traps.c 46.8 KB
Newer Older
1 2
/*
 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3
 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 *  Modified by Cort Dougan (cort@cs.nmt.edu)
 *  and Paul Mackerras (paulus@samba.org)
 */

/*
 * This file handles the architecture-dependent parts of hardware exceptions
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
P
Paul Mackerras 已提交
24
#include <linux/ptrace.h>
25 26 27 28
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/module.h>
P
Paul Mackerras 已提交
29
#include <linux/prctl.h>
30 31
#include <linux/delay.h>
#include <linux/kprobes.h>
32
#include <linux/kexec.h>
33
#include <linux/backlight.h>
34
#include <linux/bug.h>
35
#include <linux/kdebug.h>
36
#include <linux/debugfs.h>
37
#include <linux/ratelimit.h>
38
#include <linux/context_tracking.h>
39

40
#include <asm/emulated_ops.h>
41 42 43
#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
44 45
#include <asm/machdep.h>
#include <asm/rtas.h>
46
#include <asm/pmc.h>
47
#ifdef CONFIG_PPC32
48
#include <asm/reg.h>
49
#endif
50 51 52
#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif
53
#ifdef CONFIG_PPC64
54
#include <asm/firmware.h>
55
#include <asm/processor.h>
56
#include <asm/tm.h>
57
#endif
58
#include <asm/kexec.h>
59
#include <asm/ppc-opcode.h>
60
#include <asm/rio.h>
61
#include <asm/fadump.h>
62
#include <asm/switch_to.h>
63
#include <asm/tm.h>
64
#include <asm/debug.h>
65
#include <sysdev/fsl_pci.h>
66

67
#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
68 69 70 71 72
int (*__debugger)(struct pt_regs *regs) __read_mostly;
int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
73
int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
74
int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
75 76 77 78 79 80

EXPORT_SYMBOL(__debugger);
EXPORT_SYMBOL(__debugger_ipi);
EXPORT_SYMBOL(__debugger_bpt);
EXPORT_SYMBOL(__debugger_sstep);
EXPORT_SYMBOL(__debugger_iabr_match);
81
EXPORT_SYMBOL(__debugger_break_match);
82 83 84
EXPORT_SYMBOL(__debugger_fault_handler);
#endif

85 86 87 88 89 90 91
/* Transactional Memory trap debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

92 93 94 95
/*
 * Trap & Exception support
 */

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
#ifdef CONFIG_PMAC_BACKLIGHT
static void pmac_backlight_unblank(void)
{
	mutex_lock(&pmac_backlight_mutex);
	if (pmac_backlight) {
		struct backlight_properties *props;

		props = &pmac_backlight->props;
		props->brightness = props->max_brightness;
		props->power = FB_BLANK_UNBLANK;
		backlight_update_status(pmac_backlight);
	}
	mutex_unlock(&pmac_backlight_mutex);
}
#else
static inline void pmac_backlight_unblank(void) { }
#endif

A
Anton Blanchard 已提交
114 115 116 117 118 119
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static int die_owner = -1;
static unsigned int die_nest_count;
static int die_counter;

static unsigned __kprobes long oops_begin(struct pt_regs *regs)
120
{
A
Anton Blanchard 已提交
121
	int cpu;
122
	unsigned long flags;
123 124 125 126

	if (debugger(regs))
		return 1;

127 128
	oops_enter();

A
Anton Blanchard 已提交
129 130 131 132 133 134 135 136
	/* racy, but better than risking deadlock. */
	raw_local_irq_save(flags);
	cpu = smp_processor_id();
	if (!arch_spin_trylock(&die_lock)) {
		if (cpu == die_owner)
			/* nested oops. should stop eventually */;
		else
			arch_spin_lock(&die_lock);
137
	}
A
Anton Blanchard 已提交
138 139 140 141 142 143 144 145
	die_nest_count++;
	die_owner = cpu;
	console_verbose();
	bust_spinlocks(1);
	if (machine_is(powermac))
		pmac_backlight_unblank();
	return flags;
}
146

A
Anton Blanchard 已提交
147 148 149
static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
			       int signr)
{
150
	bust_spinlocks(0);
A
Anton Blanchard 已提交
151
	die_owner = -1;
152
	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
A
Anton Blanchard 已提交
153
	die_nest_count--;
154 155
	oops_exit();
	printk("\n");
A
Anton Blanchard 已提交
156 157 158 159
	if (!die_nest_count)
		/* Nest count reaches zero, release the lock. */
		arch_spin_unlock(&die_lock);
	raw_local_irq_restore(flags);
160

161 162
	crash_fadump(regs, "die oops");

163 164 165 166 167
	/*
	 * A system reset (0x100) is a request to dump, so we always send
	 * it through the crashdump code.
	 */
	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
168
		crash_kexec(regs);
169 170 171 172 173 174 175 176

		/*
		 * We aren't the primary crash CPU. We need to send it
		 * to a holding pattern to avoid it ending up in the panic
		 * code.
		 */
		crash_kexec_secondary(regs);
	}
177

A
Anton Blanchard 已提交
178 179 180
	if (!signr)
		return;

181 182 183 184 185 186 187 188 189 190 191
	/*
	 * While our oops output is serialised by a spinlock, output
	 * from panic() called below can race and corrupt it. If we
	 * know we are going to panic, delay for 1 second so we have a
	 * chance to get clean backtraces from all CPUs that are oopsing.
	 */
	if (in_interrupt() || panic_on_oops || !current->pid ||
	    is_global_init(current)) {
		mdelay(MSEC_PER_SEC);
	}

192 193
	if (in_interrupt())
		panic("Fatal exception in interrupt");
H
Horms 已提交
194
	if (panic_on_oops)
195
		panic("Fatal exception");
A
Anton Blanchard 已提交
196 197
	do_exit(signr);
}
H
Horms 已提交
198

A
Anton Blanchard 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
{
	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
#ifdef CONFIG_PREEMPT
	printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
	printk("SMP NR_CPUS=%d ", NR_CPUS);
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
	printk("DEBUG_PAGEALLOC ");
#endif
#ifdef CONFIG_NUMA
	printk("NUMA ");
#endif
	printk("%s\n", ppc_md.name ? ppc_md.name : "");

	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
		return 1;

	print_modules();
	show_regs(regs);
221 222 223 224

	return 0;
}

A
Anton Blanchard 已提交
225 226 227 228 229 230 231 232 233
void die(const char *str, struct pt_regs *regs, long err)
{
	unsigned long flags = oops_begin(regs);

	if (__die(str, regs, err))
		err = 0;
	oops_end(flags, regs, err);
}

234 235 236 237 238 239 240 241 242
void user_single_step_siginfo(struct task_struct *tsk,
				struct pt_regs *regs, siginfo_t *info)
{
	memset(info, 0, sizeof(*info));
	info->si_signo = SIGTRAP;
	info->si_code = TRAP_TRACE;
	info->si_addr = (void __user *)regs->nip;
}

243 244 245
void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
{
	siginfo_t info;
246 247 248 249
	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %08lx nip %08lx lr %08lx code %x\n";
	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %016lx nip %016lx lr %016lx code %x\n";
250 251

	if (!user_mode(regs)) {
A
Anton Blanchard 已提交
252 253 254 255 256
		die("Exception in kernel mode", regs, signr);
		return;
	}

	if (show_unhandled_signals && unhandled_signal(current, signr)) {
257 258 259 260
		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
				   current->comm, current->pid, signr,
				   addr, regs->nip, regs->link, code);
	}
261

262
	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
263 264
		local_irq_enable();

265
	current->thread.trap_nr = code;
266 267 268 269 270 271 272 273 274 275 276
	memset(&info, 0, sizeof(info));
	info.si_signo = signr;
	info.si_code = code;
	info.si_addr = (void __user *) addr;
	force_sig_info(signr, &info, current);
}

#ifdef CONFIG_PPC64
void system_reset_exception(struct pt_regs *regs)
{
	/* See if any machine dependent calls */
277 278 279 280
	if (ppc_md.system_reset_exception) {
		if (ppc_md.system_reset_exception(regs))
			return;
	}
281

P
Paul Mackerras 已提交
282
	die("System Reset", regs, SIGABRT);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable System Reset");

	/* What should we do here? We could issue a shutdown or hard reset. */
}
#endif

/*
 * I/O accesses can cause machine checks on powermacs.
 * Check if the NIP corresponds to the address of a sync
 * instruction for which there is an entry in the exception
 * table.
 * Note that the 601 only takes a machine check on TEA
 * (transfer error ack) signal assertion, and does not
 * set any of the top 16 bits of SRR1.
 *  -- paulus.
 */
static inline int check_io_access(struct pt_regs *regs)
{
304
#ifdef CONFIG_PPC32
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	unsigned long msr = regs->msr;
	const struct exception_table_entry *entry;
	unsigned int *nip = (unsigned int *)regs->nip;

	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
	    && (entry = search_exception_tables(regs->nip)) != NULL) {
		/*
		 * Check that it's a sync instruction, or somewhere
		 * in the twi; isync; nop sequence that inb/inw/inl uses.
		 * As the address is in the exception table
		 * we should be able to read the instr there.
		 * For the debug message, we look at the preceding
		 * load or store.
		 */
		if (*nip == 0x60000000)		/* nop */
			nip -= 2;
		else if (*nip == 0x4c00012c)	/* isync */
			--nip;
		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
			/* sync or twi */
			unsigned int rb;

			--nip;
			rb = (*nip >> 11) & 0x1f;
			printk(KERN_DEBUG "%s bad port %lx at %p\n",
			       (*nip & 0x100)? "OUT to": "IN from",
			       regs->gpr[rb] - _IO_BASE, nip);
			regs->msr |= MSR_RI;
			regs->nip = entry->fixup;
			return 1;
		}
	}
337
#endif /* CONFIG_PPC32 */
338 339 340
	return 0;
}

341
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
342 343 344 345 346 347
/* On 4xx, the reason for the machine check or program exception
   is in the ESR. */
#define get_reason(regs)	((regs)->dsisr)
#ifndef CONFIG_FSL_BOOKE
#define get_mc_reason(regs)	((regs)->dsisr)
#else
348
#define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
#endif
#define REASON_FP		ESR_FP
#define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
#define REASON_PRIVILEGED	ESR_PPR
#define REASON_TRAP		ESR_PTR

/* single-step stuff */
#define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
#define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)

#else
/* On non-4xx, the reason for the machine check or program
   exception is in the MSR. */
#define get_reason(regs)	((regs)->msr)
#define get_mc_reason(regs)	((regs)->msr)
364
#define REASON_TM		0x200000
365 366 367 368 369 370 371 372 373
#define REASON_FP		0x100000
#define REASON_ILLEGAL		0x80000
#define REASON_PRIVILEGED	0x40000
#define REASON_TRAP		0x20000

#define single_stepping(regs)	((regs)->msr & MSR_SE)
#define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
#endif

374 375
#if defined(CONFIG_4xx)
int machine_check_4xx(struct pt_regs *regs)
376
{
377
	unsigned long reason = get_mc_reason(regs);
378 379 380 381 382 383 384

	if (reason & ESR_IMCP) {
		printk("Instruction");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	} else
		printk("Data");
	printk(" machine check in kernel mode.\n");
385 386 387 388 389 390 391 392

	return 0;
}

int machine_check_440A(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	printk("Machine check in kernel mode.\n");
	if (reason & ESR_IMCP){
		printk("Instruction Synchronous Machine Check exception\n");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	}
	else {
		u32 mcsr = mfspr(SPRN_MCSR);
		if (mcsr & MCSR_IB)
			printk("Instruction Read PLB Error\n");
		if (mcsr & MCSR_DRB)
			printk("Data Read PLB Error\n");
		if (mcsr & MCSR_DWB)
			printk("Data Write PLB Error\n");
		if (mcsr & MCSR_TLBP)
			printk("TLB Parity Error\n");
		if (mcsr & MCSR_ICP){
			flush_instruction_cache();
			printk("I-Cache Parity Error\n");
		}
		if (mcsr & MCSR_DCSP)
			printk("D-Cache Search Parity Error\n");
		if (mcsr & MCSR_DCFP)
			printk("D-Cache Flush Parity Error\n");
		if (mcsr & MCSR_IMPE)
			printk("Machine Check exception is imprecise\n");

		/* Clear MCSR */
		mtspr(SPRN_MCSR, mcsr);
	}
422 423
	return 0;
}
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

int machine_check_47x(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);
	u32 mcsr;

	printk(KERN_ERR "Machine check in kernel mode.\n");
	if (reason & ESR_IMCP) {
		printk(KERN_ERR
		       "Instruction Synchronous Machine Check exception\n");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
		return 0;
	}
	mcsr = mfspr(SPRN_MCSR);
	if (mcsr & MCSR_IB)
		printk(KERN_ERR "Instruction Read PLB Error\n");
	if (mcsr & MCSR_DRB)
		printk(KERN_ERR "Data Read PLB Error\n");
	if (mcsr & MCSR_DWB)
		printk(KERN_ERR "Data Write PLB Error\n");
	if (mcsr & MCSR_TLBP)
		printk(KERN_ERR "TLB Parity Error\n");
	if (mcsr & MCSR_ICP) {
		flush_instruction_cache();
		printk(KERN_ERR "I-Cache Parity Error\n");
	}
	if (mcsr & MCSR_DCSP)
		printk(KERN_ERR "D-Cache Search Parity Error\n");
	if (mcsr & PPC47x_MCSR_GPR)
		printk(KERN_ERR "GPR Parity Error\n");
	if (mcsr & PPC47x_MCSR_FPR)
		printk(KERN_ERR "FPR Parity Error\n");
	if (mcsr & PPC47x_MCSR_IPR)
		printk(KERN_ERR "Machine Check exception is imprecise\n");

	/* Clear MCSR */
	mtspr(SPRN_MCSR, mcsr);

	return 0;
}
464
#elif defined(CONFIG_E500)
465 466 467 468 469 470
int machine_check_e500mc(struct pt_regs *regs)
{
	unsigned long mcsr = mfspr(SPRN_MCSR);
	unsigned long reason = mcsr;
	int recoverable = 1;

471
	if (reason & MCSR_LD) {
472 473 474 475 476
		recoverable = fsl_rio_mcheck_exception(regs);
		if (recoverable == 1)
			goto silent_out;
	}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");

	if (reason & MCSR_ICPERR) {
		printk("Instruction Cache Parity Error\n");

		/*
		 * This is recoverable by invalidating the i-cache.
		 */
		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
			;

		/*
		 * This will generally be accompanied by an instruction
		 * fetch error report -- only treat MCSR_IF as fatal
		 * if it wasn't due to an L1 parity error.
		 */
		reason &= ~MCSR_IF;
	}

	if (reason & MCSR_DCPERR_MC) {
		printk("Data Cache Parity Error\n");
503 504 505 506 507 508 509 510

		/*
		 * In write shadow mode we auto-recover from the error, but it
		 * may still get logged and cause a machine check.  We should
		 * only treat the non-write shadow case as non-recoverable.
		 */
		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
			recoverable = 0;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	}

	if (reason & MCSR_L2MMU_MHIT) {
		printk("Hit on multiple TLB entries\n");
		recoverable = 0;
	}

	if (reason & MCSR_NMI)
		printk("Non-maskable interrupt\n");

	if (reason & MCSR_IF) {
		printk("Instruction Fetch Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_LD) {
		printk("Load Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_ST) {
		printk("Store Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_LDG) {
		printk("Guarded Load Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_TLBSYNC)
		printk("Simultaneous tlbsync operations\n");

	if (reason & MCSR_BSL2_ERR) {
		printk("Level 2 Cache Error\n");
		recoverable = 0;
	}

	if (reason & MCSR_MAV) {
		u64 addr;

		addr = mfspr(SPRN_MCAR);
		addr |= (u64)mfspr(SPRN_MCARU) << 32;

		printk("Machine Check %s Address: %#llx\n",
		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
	}

559
silent_out:
560 561 562 563
	mtspr(SPRN_MCSR, mcsr);
	return mfspr(SPRN_MCSR) == 0 && recoverable;
}

564 565 566 567
int machine_check_e500(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

568 569 570
	if (reason & MCSR_BUS_RBERR) {
		if (fsl_rio_mcheck_exception(regs))
			return 1;
571 572
		if (fsl_pci_mcheck_exception(regs))
			return 1;
573 574
	}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_ICPERR)
		printk("Instruction Cache Parity Error\n");
	if (reason & MCSR_DCP_PERR)
		printk("Data Cache Push Parity Error\n");
	if (reason & MCSR_DCPERR)
		printk("Data Cache Parity Error\n");
	if (reason & MCSR_BUS_IAERR)
		printk("Bus - Instruction Address Error\n");
	if (reason & MCSR_BUS_RAERR)
		printk("Bus - Read Address Error\n");
	if (reason & MCSR_BUS_WAERR)
		printk("Bus - Write Address Error\n");
	if (reason & MCSR_BUS_IBERR)
		printk("Bus - Instruction Data Error\n");
	if (reason & MCSR_BUS_RBERR)
		printk("Bus - Read Data Bus Error\n");
	if (reason & MCSR_BUS_WBERR)
		printk("Bus - Read Data Bus Error\n");
	if (reason & MCSR_BUS_IPERR)
		printk("Bus - Instruction Parity Error\n");
	if (reason & MCSR_BUS_RPERR)
		printk("Bus - Read Parity Error\n");
602 603 604

	return 0;
}
605 606 607 608 609

int machine_check_generic(struct pt_regs *regs)
{
	return 0;
}
610 611 612 613 614
#elif defined(CONFIG_E200)
int machine_check_e200(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_CP_PERR)
		printk("Cache Push Parity Error\n");
	if (reason & MCSR_CPERR)
		printk("Cache Parity Error\n");
	if (reason & MCSR_EXCP_ERR)
		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
	if (reason & MCSR_BUS_IRERR)
		printk("Bus - Read Bus Error on instruction fetch\n");
	if (reason & MCSR_BUS_DRERR)
		printk("Bus - Read Bus Error on data load\n");
	if (reason & MCSR_BUS_WRERR)
		printk("Bus - Write Bus Error on buffered store or cache line push\n");
632 633 634 635 636 637 638 639

	return 0;
}
#else
int machine_check_generic(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from SRR1=%lx): ", reason);
	switch (reason & 0x601F0000) {
	case 0x80000:
		printk("Machine check signal\n");
		break;
	case 0:		/* for 601 */
	case 0x40000:
	case 0x140000:	/* 7450 MSS error and TEA */
		printk("Transfer error ack signal\n");
		break;
	case 0x20000:
		printk("Data parity error signal\n");
		break;
	case 0x10000:
		printk("Address parity error signal\n");
		break;
	case 0x20000000:
		printk("L1 Data Cache error\n");
		break;
	case 0x40000000:
		printk("L1 Instruction Cache error\n");
		break;
	case 0x00100000:
		printk("L2 data cache parity error\n");
		break;
	default:
		printk("Unknown values in msr\n");
	}
669 670
	return 0;
}
671
#endif /* everything else */
672 673 674

void machine_check_exception(struct pt_regs *regs)
{
675
	enum ctx_state prev_state = exception_enter();
676 677
	int recover = 0;

678 679
	__get_cpu_var(irq_stat).mce_exceptions++;

680 681 682 683 684 685
	/* See if any machine dependent calls. In theory, we would want
	 * to call the CPU first, and call the ppc_md. one if the CPU
	 * one returns a positive number. However there is existing code
	 * that assumes the board gets a first chance, so let's keep it
	 * that way for now and fix things later. --BenH.
	 */
686 687
	if (ppc_md.machine_check_exception)
		recover = ppc_md.machine_check_exception(regs);
688 689
	else if (cur_cpu_spec->machine_check)
		recover = cur_cpu_spec->machine_check(regs);
690

691
	if (recover > 0)
692
		goto bail;
693 694

#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
695 696 697 698 699 700
	/* the qspan pci read routines can cause machine checks -- Cort
	 *
	 * yuck !!! that totally needs to go away ! There are better ways
	 * to deal with that than having a wart in the mcheck handler.
	 * -- BenH
	 */
701
	bad_page_fault(regs, regs->dar, SIGBUS);
702
	goto bail;
703 704
#endif

705
	if (debugger_fault_handler(regs))
706
		goto bail;
707 708

	if (check_io_access(regs))
709
		goto bail;
710

P
Paul Mackerras 已提交
711
	die("Machine check", regs, SIGBUS);
712 713 714 715

	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable Machine check");
716 717 718

bail:
	exception_exit(prev_state);
719 720 721 722 723 724 725
}

void SMIException(struct pt_regs *regs)
{
	die("System Management Interrupt", regs, SIGABRT);
}

726
void unknown_exception(struct pt_regs *regs)
727
{
728 729
	enum ctx_state prev_state = exception_enter();

730 731 732 733
	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
	       regs->nip, regs->msr, regs->trap);

	_exception(SIGTRAP, regs, 0, 0);
734 735

	exception_exit(prev_state);
736 737
}

738
void instruction_breakpoint_exception(struct pt_regs *regs)
739
{
740 741
	enum ctx_state prev_state = exception_enter();

742 743
	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
744
		goto bail;
745
	if (debugger_iabr_match(regs))
746
		goto bail;
747
	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
748 749 750

bail:
	exception_exit(prev_state);
751 752 753 754 755 756 757
}

void RunModeException(struct pt_regs *regs)
{
	_exception(SIGTRAP, regs, 0, 0);
}

P
Paul Mackerras 已提交
758
void __kprobes single_step_exception(struct pt_regs *regs)
759
{
760 761
	enum ctx_state prev_state = exception_enter();

762
	clear_single_step(regs);
763 764 765

	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
766
		goto bail;
767
	if (debugger_sstep(regs))
768
		goto bail;
769 770

	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
771 772 773

bail:
	exception_exit(prev_state);
774 775 776 777 778 779 780 781
}

/*
 * After we have successfully emulated an instruction, we have to
 * check if the instruction was being single-stepped, and if so,
 * pretend we got a single-step exception.  This was pointed out
 * by Kumar Gala.  -- paulus
 */
P
Paul Mackerras 已提交
782
static void emulate_single_step(struct pt_regs *regs)
783
{
784 785
	if (single_stepping(regs))
		single_step_exception(regs);
786 787
}

788
static inline int __parse_fpscr(unsigned long fpscr)
789
{
790
	int ret = 0;
791 792 793

	/* Invalid operation */
	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
794
		ret = FPE_FLTINV;
795 796 797

	/* Overflow */
	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
798
		ret = FPE_FLTOVF;
799 800 801

	/* Underflow */
	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
802
		ret = FPE_FLTUND;
803 804 805

	/* Divide by zero */
	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
806
		ret = FPE_FLTDIV;
807 808 809

	/* Inexact result */
	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
810 811 812 813 814 815 816 817 818 819 820 821
		ret = FPE_FLTRES;

	return ret;
}

static void parse_fpe(struct pt_regs *regs)
{
	int code = 0;

	flush_fp_to_thread(current);

	code = __parse_fpscr(current->thread.fpscr.val);
822 823 824 825 826 827

	_exception(SIGFPE, regs, code, regs->nip);
}

/*
 * Illegal instruction emulation support.  Originally written to
828 829 830 831 832 833 834
 * provide the PVR to user applications using the mfspr rd, PVR.
 * Return non-zero if we can't emulate, or -EFAULT if the associated
 * memory access caused an access fault.  Return zero on success.
 *
 * There are a couple of ways to do this, either "decode" the instruction
 * or directly match lots of bits.  In this case, matching lots of
 * bits is faster and easier.
835
 *
836 837 838 839 840 841 842 843 844 845 846
 */
static int emulate_string_inst(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 NB_RB = (instword >> 11) & 0x1f;
	u32 num_bytes;
	unsigned long EA;
	int pos = 0;

	/* Early out if we are an invalid form of lswx */
847
	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
848 849 850 851 852
		if ((rT == rA) || (rT == NB_RB))
			return -EINVAL;

	EA = (rA == 0) ? 0 : regs->gpr[rA];

853 854 855
	switch (instword & PPC_INST_STRING_MASK) {
		case PPC_INST_LSWX:
		case PPC_INST_STSWX:
856 857 858
			EA += NB_RB;
			num_bytes = regs->xer & 0x7f;
			break;
859 860
		case PPC_INST_LSWI:
		case PPC_INST_STSWI:
861 862 863 864 865 866 867 868 869 870 871
			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
			break;
		default:
			return -EINVAL;
	}

	while (num_bytes != 0)
	{
		u8 val;
		u32 shift = 8 * (3 - (pos & 0x3));

872 873 874 875
		/* if process is 32-bit, clear upper 32 bits of EA */
		if ((regs->msr & MSR_64BIT) == 0)
			EA &= 0xFFFFFFFF;

876 877 878
		switch ((instword & PPC_INST_STRING_MASK)) {
			case PPC_INST_LSWX:
			case PPC_INST_LSWI:
879 880 881 882 883 884 885 886
				if (get_user(val, (u8 __user *)EA))
					return -EFAULT;
				/* first time updating this reg,
				 * zero it out */
				if (pos == 0)
					regs->gpr[rT] = 0;
				regs->gpr[rT] |= val << shift;
				break;
887 888
			case PPC_INST_STSWI:
			case PPC_INST_STSWX:
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
				val = regs->gpr[rT] >> shift;
				if (put_user(val, (u8 __user *)EA))
					return -EFAULT;
				break;
		}
		/* move EA to next address */
		EA += 1;
		num_bytes--;

		/* manage our position within the register */
		if (++pos == 4) {
			pos = 0;
			if (++rT == 32)
				rT = 0;
		}
	}

	return 0;
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
{
	u32 ra,rs;
	unsigned long tmp;

	ra = (instword >> 16) & 0x1f;
	rs = (instword >> 21) & 0x1f;

	tmp = regs->gpr[rs];
	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
	regs->gpr[ra] = tmp;

	return 0;
}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
static int emulate_isel(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 rB = (instword >> 11) & 0x1f;
	u8 BC = (instword >> 6) & 0x1f;
	u8 bit;
	unsigned long tmp;

	tmp = (rA == 0) ? 0 : regs->gpr[rA];
	bit = (regs->ccr >> (31 - BC)) & 0x1;

	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];

	return 0;
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline bool tm_abort_check(struct pt_regs *regs, int cause)
{
        /* If we're emulating a load/store in an active transaction, we cannot
         * emulate it as the kernel operates in transaction suspended context.
         * We need to abort the transaction.  This creates a persistent TM
         * abort so tell the user what caused it with a new code.
	 */
	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
		tm_enable();
		tm_abort(cause);
		return true;
	}
	return false;
}
#else
static inline bool tm_abort_check(struct pt_regs *regs, int reason)
{
	return false;
}
#endif

965 966 967 968 969
static int emulate_instruction(struct pt_regs *regs)
{
	u32 instword;
	u32 rd;

970
	if (!user_mode(regs))
971 972 973 974 975 976 977
		return -EINVAL;
	CHECK_FULL_REGS(regs);

	if (get_user(instword, (u32 __user *)(regs->nip)))
		return -EFAULT;

	/* Emulate the mfspr rD, PVR. */
978
	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
979
		PPC_WARN_EMULATED(mfpvr, regs);
980 981 982 983 984 985
		rd = (instword >> 21) & 0x1f;
		regs->gpr[rd] = mfspr(SPRN_PVR);
		return 0;
	}

	/* Emulating the dcba insn is just a no-op.  */
986
	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
987
		PPC_WARN_EMULATED(dcba, regs);
988
		return 0;
989
	}
990 991

	/* Emulate the mcrxr insn.  */
992
	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
993
		int shift = (instword >> 21) & 0x1c;
994 995
		unsigned long msk = 0xf0000000UL >> shift;

996
		PPC_WARN_EMULATED(mcrxr, regs);
997 998 999 1000 1001 1002
		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
		regs->xer &= ~0xf0000000UL;
		return 0;
	}

	/* Emulate load/store string insn. */
1003
	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1004 1005 1006
		if (tm_abort_check(regs,
				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
			return -EINVAL;
1007
		PPC_WARN_EMULATED(string, regs);
1008
		return emulate_string_inst(regs, instword);
1009
	}
1010

1011
	/* Emulate the popcntb (Population Count Bytes) instruction. */
1012
	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1013
		PPC_WARN_EMULATED(popcntb, regs);
1014 1015 1016
		return emulate_popcntb_inst(regs, instword);
	}

1017
	/* Emulate isel (Integer Select) instruction */
1018
	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1019
		PPC_WARN_EMULATED(isel, regs);
1020 1021 1022
		return emulate_isel(regs, instword);
	}

1023 1024
#ifdef CONFIG_PPC64
	/* Emulate the mfspr rD, DSCR. */
1025 1026 1027 1028
	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
		PPC_INST_MFSPR_DSCR_USER) ||
	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
		PPC_INST_MFSPR_DSCR)) &&
1029 1030 1031 1032 1033 1034 1035
			cpu_has_feature(CPU_FTR_DSCR)) {
		PPC_WARN_EMULATED(mfdscr, regs);
		rd = (instword >> 21) & 0x1f;
		regs->gpr[rd] = mfspr(SPRN_DSCR);
		return 0;
	}
	/* Emulate the mtspr DSCR, rD. */
1036 1037 1038 1039
	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
		PPC_INST_MTSPR_DSCR_USER) ||
	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
		PPC_INST_MTSPR_DSCR)) &&
1040 1041 1042
			cpu_has_feature(CPU_FTR_DSCR)) {
		PPC_WARN_EMULATED(mtdscr, regs);
		rd = (instword >> 21) & 0x1f;
1043
		current->thread.dscr = regs->gpr[rd];
1044
		current->thread.dscr_inherit = 1;
1045
		mtspr(SPRN_DSCR, current->thread.dscr);
1046 1047 1048 1049
		return 0;
	}
#endif

1050 1051 1052
	return -EINVAL;
}

1053
int is_valid_bugaddr(unsigned long addr)
1054
{
1055
	return is_kernel_addr(addr);
1056 1057
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
#ifdef CONFIG_MATH_EMULATION
static int emulate_math(struct pt_regs *regs)
{
	int ret;
	extern int do_mathemu(struct pt_regs *regs);

	ret = do_mathemu(regs);
	if (ret >= 0)
		PPC_WARN_EMULATED(math, regs);

	switch (ret) {
	case 0:
		emulate_single_step(regs);
		return 0;
	case 1: {
			int code = 0;
			code = __parse_fpscr(current->thread.fpscr.val);
			_exception(SIGFPE, regs, code, regs->nip);
			return 0;
		}
	case -EFAULT:
		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
		return 0;
	}

	return -1;
}
#else
static inline int emulate_math(struct pt_regs *regs) { return -1; }
#endif

P
Paul Mackerras 已提交
1089
void __kprobes program_check_exception(struct pt_regs *regs)
1090
{
1091
	enum ctx_state prev_state = exception_enter();
1092 1093
	unsigned int reason = get_reason(regs);

1094
	/* We can now get here via a FP Unavailable exception if the core
1095
	 * has no FPU, in that case the reason flags will be 0 */
1096

1097 1098 1099
	if (reason & REASON_FP) {
		/* IEEE FP exception */
		parse_fpe(regs);
1100
		goto bail;
P
Paul Mackerras 已提交
1101 1102
	}
	if (reason & REASON_TRAP) {
1103 1104 1105
		/* Debugger is first in line to stop recursive faults in
		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
		if (debugger_bpt(regs))
1106
			goto bail;
1107

1108
		/* trap exception */
1109 1110
		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
				== NOTIFY_STOP)
1111
			goto bail;
1112 1113

		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1114
		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1115
			regs->nip += 4;
1116
			goto bail;
1117
		}
P
Paul Mackerras 已提交
1118
		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1119
		goto bail;
P
Paul Mackerras 已提交
1120
	}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (reason & REASON_TM) {
		/* This is a TM "Bad Thing Exception" program check.
		 * This occurs when:
		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
		 *    transition in TM states.
		 * -  A trechkpt is attempted when transactional.
		 * -  A treclaim is attempted when non transactional.
		 * -  A tend is illegally attempted.
		 * -  writing a TM SPR when transactional.
		 */
		if (!user_mode(regs) &&
		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
			regs->nip += 4;
1135
			goto bail;
1136 1137 1138 1139 1140 1141 1142 1143 1144
		}
		/* If usermode caused this, it's done something illegal and
		 * gets a SIGILL slap on the wrist.  We call it an illegal
		 * operand to distinguish from the instruction just being bad
		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
		 * illegal /placement/ of a valid instruction.
		 */
		if (user_mode(regs)) {
			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1145
			goto bail;
1146 1147 1148 1149 1150 1151 1152
		} else {
			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
			       "at %lx (msr 0x%x)\n", regs->nip, reason);
			die("Unrecoverable exception", regs, SIGABRT);
		}
	}
#endif
P
Paul Mackerras 已提交
1153

1154 1155 1156
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();
1157

1158 1159 1160 1161 1162 1163
	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
	 * but there seems to be a hardware bug on the 405GP (RevD)
	 * that means ESR is sometimes set incorrectly - either to
	 * ESR_DST (!?) or 0.  In the process of chasing this with the
	 * hardware people - not sure if it can happen on any illegal
	 * instruction or only on FP instructions, whether there is a
1164 1165
	 * pattern to occurrences etc. -dgibson 31/Mar/2003
	 */
1166
	if (!emulate_math(regs))
1167
		goto bail;
1168

P
Paul Mackerras 已提交
1169 1170
	/* Try to emulate it if we should. */
	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1171 1172 1173 1174
		switch (emulate_instruction(regs)) {
		case 0:
			regs->nip += 4;
			emulate_single_step(regs);
1175
			goto bail;
1176 1177
		case -EFAULT:
			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1178
			goto bail;
1179 1180
		}
	}
P
Paul Mackerras 已提交
1181 1182 1183 1184 1185

	if (reason & REASON_PRIVILEGED)
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	else
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1186 1187 1188

bail:
	exception_exit(prev_state);
1189 1190
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/*
 * This occurs when running in hypervisor mode on POWER6 or later
 * and an illegal instruction is encountered.
 */
void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
{
	regs->msr |= REASON_ILLEGAL;
	program_check_exception(regs);
}

1201
void alignment_exception(struct pt_regs *regs)
1202
{
1203
	enum ctx_state prev_state = exception_enter();
1204
	int sig, code, fixed = 0;
1205

1206 1207 1208 1209
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

1210 1211 1212
	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
		goto bail;

1213 1214 1215
	/* we don't implement logging of alignment exceptions */
	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
		fixed = fix_alignment(regs);
1216 1217 1218 1219

	if (fixed == 1) {
		regs->nip += 4;	/* skip over emulated instruction */
		emulate_single_step(regs);
1220
		goto bail;
1221 1222
	}

1223
	/* Operand address was bad */
1224
	if (fixed == -EFAULT) {
1225 1226 1227 1228 1229
		sig = SIGSEGV;
		code = SEGV_ACCERR;
	} else {
		sig = SIGBUS;
		code = BUS_ADRALN;
1230
	}
1231 1232 1233 1234
	if (user_mode(regs))
		_exception(sig, regs, code, regs->dar);
	else
		bad_page_fault(regs, regs->dar, sig);
1235 1236 1237

bail:
	exception_exit(prev_state);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
}

void StackOverflow(struct pt_regs *regs)
{
	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
	       current, regs->gpr[1]);
	debugger(regs);
	show_regs(regs);
	panic("kernel stack overflow");
}

void nonrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
	       regs->nip, regs->msr);
	debugger(regs);
	die("nonrecoverable exception", regs, SIGKILL);
}

void trace_syscall(struct pt_regs *regs)
{
	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1260
	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1261 1262
	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
}
1263 1264 1265

void kernel_fp_unavailable_exception(struct pt_regs *regs)
{
1266 1267
	enum ctx_state prev_state = exception_enter();

1268 1269 1270
	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
			  "%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1271 1272

	exception_exit(prev_state);
1273 1274 1275 1276
}

void altivec_unavailable_exception(struct pt_regs *regs)
{
1277 1278
	enum ctx_state prev_state = exception_enter();

1279 1280 1281 1282
	if (user_mode(regs)) {
		/* A user program has executed an altivec instruction,
		   but this kernel doesn't support altivec. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1283
		goto bail;
1284
	}
1285

1286 1287 1288
	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1289 1290 1291

bail:
	exception_exit(prev_state);
1292 1293
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
void vsx_unavailable_exception(struct pt_regs *regs)
{
	if (user_mode(regs)) {
		/* A user program has executed an vsx instruction,
		   but this kernel doesn't support vsx. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
}

1308
void facility_unavailable_exception(struct pt_regs *regs)
1309
{
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	static char *facility_strings[] = {
		"FPU",
		"VMX/VSX",
		"DSCR",
		"PMU SPRs",
		"BHRB",
		"TM",
		"AT",
		"EBB",
		"TAR",
	};
1321
	char *facility, *prefix;
1322 1323
	u64 value;

1324 1325 1326 1327 1328 1329 1330 1331 1332
	if (regs->trap == 0xf60) {
		value = mfspr(SPRN_FSCR);
		prefix = "";
	} else {
		value = mfspr(SPRN_HFSCR);
		prefix = "Hypervisor ";
	}

	value = value >> 56;
1333

1334 1335 1336 1337
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

1338 1339 1340 1341 1342
	if (value < ARRAY_SIZE(facility_strings))
		facility = facility_strings[value];
	else
		facility = "unknown";

1343 1344
	pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
		prefix, facility, regs->nip, regs->msr);
1345 1346 1347 1348 1349 1350

	if (user_mode(regs)) {
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

1351
	die("Unexpected facility unavailable exception", regs, SIGABRT);
1352 1353
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM

extern void do_load_up_fpu(struct pt_regs *regs);

void fp_unavailable_tm(struct pt_regs *regs)
{
	/* Note:  This does not handle any kind of FP laziness. */

	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
		 regs->nip, regs->msr);
	tm_enable();

        /* We can only have got here if the task started using FP after
         * beginning the transaction.  So, the transactional regs are just a
         * copy of the checkpointed ones.  But, we still need to recheckpoint
         * as we're enabling FP for the process; it will return, abort the
         * transaction, and probably retry but now with FP enabled.  So the
         * checkpointed FP registers need to be loaded.
	 */
	tm_reclaim(&current->thread, current->thread.regs->msr,
		   TM_CAUSE_FAC_UNAV);
	/* Reclaim didn't save out any FPRs to transact_fprs. */

	/* Enable FP for the task: */
	regs->msr |= (MSR_FP | current->thread.fpexc_mode);

	/* This loads and recheckpoints the FP registers from
	 * thread.fpr[].  They will remain in registers after the
	 * checkpoint so we don't need to reload them after.
	 */
	tm_recheckpoint(&current->thread, regs->msr);
}

#ifdef CONFIG_ALTIVEC
extern void do_load_up_altivec(struct pt_regs *regs);

void altivec_unavailable_tm(struct pt_regs *regs)
{
	/* See the comments in fp_unavailable_tm().  This function operates
	 * the same way.
	 */

	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
		 "MSR=%lx\n",
		 regs->nip, regs->msr);
	tm_enable();
	tm_reclaim(&current->thread, current->thread.regs->msr,
		   TM_CAUSE_FAC_UNAV);
	regs->msr |= MSR_VEC;
	tm_recheckpoint(&current->thread, regs->msr);
	current->thread.used_vr = 1;
}
#endif

#ifdef CONFIG_VSX
void vsx_unavailable_tm(struct pt_regs *regs)
{
	/* See the comments in fp_unavailable_tm().  This works similarly,
	 * though we're loading both FP and VEC registers in here.
	 *
	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
	 * regs.  Either way, set MSR_VSX.
	 */

	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
		 "MSR=%lx\n",
		 regs->nip, regs->msr);

	tm_enable();
	/* This reclaims FP and/or VR regs if they're already enabled */
	tm_reclaim(&current->thread, current->thread.regs->msr,
		   TM_CAUSE_FAC_UNAV);

	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
		MSR_VSX;
	/* This loads & recheckpoints FP and VRs. */
	tm_recheckpoint(&current->thread, regs->msr);
	current->thread.used_vsr = 1;
}
#endif
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

1436 1437
void performance_monitor_exception(struct pt_regs *regs)
{
1438 1439
	__get_cpu_var(irq_stat).pmu_irqs++;

1440 1441 1442
	perf_irq(regs);
}

P
Paul Mackerras 已提交
1443
#ifdef CONFIG_8xx
1444 1445 1446 1447 1448 1449 1450 1451 1452
void SoftwareEmulation(struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);

	if (!user_mode(regs)) {
		debugger(regs);
		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
	}

1453
	if (!emulate_math(regs))
1454
		return;
1455

1456
	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1457
}
P
Paul Mackerras 已提交
1458
#endif /* CONFIG_8xx */
1459

1460
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
{
	int changed = 0;
	/*
	 * Determine the cause of the debug event, clear the
	 * event flags and send a trap to the handler. Torez
	 */
	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
#endif
		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
			     5);
		changed |= 0x01;
	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
			     6);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC1) {
		current->thread.dbcr0 &= ~DBCR0_IAC1;
		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
			     1);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC2) {
		current->thread.dbcr0 &= ~DBCR0_IAC2;
		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
			     2);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC3) {
		current->thread.dbcr0 &= ~DBCR0_IAC3;
		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
			     3);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC4) {
		current->thread.dbcr0 &= ~DBCR0_IAC4;
		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
			     4);
		changed |= 0x01;
	}
	/*
	 * At the point this routine was called, the MSR(DE) was turned off.
	 * Check all other debug flags and see if that bit needs to be turned
	 * back on or not.
	 */
	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
		regs->msr |= MSR_DE;
	else
		/* Make sure the IDM flag is off */
		current->thread.dbcr0 &= ~DBCR0_IDM;

	if (changed & 0x01)
		mtspr(SPRN_DBCR0, current->thread.dbcr0);
}
1518

1519
void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1520
{
1521 1522
	current->thread.dbsr = debug_status;

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
	 * on server, it stops on the target of the branch. In order to simulate
	 * the server behaviour, we thus restart right away with a single step
	 * instead of stopping here when hitting a BT
	 */
	if (debug_status & DBSR_BT) {
		regs->msr &= ~MSR_DE;

		/* Disable BT */
		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
		/* Clear the BT event */
		mtspr(SPRN_DBSR, DBSR_BT);

		/* Do the single step trick only when coming from userspace */
		if (user_mode(regs)) {
			current->thread.dbcr0 &= ~DBCR0_BT;
			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
			regs->msr |= MSR_DE;
			return;
		}

		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
			       5, SIGTRAP) == NOTIFY_STOP) {
			return;
		}
		if (debugger_sstep(regs))
			return;
	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1551
		regs->msr &= ~MSR_DE;
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

		/* Disable instruction completion */
		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
		/* Clear the instruction completion event */
		mtspr(SPRN_DBSR, DBSR_IC);

		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
			       5, SIGTRAP) == NOTIFY_STOP) {
			return;
		}

		if (debugger_sstep(regs))
			return;

1566
		if (user_mode(regs)) {
1567 1568 1569 1570 1571 1572 1573
			current->thread.dbcr0 &= ~DBCR0_IC;
			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
					       current->thread.dbcr1))
				regs->msr |= MSR_DE;
			else
				/* Make sure the IDM bit is off */
				current->thread.dbcr0 &= ~DBCR0_IDM;
1574
		}
1575 1576 1577 1578

		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
	} else
		handle_debug(regs, debug_status);
1579
}
1580
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

#if !defined(CONFIG_TAU_INT)
void TAUException(struct pt_regs *regs)
{
	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
	       regs->nip, regs->msr, regs->trap, print_tainted());
}
#endif /* CONFIG_INT_TAU */

#ifdef CONFIG_ALTIVEC
1591
void altivec_assist_exception(struct pt_regs *regs)
1592 1593 1594 1595 1596 1597
{
	int err;

	if (!user_mode(regs)) {
		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
		       " at %lx\n", regs->nip);
P
Paul Mackerras 已提交
1598
		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1599 1600
	}

1601 1602
	flush_altivec_to_thread(current);

1603
	PPC_WARN_EMULATED(altivec, regs);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	err = emulate_altivec(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else {
		/* didn't recognize the instruction */
		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1617 1618
		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
				   "in %s at %lx\n", current->comm, regs->nip);
1619 1620 1621 1622 1623
		current->thread.vscr.u[3] |= 0x10000;
	}
}
#endif /* CONFIG_ALTIVEC */

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
#ifdef CONFIG_VSX
void vsx_assist_exception(struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		printk(KERN_EMERG "VSX assist exception in kernel mode"
		       " at %lx\n", regs->nip);
		die("Kernel VSX assist exception", regs, SIGILL);
	}

	flush_vsx_to_thread(current);
	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
}
#endif /* CONFIG_VSX */

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
#ifdef CONFIG_FSL_BOOKE
void CacheLockingException(struct pt_regs *regs, unsigned long address,
			   unsigned long error_code)
{
	/* We treat cache locking instructions from the user
	 * as priv ops, in the future we could try to do
	 * something smarter
	 */
	if (error_code & (ESR_DLK|ESR_ILK))
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	return;
}
#endif /* CONFIG_FSL_BOOKE */

#ifdef CONFIG_SPE
void SPEFloatingPointException(struct pt_regs *regs)
{
1656
	extern int do_spe_mathemu(struct pt_regs *regs);
1657 1658 1659
	unsigned long spefscr;
	int fpexc_mode;
	int code = 0;
1660 1661
	int err;

1662
	flush_spe_to_thread(current);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680

	spefscr = current->thread.spefscr;
	fpexc_mode = current->thread.fpexc_mode;

	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
		code = FPE_FLTOVF;
	}
	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
		code = FPE_FLTUND;
	}
	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
		code = FPE_FLTDIV;
	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
		code = FPE_FLTINV;
	}
	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
		code = FPE_FLTRES;

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	err = do_spe_mathemu(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, code, regs->nip);
	}
1698 1699 1700

	return;
}
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

void SPEFloatingPointRoundException(struct pt_regs *regs)
{
	extern int speround_handler(struct pt_regs *regs);
	int err;

	preempt_disable();
	if (regs->msr & MSR_SPE)
		giveup_spe(current);
	preempt_enable();

	regs->nip -= 4;
	err = speround_handler(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, 0, regs->nip);
		return;
	}
}
1732 1733
#endif

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
/*
 * We enter here if we get an unrecoverable exception, that is, one
 * that happened at a point where the RI (recoverable interrupt) bit
 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
 * we therefore lost state by taking this exception.
 */
void unrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
	       regs->trap, regs->nip);
	die("Unrecoverable exception", regs, SIGABRT);
}

1747
#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
/*
 * Default handler for a Watchdog exception,
 * spins until a reboot occurs
 */
void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
{
	/* Generic WatchdogHandler, implement your own */
	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
	return;
}

void WatchdogException(struct pt_regs *regs)
{
	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
	WatchdogHandler(regs);
}
#endif
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

/*
 * We enter here if we discover during exception entry that we are
 * running in supervisor mode with a userspace value in the stack pointer.
 */
void kernel_bad_stack(struct pt_regs *regs)
{
	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
	       regs->gpr[1], regs->nip);
	die("Bad kernel stack pointer", regs, SIGABRT);
}
1776 1777 1778 1779

void __init trap_init(void)
{
}
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806


#ifdef CONFIG_PPC_EMULATED_STATS

#define WARN_EMULATED_SETUP(type)	.type = { .name = #type }

struct ppc_emulated ppc_emulated = {
#ifdef CONFIG_ALTIVEC
	WARN_EMULATED_SETUP(altivec),
#endif
	WARN_EMULATED_SETUP(dcba),
	WARN_EMULATED_SETUP(dcbz),
	WARN_EMULATED_SETUP(fp_pair),
	WARN_EMULATED_SETUP(isel),
	WARN_EMULATED_SETUP(mcrxr),
	WARN_EMULATED_SETUP(mfpvr),
	WARN_EMULATED_SETUP(multiple),
	WARN_EMULATED_SETUP(popcntb),
	WARN_EMULATED_SETUP(spe),
	WARN_EMULATED_SETUP(string),
	WARN_EMULATED_SETUP(unaligned),
#ifdef CONFIG_MATH_EMULATION
	WARN_EMULATED_SETUP(math),
#endif
#ifdef CONFIG_VSX
	WARN_EMULATED_SETUP(vsx),
#endif
1807 1808 1809 1810
#ifdef CONFIG_PPC64
	WARN_EMULATED_SETUP(mfdscr),
	WARN_EMULATED_SETUP(mtdscr),
#endif
1811 1812 1813 1814 1815 1816
};

u32 ppc_warn_emulated;

void ppc_warn_emulated_print(const char *type)
{
1817 1818
	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
			    type);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
}

static int __init ppc_warn_emulated_init(void)
{
	struct dentry *dir, *d;
	unsigned int i;
	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;

	if (!powerpc_debugfs_root)
		return -ENODEV;

	dir = debugfs_create_dir("emulated_instructions",
				 powerpc_debugfs_root);
	if (!dir)
		return -ENOMEM;

	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
			       &ppc_warn_emulated);
	if (!d)
		goto fail;

	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
				       (u32 *)&entries[i].val.counter);
		if (!d)
			goto fail;
	}

	return 0;

fail:
	debugfs_remove_recursive(dir);
	return -ENOMEM;
}

device_initcall(ppc_warn_emulated_init);

#endif /* CONFIG_PPC_EMULATED_STATS */