301
	}
1302 1303 1304 1305
	if (user_mode(regs))
		_exception(sig, regs, code, regs->dar);
	else
		bad_page_fault(regs, regs->dar, sig);
1306 1307 1308

bail:
	exception_exit(prev_state);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
}

void StackOverflow(struct pt_regs *regs)
{
	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
	       current, regs->gpr[1]);
	debugger(regs);
	show_regs(regs);
	panic("kernel stack overflow");
}

void nonrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
	       regs->nip, regs->msr);
	debugger(regs);
	die("nonrecoverable exception", regs, SIGKILL);
}

1328 1329
void kernel_fp_unavailable_exception(struct pt_regs *regs)
{
1330 1331
	enum ctx_state prev_state = exception_enter();

1332 1333 1334
	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
			  "%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1335 1336

	exception_exit(prev_state);
1337 1338 1339 1340
}

void altivec_unavailable_exception(struct pt_regs *regs)
{
1341 1342
	enum ctx_state prev_state = exception_enter();

1343 1344 1345 1346
	if (user_mode(regs)) {
		/* A user program has executed an altivec instruction,
		   but this kernel doesn't support altivec. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1347
		goto bail;
1348
	}
1349

1350 1351 1352
	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1353 1354 1355

bail:
	exception_exit(prev_state);
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
void vsx_unavailable_exception(struct pt_regs *regs)
{
	if (user_mode(regs)) {
		/* A user program has executed an vsx instruction,
		   but this kernel doesn't support vsx. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
}

1372
#ifdef CONFIG_PPC64
1373
void facility_unavailable_exception(struct pt_regs *regs)
1374
{
1375
	static char *facility_strings[] = {
1376 1377 1378 1379 1380 1381 1382 1383
		[FSCR_FP_LG] = "FPU",
		[FSCR_VECVSX_LG] = "VMX/VSX",
		[FSCR_DSCR_LG] = "DSCR",
		[FSCR_PM_LG] = "PMU SPRs",
		[FSCR_BHRB_LG] = "BHRB",
		[FSCR_TM_LG] = "TM",
		[FSCR_EBB_LG] = "EBB",
		[FSCR_TAR_LG] = "TAR",
1384
	};
1385
	char *facility = "unknown";
1386
	u64 value;
1387
	u32 instword, rd;
1388 1389
	u8 status;
	bool hv;
1390

1391 1392
	hv = (regs->trap == 0xf80);
	if (hv)
1393
		value = mfspr(SPRN_HFSCR);
1394 1395 1396 1397 1398
	else
		value = mfspr(SPRN_FSCR);

	status = value >> 56;
	if (status == FSCR_DSCR_LG) {
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		/*
		 * User is accessing the DSCR register using the problem
		 * state only SPR number (0x03) either through a mfspr or
		 * a mtspr instruction. If it is a write attempt through
		 * a mtspr, then we set the inherit bit. This also allows
		 * the user to write or read the register directly in the
		 * future by setting via the FSCR DSCR bit. But in case it
		 * is a read DSCR attempt through a mfspr instruction, we
		 * just emulate the instruction instead. This code path will
		 * always emulate all the mfspr instructions till the user
1409
		 * has attempted at least one mtspr instruction. This way it
1410 1411 1412 1413
		 * preserves the same behaviour when the user is accessing
		 * the DSCR through privilege level only SPR number (0x11)
		 * which is emulated through illegal instruction exception.
		 * We always leave HFSCR DSCR set.
1414
		 */
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		if (get_user(instword, (u32 __user *)(regs->nip))) {
			pr_err("Failed to fetch the user instruction\n");
			return;
		}

		/* Write into DSCR (mtspr 0x03, RS) */
		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
				== PPC_INST_MTSPR_DSCR_USER) {
			rd = (instword >> 21) & 0x1f;
			current->thread.dscr = regs->gpr[rd];
			current->thread.dscr_inherit = 1;
			mtspr(SPRN_FSCR, value | FSCR_DSCR);
		}

		/* Read from DSCR (mfspr RT, 0x03) */
		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
				== PPC_INST_MFSPR_DSCR_USER) {
			if (emulate_instruction(regs)) {
				pr_err("DSCR based mfspr emulation failed\n");
				return;
			}
			regs->nip += 4;
			emulate_single_step(regs);
		}
1439
		return;
1440 1441
	}

1442 1443 1444
	if ((status < ARRAY_SIZE(facility_strings)) &&
	    facility_strings[status])
		facility = facility_strings[status];
1445

1446 1447 1448 1449
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

1450 1451 1452
	pr_err_ratelimited(
		"%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
		hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1453 1454 1455 1456 1457 1458

	if (user_mode(regs)) {
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

1459
	die("Unexpected facility unavailable exception", regs, SIGABRT);
1460
}
1461
#endif
1462

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM

void fp_unavailable_tm(struct pt_regs *regs)
{
	/* Note:  This does not handle any kind of FP laziness. */

	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
		 regs->nip, regs->msr);

        /* We can only have got here if the task started using FP after
         * beginning the transaction.  So, the transactional regs are just a
         * copy of the checkpointed ones.  But, we still need to recheckpoint
         * as we're enabling FP for the process; it will return, abort the
         * transaction, and probably retry but now with FP enabled.  So the
         * checkpointed FP registers need to be loaded.
	 */
1479
	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1480 1481 1482 1483 1484 1485 1486 1487
	/* Reclaim didn't save out any FPRs to transact_fprs. */

	/* Enable FP for the task: */
	regs->msr |= (MSR_FP | current->thread.fpexc_mode);

	/* This loads and recheckpoints the FP registers from
	 * thread.fpr[].  They will remain in registers after the
	 * checkpoint so we don't need to reload them after.
1488 1489
	 * If VMX is in use, the VRs now hold checkpointed values,
	 * so we don't want to load the VRs from the thread_struct.
1490
	 */
1491 1492 1493 1494 1495 1496 1497 1498
	tm_recheckpoint(&current->thread, MSR_FP);

	/* If VMX is in use, get the transactional values back */
	if (regs->msr & MSR_VEC) {
		do_load_up_transact_altivec(&current->thread);
		/* At this point all the VSX state is loaded, so enable it */
		regs->msr |= MSR_VSX;
	}
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
}

void altivec_unavailable_tm(struct pt_regs *regs)
{
	/* See the comments in fp_unavailable_tm().  This function operates
	 * the same way.
	 */

	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
		 "MSR=%lx\n",
		 regs->nip, regs->msr);
1510
	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1511
	regs->msr |= MSR_VEC;
1512
	tm_recheckpoint(&current->thread, MSR_VEC);
1513
	current->thread.used_vr = 1;
1514 1515 1516 1517 1518

	if (regs->msr & MSR_FP) {
		do_load_up_transact_fpu(&current->thread);
		regs->msr |= MSR_VSX;
	}
1519 1520 1521 1522
}

void vsx_unavailable_tm(struct pt_regs *regs)
{
1523 1524
	unsigned long orig_msr = regs->msr;

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	/* See the comments in fp_unavailable_tm().  This works similarly,
	 * though we're loading both FP and VEC registers in here.
	 *
	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
	 * regs.  Either way, set MSR_VSX.
	 */

	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
		 "MSR=%lx\n",
		 regs->nip, regs->msr);

1536 1537 1538 1539 1540 1541 1542 1543
	current->thread.used_vsr = 1;

	/* If FP and VMX are already loaded, we have all the state we need */
	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
		regs->msr |= MSR_VSX;
		return;
	}

1544
	/* This reclaims FP and/or VR regs if they're already enabled */
1545
	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1546 1547 1548

	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
		MSR_VSX;
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558

	/* This loads & recheckpoints FP and VRs; but we have
	 * to be sure not to overwrite previously-valid state.
	 */
	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);

	if (orig_msr & MSR_FP)
		do_load_up_transact_fpu(&current->thread);
	if (orig_msr & MSR_VEC)
		do_load_up_transact_altivec(&current->thread);
1559 1560 1561
}
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

1562 1563
void performance_monitor_exception(struct pt_regs *regs)
{
1564
	__this_cpu_inc(irq_stat.pmu_irqs);
1565

1566 1567 1568
	perf_irq(regs);
}

P
Paul Mackerras 已提交
1569
#ifdef CONFIG_8xx
1570 1571 1572 1573 1574 1575
void SoftwareEmulation(struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);

	if (!user_mode(regs)) {
		debugger(regs);
1576 1577
		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
			regs, SIGFPE);
1578 1579
	}

1580
	if (!emulate_math(regs))
1581
		return;
1582

1583
	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1584
}
P
Paul Mackerras 已提交
1585
#endif /* CONFIG_8xx */
1586

1587
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
{
	int changed = 0;
	/*
	 * Determine the cause of the debug event, clear the
	 * event flags and send a trap to the handler. Torez
	 */
	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1598
		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
#endif
		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
			     5);
		changed |= 0x01;
	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
			     6);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC1) {
1609
		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1610 1611 1612 1613 1614
		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
			     1);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC2) {
1615
		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1616 1617 1618 1619
		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
			     2);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC3) {
1620
		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1621 1622 1623 1624 1625
		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
			     3);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC4) {
1626
		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1627 1628 1629 1630 1631 1632 1633 1634 1635
		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
			     4);
		changed |= 0x01;
	}
	/*
	 * At the point this routine was called, the MSR(DE) was turned off.
	 * Check all other debug flags and see if that bit needs to be turned
	 * back on or not.
	 */
1636
	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1637
			       current->thread.debug.dbcr1))
1638 1639 1640
		regs->msr |= MSR_DE;
	else
		/* Make sure the IDM flag is off */
1641
		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1642 1643

	if (changed & 0x01)
1644
		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1645
}
1646

1647
void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1648
{
1649
	current->thread.debug.dbsr = debug_status;
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
	 * on server, it stops on the target of the branch. In order to simulate
	 * the server behaviour, we thus restart right away with a single step
	 * instead of stopping here when hitting a BT
	 */
	if (debug_status & DBSR_BT) {
		regs->msr &= ~MSR_DE;

		/* Disable BT */
		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
		/* Clear the BT event */
		mtspr(SPRN_DBSR, DBSR_BT);

		/* Do the single step trick only when coming from userspace */
		if (user_mode(regs)) {
1666 1667
			current->thread.debug.dbcr0 &= ~DBCR0_BT;
			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
			regs->msr |= MSR_DE;
			return;
		}

		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
			       5, SIGTRAP) == NOTIFY_STOP) {
			return;
		}
		if (debugger_sstep(regs))
			return;
	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1679
		regs->msr &= ~MSR_DE;
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

		/* Disable instruction completion */
		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
		/* Clear the instruction completion event */
		mtspr(SPRN_DBSR, DBSR_IC);

		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
			       5, SIGTRAP) == NOTIFY_STOP) {
			return;
		}

		if (debugger_sstep(regs))
			return;

1694
		if (user_mode(regs)) {
1695 1696 1697
			current->thread.debug.dbcr0 &= ~DBCR0_IC;
			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
					       current->thread.debug.dbcr1))
1698 1699 1700
				regs->msr |= MSR_DE;
			else
				/* Make sure the IDM bit is off */
1701
				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1702
		}
1703 1704 1705 1706

		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
	} else
		handle_debug(regs, debug_status);
1707
}
1708
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

#if !defined(CONFIG_TAU_INT)
void TAUException(struct pt_regs *regs)
{
	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
	       regs->nip, regs->msr, regs->trap, print_tainted());
}
#endif /* CONFIG_INT_TAU */

#ifdef CONFIG_ALTIVEC
1719
void altivec_assist_exception(struct pt_regs *regs)
1720 1721 1722 1723 1724 1725
{
	int err;

	if (!user_mode(regs)) {
		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
		       " at %lx\n", regs->nip);
P
Paul Mackerras 已提交
1726
		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1727 1728
	}

1729 1730
	flush_altivec_to_thread(current);

1731
	PPC_WARN_EMULATED(altivec, regs);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	err = emulate_altivec(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else {
		/* didn't recognize the instruction */
		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1745 1746
		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
				   "in %s at %lx\n", current->comm, regs->nip);
1747
		current->thread.vr_state.vscr.u[3] |= 0x10000;
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	}
}
#endif /* CONFIG_ALTIVEC */

#ifdef CONFIG_FSL_BOOKE
void CacheLockingException(struct pt_regs *regs, unsigned long address,
			   unsigned long error_code)
{
	/* We treat cache locking instructions from the user
	 * as priv ops, in the future we could try to do
	 * something smarter
	 */
	if (error_code & (ESR_DLK|ESR_ILK))
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	return;
}
#endif /* CONFIG_FSL_BOOKE */

#ifdef CONFIG_SPE
void SPEFloatingPointException(struct pt_regs *regs)
{
1769
	extern int do_spe_mathemu(struct pt_regs *regs);
1770 1771 1772
	unsigned long spefscr;
	int fpexc_mode;
	int code = 0;
1773 1774
	int err;

1775
	flush_spe_to_thread(current);
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

	spefscr = current->thread.spefscr;
	fpexc_mode = current->thread.fpexc_mode;

	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
		code = FPE_FLTOVF;
	}
	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
		code = FPE_FLTUND;
	}
	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
		code = FPE_FLTDIV;
	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
		code = FPE_FLTINV;
	}
	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
		code = FPE_FLTRES;

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	err = do_spe_mathemu(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, code, regs->nip);
	}
1811 1812 1813

	return;
}
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

void SPEFloatingPointRoundException(struct pt_regs *regs)
{
	extern int speround_handler(struct pt_regs *regs);
	int err;

	preempt_disable();
	if (regs->msr & MSR_SPE)
		giveup_spe(current);
	preempt_enable();

	regs->nip -= 4;
	err = speround_handler(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, 0, regs->nip);
		return;
	}
}
1845 1846
#endif

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
/*
 * We enter here if we get an unrecoverable exception, that is, one
 * that happened at a point where the RI (recoverable interrupt) bit
 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
 * we therefore lost state by taking this exception.
 */
void unrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
	       regs->trap, regs->nip);
	die("Unrecoverable exception", regs, SIGABRT);
}

1860
#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
/*
 * Default handler for a Watchdog exception,
 * spins until a reboot occurs
 */
void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
{
	/* Generic WatchdogHandler, implement your own */
	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
	return;
}

void WatchdogException(struct pt_regs *regs)
{
	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
	WatchdogHandler(regs);
}
#endif
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

/*
 * We enter here if we discover during exception entry that we are
 * running in supervisor mode with a userspace value in the stack pointer.
 */
void kernel_bad_stack(struct pt_regs *regs)
{
	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
	       regs->gpr[1], regs->nip);
	die("Bad kernel stack pointer", regs, SIGABRT);
}
1889 1890 1891 1892

void __init trap_init(void)
{
}
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912


#ifdef CONFIG_PPC_EMULATED_STATS

#define WARN_EMULATED_SETUP(type)	.type = { .name = #type }

struct ppc_emulated ppc_emulated = {
#ifdef CONFIG_ALTIVEC
	WARN_EMULATED_SETUP(altivec),
#endif
	WARN_EMULATED_SETUP(dcba),
	WARN_EMULATED_SETUP(dcbz),
	WARN_EMULATED_SETUP(fp_pair),
	WARN_EMULATED_SETUP(isel),
	WARN_EMULATED_SETUP(mcrxr),
	WARN_EMULATED_SETUP(mfpvr),
	WARN_EMULATED_SETUP(multiple),
	WARN_EMULATED_SETUP(popcntb),
	WARN_EMULATED_SETUP(spe),
	WARN_EMULATED_SETUP(string),
1913
	WARN_EMULATED_SETUP(sync),
1914 1915 1916 1917 1918 1919 1920
	WARN_EMULATED_SETUP(unaligned),
#ifdef CONFIG_MATH_EMULATION
	WARN_EMULATED_SETUP(math),
#endif
#ifdef CONFIG_VSX
	WARN_EMULATED_SETUP(vsx),
#endif
1921 1922 1923
#ifdef CONFIG_PPC64
	WARN_EMULATED_SETUP(mfdscr),
	WARN_EMULATED_SETUP(mtdscr),
A
Anton Blanchard 已提交
1924
	WARN_EMULATED_SETUP(lq_stq),
1925
#endif
1926 1927 1928 1929 1930 1931
};

u32 ppc_warn_emulated;

void ppc_warn_emulated_print(const char *type)
{
1932 1933
	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
			    type);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
}

static int __init ppc_warn_emulated_init(void)
{
	struct dentry *dir, *d;
	unsigned int i;
	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;

	if (!powerpc_debugfs_root)
		return -ENODEV;

	dir = debugfs_create_dir("emulated_instructions",
				 powerpc_debugfs_root);
	if (!dir)
		return -ENOMEM;

	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
			       &ppc_warn_emulated);
	if (!d)
		goto fail;

	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
				       (u32 *)&entries[i].val.counter);
		if (!d)
			goto fail;
	}

	return 0;

fail:
	debugfs_remove_recursive(dir);
	return -ENOMEM;
}

device_initcall(ppc_warn_emulated_init);

#endif /* CONFIG_PPC_EMULATED_STATS */