traps.c 48.9 KB
Newer Older
1 2
/*
 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3
 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 *  Modified by Cort Dougan (cort@cs.nmt.edu)
 *  and Paul Mackerras (paulus@samba.org)
 */

/*
 * This file handles the architecture-dependent parts of hardware exceptions
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
P
Paul Mackerras 已提交
24
#include <linux/ptrace.h>
25 26 27 28
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/module.h>
P
Paul Mackerras 已提交
29
#include <linux/prctl.h>
30 31
#include <linux/delay.h>
#include <linux/kprobes.h>
32
#include <linux/kexec.h>
33
#include <linux/backlight.h>
34
#include <linux/bug.h>
35
#include <linux/kdebug.h>
36
#include <linux/debugfs.h>
37
#include <linux/ratelimit.h>
38
#include <linux/context_tracking.h>
39

40
#include <asm/emulated_ops.h>
41 42 43
#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
44 45
#include <asm/machdep.h>
#include <asm/rtas.h>
46
#include <asm/pmc.h>
47 48 49 50
#include <asm/reg.h>
#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif
51
#ifdef CONFIG_PPC64
52
#include <asm/firmware.h>
53
#include <asm/processor.h>
54
#include <asm/tm.h>
55
#endif
56
#include <asm/kexec.h>
57
#include <asm/ppc-opcode.h>
58
#include <asm/rio.h>
59
#include <asm/fadump.h>
60
#include <asm/switch_to.h>
61
#include <asm/tm.h>
62
#include <asm/debug.h>
63
#include <sysdev/fsl_pci.h>
64

65
#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 67 68 69 70
int (*__debugger)(struct pt_regs *regs) __read_mostly;
int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71
int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72
int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73 74 75 76 77 78

EXPORT_SYMBOL(__debugger);
EXPORT_SYMBOL(__debugger_ipi);
EXPORT_SYMBOL(__debugger_bpt);
EXPORT_SYMBOL(__debugger_sstep);
EXPORT_SYMBOL(__debugger_iabr_match);
79
EXPORT_SYMBOL(__debugger_break_match);
80 81 82
EXPORT_SYMBOL(__debugger_fault_handler);
#endif

83 84 85 86 87 88 89
/* Transactional Memory trap debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

90 91 92 93
/*
 * Trap & Exception support
 */

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_PMAC_BACKLIGHT
static void pmac_backlight_unblank(void)
{
	mutex_lock(&pmac_backlight_mutex);
	if (pmac_backlight) {
		struct backlight_properties *props;

		props = &pmac_backlight->props;
		props->brightness = props->max_brightness;
		props->power = FB_BLANK_UNBLANK;
		backlight_update_status(pmac_backlight);
	}
	mutex_unlock(&pmac_backlight_mutex);
}
#else
static inline void pmac_backlight_unblank(void) { }
#endif

A
Anton Blanchard 已提交
112 113 114 115 116 117
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static int die_owner = -1;
static unsigned int die_nest_count;
static int die_counter;

static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118
{
A
Anton Blanchard 已提交
119
	int cpu;
120
	unsigned long flags;
121 122 123 124

	if (debugger(regs))
		return 1;

125 126
	oops_enter();

A
Anton Blanchard 已提交
127 128 129 130 131 132 133 134
	/* racy, but better than risking deadlock. */
	raw_local_irq_save(flags);
	cpu = smp_processor_id();
	if (!arch_spin_trylock(&die_lock)) {
		if (cpu == die_owner)
			/* nested oops. should stop eventually */;
		else
			arch_spin_lock(&die_lock);
135
	}
A
Anton Blanchard 已提交
136 137 138 139 140 141 142 143
	die_nest_count++;
	die_owner = cpu;
	console_verbose();
	bust_spinlocks(1);
	if (machine_is(powermac))
		pmac_backlight_unblank();
	return flags;
}
144

A
Anton Blanchard 已提交
145 146 147
static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
			       int signr)
{
148
	bust_spinlocks(0);
A
Anton Blanchard 已提交
149
	die_owner = -1;
150
	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
A
Anton Blanchard 已提交
151
	die_nest_count--;
152 153
	oops_exit();
	printk("\n");
A
Anton Blanchard 已提交
154 155 156 157
	if (!die_nest_count)
		/* Nest count reaches zero, release the lock. */
		arch_spin_unlock(&die_lock);
	raw_local_irq_restore(flags);
158

159 160
	crash_fadump(regs, "die oops");

161 162 163 164 165
	/*
	 * A system reset (0x100) is a request to dump, so we always send
	 * it through the crashdump code.
	 */
	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166
		crash_kexec(regs);
167 168 169 170 171 172 173 174

		/*
		 * We aren't the primary crash CPU. We need to send it
		 * to a holding pattern to avoid it ending up in the panic
		 * code.
		 */
		crash_kexec_secondary(regs);
	}
175

A
Anton Blanchard 已提交
176 177 178
	if (!signr)
		return;

179 180 181 182 183 184 185 186 187 188 189
	/*
	 * While our oops output is serialised by a spinlock, output
	 * from panic() called below can race and corrupt it. If we
	 * know we are going to panic, delay for 1 second so we have a
	 * chance to get clean backtraces from all CPUs that are oopsing.
	 */
	if (in_interrupt() || panic_on_oops || !current->pid ||
	    is_global_init(current)) {
		mdelay(MSEC_PER_SEC);
	}

190 191
	if (in_interrupt())
		panic("Fatal exception in interrupt");
H
Horms 已提交
192
	if (panic_on_oops)
193
		panic("Fatal exception");
A
Anton Blanchard 已提交
194 195
	do_exit(signr);
}
H
Horms 已提交
196

A
Anton Blanchard 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
{
	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
#ifdef CONFIG_PREEMPT
	printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
	printk("SMP NR_CPUS=%d ", NR_CPUS);
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
	printk("DEBUG_PAGEALLOC ");
#endif
#ifdef CONFIG_NUMA
	printk("NUMA ");
#endif
	printk("%s\n", ppc_md.name ? ppc_md.name : "");

	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
		return 1;

	print_modules();
	show_regs(regs);
219 220 221 222

	return 0;
}

A
Anton Blanchard 已提交
223 224 225 226 227 228 229 230 231
void die(const char *str, struct pt_regs *regs, long err)
{
	unsigned long flags = oops_begin(regs);

	if (__die(str, regs, err))
		err = 0;
	oops_end(flags, regs, err);
}

232 233 234 235 236 237 238 239 240
void user_single_step_siginfo(struct task_struct *tsk,
				struct pt_regs *regs, siginfo_t *info)
{
	memset(info, 0, sizeof(*info));
	info->si_signo = SIGTRAP;
	info->si_code = TRAP_TRACE;
	info->si_addr = (void __user *)regs->nip;
}

241 242 243
void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
{
	siginfo_t info;
244 245 246 247
	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %08lx nip %08lx lr %08lx code %x\n";
	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
			"at %016lx nip %016lx lr %016lx code %x\n";
248 249

	if (!user_mode(regs)) {
A
Anton Blanchard 已提交
250 251 252 253 254
		die("Exception in kernel mode", regs, signr);
		return;
	}

	if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 256 257 258
		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
				   current->comm, current->pid, signr,
				   addr, regs->nip, regs->link, code);
	}
259

260
	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 262
		local_irq_enable();

263
	current->thread.trap_nr = code;
264 265 266 267 268 269 270 271 272 273 274
	memset(&info, 0, sizeof(info));
	info.si_signo = signr;
	info.si_code = code;
	info.si_addr = (void __user *) addr;
	force_sig_info(signr, &info, current);
}

#ifdef CONFIG_PPC64
void system_reset_exception(struct pt_regs *regs)
{
	/* See if any machine dependent calls */
275 276 277 278
	if (ppc_md.system_reset_exception) {
		if (ppc_md.system_reset_exception(regs))
			return;
	}
279

P
Paul Mackerras 已提交
280
	die("System Reset", regs, SIGABRT);
281 282 283 284 285 286 287

	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable System Reset");

	/* What should we do here? We could issue a shutdown or hard reset. */
}
288 289 290 291 292 293 294 295

/*
 * This function is called in real mode. Strictly no printk's please.
 *
 * regs->nip and regs->msr contains srr0 and ssr1.
 */
long machine_check_early(struct pt_regs *regs)
{
296 297
	long handled = 0;

298 299
	__get_cpu_var(irq_stat).mce_exceptions++;

300 301 302
	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
		handled = cur_cpu_spec->machine_check_early(regs);
	return handled;
303 304
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318
#endif

/*
 * I/O accesses can cause machine checks on powermacs.
 * Check if the NIP corresponds to the address of a sync
 * instruction for which there is an entry in the exception
 * table.
 * Note that the 601 only takes a machine check on TEA
 * (transfer error ack) signal assertion, and does not
 * set any of the top 16 bits of SRR1.
 *  -- paulus.
 */
static inline int check_io_access(struct pt_regs *regs)
{
319
#ifdef CONFIG_PPC32
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	unsigned long msr = regs->msr;
	const struct exception_table_entry *entry;
	unsigned int *nip = (unsigned int *)regs->nip;

	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
	    && (entry = search_exception_tables(regs->nip)) != NULL) {
		/*
		 * Check that it's a sync instruction, or somewhere
		 * in the twi; isync; nop sequence that inb/inw/inl uses.
		 * As the address is in the exception table
		 * we should be able to read the instr there.
		 * For the debug message, we look at the preceding
		 * load or store.
		 */
		if (*nip == 0x60000000)		/* nop */
			nip -= 2;
		else if (*nip == 0x4c00012c)	/* isync */
			--nip;
		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
			/* sync or twi */
			unsigned int rb;

			--nip;
			rb = (*nip >> 11) & 0x1f;
			printk(KERN_DEBUG "%s bad port %lx at %p\n",
			       (*nip & 0x100)? "OUT to": "IN from",
			       regs->gpr[rb] - _IO_BASE, nip);
			regs->msr |= MSR_RI;
			regs->nip = entry->fixup;
			return 1;
		}
	}
352
#endif /* CONFIG_PPC32 */
353 354 355
	return 0;
}

356
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
357 358 359 360 361 362
/* On 4xx, the reason for the machine check or program exception
   is in the ESR. */
#define get_reason(regs)	((regs)->dsisr)
#ifndef CONFIG_FSL_BOOKE
#define get_mc_reason(regs)	((regs)->dsisr)
#else
363
#define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
364 365 366 367 368 369 370
#endif
#define REASON_FP		ESR_FP
#define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
#define REASON_PRIVILEGED	ESR_PPR
#define REASON_TRAP		ESR_PTR

/* single-step stuff */
371 372
#define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
#define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
373 374 375 376 377 378

#else
/* On non-4xx, the reason for the machine check or program
   exception is in the MSR. */
#define get_reason(regs)	((regs)->msr)
#define get_mc_reason(regs)	((regs)->msr)
379
#define REASON_TM		0x200000
380 381 382 383 384 385 386 387 388
#define REASON_FP		0x100000
#define REASON_ILLEGAL		0x80000
#define REASON_PRIVILEGED	0x40000
#define REASON_TRAP		0x20000

#define single_stepping(regs)	((regs)->msr & MSR_SE)
#define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
#endif

389 390
#if defined(CONFIG_4xx)
int machine_check_4xx(struct pt_regs *regs)
391
{
392
	unsigned long reason = get_mc_reason(regs);
393 394 395 396 397 398 399

	if (reason & ESR_IMCP) {
		printk("Instruction");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	} else
		printk("Data");
	printk(" machine check in kernel mode.\n");
400 401 402 403 404 405 406 407

	return 0;
}

int machine_check_440A(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	printk("Machine check in kernel mode.\n");
	if (reason & ESR_IMCP){
		printk("Instruction Synchronous Machine Check exception\n");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
	}
	else {
		u32 mcsr = mfspr(SPRN_MCSR);
		if (mcsr & MCSR_IB)
			printk("Instruction Read PLB Error\n");
		if (mcsr & MCSR_DRB)
			printk("Data Read PLB Error\n");
		if (mcsr & MCSR_DWB)
			printk("Data Write PLB Error\n");
		if (mcsr & MCSR_TLBP)
			printk("TLB Parity Error\n");
		if (mcsr & MCSR_ICP){
			flush_instruction_cache();
			printk("I-Cache Parity Error\n");
		}
		if (mcsr & MCSR_DCSP)
			printk("D-Cache Search Parity Error\n");
		if (mcsr & MCSR_DCFP)
			printk("D-Cache Flush Parity Error\n");
		if (mcsr & MCSR_IMPE)
			printk("Machine Check exception is imprecise\n");

		/* Clear MCSR */
		mtspr(SPRN_MCSR, mcsr);
	}
437 438
	return 0;
}
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

int machine_check_47x(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);
	u32 mcsr;

	printk(KERN_ERR "Machine check in kernel mode.\n");
	if (reason & ESR_IMCP) {
		printk(KERN_ERR
		       "Instruction Synchronous Machine Check exception\n");
		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
		return 0;
	}
	mcsr = mfspr(SPRN_MCSR);
	if (mcsr & MCSR_IB)
		printk(KERN_ERR "Instruction Read PLB Error\n");
	if (mcsr & MCSR_DRB)
		printk(KERN_ERR "Data Read PLB Error\n");
	if (mcsr & MCSR_DWB)
		printk(KERN_ERR "Data Write PLB Error\n");
	if (mcsr & MCSR_TLBP)
		printk(KERN_ERR "TLB Parity Error\n");
	if (mcsr & MCSR_ICP) {
		flush_instruction_cache();
		printk(KERN_ERR "I-Cache Parity Error\n");
	}
	if (mcsr & MCSR_DCSP)
		printk(KERN_ERR "D-Cache Search Parity Error\n");
	if (mcsr & PPC47x_MCSR_GPR)
		printk(KERN_ERR "GPR Parity Error\n");
	if (mcsr & PPC47x_MCSR_FPR)
		printk(KERN_ERR "FPR Parity Error\n");
	if (mcsr & PPC47x_MCSR_IPR)
		printk(KERN_ERR "Machine Check exception is imprecise\n");

	/* Clear MCSR */
	mtspr(SPRN_MCSR, mcsr);

	return 0;
}
479
#elif defined(CONFIG_E500)
480 481 482 483 484 485
int machine_check_e500mc(struct pt_regs *regs)
{
	unsigned long mcsr = mfspr(SPRN_MCSR);
	unsigned long reason = mcsr;
	int recoverable = 1;

486
	if (reason & MCSR_LD) {
487 488 489 490 491
		recoverable = fsl_rio_mcheck_exception(regs);
		if (recoverable == 1)
			goto silent_out;
	}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");

	if (reason & MCSR_ICPERR) {
		printk("Instruction Cache Parity Error\n");

		/*
		 * This is recoverable by invalidating the i-cache.
		 */
		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
			;

		/*
		 * This will generally be accompanied by an instruction
		 * fetch error report -- only treat MCSR_IF as fatal
		 * if it wasn't due to an L1 parity error.
		 */
		reason &= ~MCSR_IF;
	}

	if (reason & MCSR_DCPERR_MC) {
		printk("Data Cache Parity Error\n");
518 519 520 521 522 523 524 525

		/*
		 * In write shadow mode we auto-recover from the error, but it
		 * may still get logged and cause a machine check.  We should
		 * only treat the non-write shadow case as non-recoverable.
		 */
		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
			recoverable = 0;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	}

	if (reason & MCSR_L2MMU_MHIT) {
		printk("Hit on multiple TLB entries\n");
		recoverable = 0;
	}

	if (reason & MCSR_NMI)
		printk("Non-maskable interrupt\n");

	if (reason & MCSR_IF) {
		printk("Instruction Fetch Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_LD) {
		printk("Load Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_ST) {
		printk("Store Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_LDG) {
		printk("Guarded Load Error Report\n");
		recoverable = 0;
	}

	if (reason & MCSR_TLBSYNC)
		printk("Simultaneous tlbsync operations\n");

	if (reason & MCSR_BSL2_ERR) {
		printk("Level 2 Cache Error\n");
		recoverable = 0;
	}

	if (reason & MCSR_MAV) {
		u64 addr;

		addr = mfspr(SPRN_MCAR);
		addr |= (u64)mfspr(SPRN_MCARU) << 32;

		printk("Machine Check %s Address: %#llx\n",
		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
	}

574
silent_out:
575 576 577 578
	mtspr(SPRN_MCSR, mcsr);
	return mfspr(SPRN_MCSR) == 0 && recoverable;
}

579 580 581 582
int machine_check_e500(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

583 584 585
	if (reason & MCSR_BUS_RBERR) {
		if (fsl_rio_mcheck_exception(regs))
			return 1;
586 587
		if (fsl_pci_mcheck_exception(regs))
			return 1;
588 589
	}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_ICPERR)
		printk("Instruction Cache Parity Error\n");
	if (reason & MCSR_DCP_PERR)
		printk("Data Cache Push Parity Error\n");
	if (reason & MCSR_DCPERR)
		printk("Data Cache Parity Error\n");
	if (reason & MCSR_BUS_IAERR)
		printk("Bus - Instruction Address Error\n");
	if (reason & MCSR_BUS_RAERR)
		printk("Bus - Read Address Error\n");
	if (reason & MCSR_BUS_WAERR)
		printk("Bus - Write Address Error\n");
	if (reason & MCSR_BUS_IBERR)
		printk("Bus - Instruction Data Error\n");
	if (reason & MCSR_BUS_RBERR)
		printk("Bus - Read Data Bus Error\n");
	if (reason & MCSR_BUS_WBERR)
		printk("Bus - Read Data Bus Error\n");
	if (reason & MCSR_BUS_IPERR)
		printk("Bus - Instruction Parity Error\n");
	if (reason & MCSR_BUS_RPERR)
		printk("Bus - Read Parity Error\n");
617 618 619

	return 0;
}
620 621 622 623 624

int machine_check_generic(struct pt_regs *regs)
{
	return 0;
}
625 626 627 628 629
#elif defined(CONFIG_E200)
int machine_check_e200(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from MCSR=%lx): ", reason);

	if (reason & MCSR_MCP)
		printk("Machine Check Signal\n");
	if (reason & MCSR_CP_PERR)
		printk("Cache Push Parity Error\n");
	if (reason & MCSR_CPERR)
		printk("Cache Parity Error\n");
	if (reason & MCSR_EXCP_ERR)
		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
	if (reason & MCSR_BUS_IRERR)
		printk("Bus - Read Bus Error on instruction fetch\n");
	if (reason & MCSR_BUS_DRERR)
		printk("Bus - Read Bus Error on data load\n");
	if (reason & MCSR_BUS_WRERR)
		printk("Bus - Write Bus Error on buffered store or cache line push\n");
647 648 649 650 651 652 653 654

	return 0;
}
#else
int machine_check_generic(struct pt_regs *regs)
{
	unsigned long reason = get_mc_reason(regs);

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	printk("Machine check in kernel mode.\n");
	printk("Caused by (from SRR1=%lx): ", reason);
	switch (reason & 0x601F0000) {
	case 0x80000:
		printk("Machine check signal\n");
		break;
	case 0:		/* for 601 */
	case 0x40000:
	case 0x140000:	/* 7450 MSS error and TEA */
		printk("Transfer error ack signal\n");
		break;
	case 0x20000:
		printk("Data parity error signal\n");
		break;
	case 0x10000:
		printk("Address parity error signal\n");
		break;
	case 0x20000000:
		printk("L1 Data Cache error\n");
		break;
	case 0x40000000:
		printk("L1 Instruction Cache error\n");
		break;
	case 0x00100000:
		printk("L2 data cache parity error\n");
		break;
	default:
		printk("Unknown values in msr\n");
	}
684 685
	return 0;
}
686
#endif /* everything else */
687 688 689

void machine_check_exception(struct pt_regs *regs)
{
690
	enum ctx_state prev_state = exception_enter();
691 692
	int recover = 0;

693 694
	__get_cpu_var(irq_stat).mce_exceptions++;

695 696 697 698 699 700
	/* See if any machine dependent calls. In theory, we would want
	 * to call the CPU first, and call the ppc_md. one if the CPU
	 * one returns a positive number. However there is existing code
	 * that assumes the board gets a first chance, so let's keep it
	 * that way for now and fix things later. --BenH.
	 */
701 702
	if (ppc_md.machine_check_exception)
		recover = ppc_md.machine_check_exception(regs);
703 704
	else if (cur_cpu_spec->machine_check)
		recover = cur_cpu_spec->machine_check(regs);
705

706
	if (recover > 0)
707
		goto bail;
708 709

#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
710 711 712 713 714 715
	/* the qspan pci read routines can cause machine checks -- Cort
	 *
	 * yuck !!! that totally needs to go away ! There are better ways
	 * to deal with that than having a wart in the mcheck handler.
	 * -- BenH
	 */
716
	bad_page_fault(regs, regs->dar, SIGBUS);
717
	goto bail;
718 719
#endif

720
	if (debugger_fault_handler(regs))
721
		goto bail;
722 723

	if (check_io_access(regs))
724
		goto bail;
725

P
Paul Mackerras 已提交
726
	die("Machine check", regs, SIGBUS);
727 728 729 730

	/* Must die if the interrupt is not recoverable */
	if (!(regs->msr & MSR_RI))
		panic("Unrecoverable Machine check");
731 732 733

bail:
	exception_exit(prev_state);
734 735 736 737 738 739 740
}

void SMIException(struct pt_regs *regs)
{
	die("System Management Interrupt", regs, SIGABRT);
}

741
void unknown_exception(struct pt_regs *regs)
742
{
743 744
	enum ctx_state prev_state = exception_enter();

745 746 747 748
	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
	       regs->nip, regs->msr, regs->trap);

	_exception(SIGTRAP, regs, 0, 0);
749 750

	exception_exit(prev_state);
751 752
}

753
void instruction_breakpoint_exception(struct pt_regs *regs)
754
{
755 756
	enum ctx_state prev_state = exception_enter();

757 758
	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
759
		goto bail;
760
	if (debugger_iabr_match(regs))
761
		goto bail;
762
	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
763 764 765

bail:
	exception_exit(prev_state);
766 767 768 769 770 771 772
}

void RunModeException(struct pt_regs *regs)
{
	_exception(SIGTRAP, regs, 0, 0);
}

P
Paul Mackerras 已提交
773
void __kprobes single_step_exception(struct pt_regs *regs)
774
{
775 776
	enum ctx_state prev_state = exception_enter();

777
	clear_single_step(regs);
778 779 780

	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
					5, SIGTRAP) == NOTIFY_STOP)
781
		goto bail;
782
	if (debugger_sstep(regs))
783
		goto bail;
784 785

	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
786 787 788

bail:
	exception_exit(prev_state);
789 790 791 792 793 794 795 796
}

/*
 * After we have successfully emulated an instruction, we have to
 * check if the instruction was being single-stepped, and if so,
 * pretend we got a single-step exception.  This was pointed out
 * by Kumar Gala.  -- paulus
 */
P
Paul Mackerras 已提交
797
static void emulate_single_step(struct pt_regs *regs)
798
{
799 800
	if (single_stepping(regs))
		single_step_exception(regs);
801 802
}

803
static inline int __parse_fpscr(unsigned long fpscr)
804
{
805
	int ret = 0;
806 807 808

	/* Invalid operation */
	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
809
		ret = FPE_FLTINV;
810 811 812

	/* Overflow */
	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
813
		ret = FPE_FLTOVF;
814 815 816

	/* Underflow */
	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
817
		ret = FPE_FLTUND;
818 819 820

	/* Divide by zero */
	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
821
		ret = FPE_FLTDIV;
822 823 824

	/* Inexact result */
	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
825 826 827 828 829 830 831 832 833 834 835
		ret = FPE_FLTRES;

	return ret;
}

static void parse_fpe(struct pt_regs *regs)
{
	int code = 0;

	flush_fp_to_thread(current);

836
	code = __parse_fpscr(current->thread.fp_state.fpscr);
837 838 839 840 841 842

	_exception(SIGFPE, regs, code, regs->nip);
}

/*
 * Illegal instruction emulation support.  Originally written to
843 844 845 846 847 848 849
 * provide the PVR to user applications using the mfspr rd, PVR.
 * Return non-zero if we can't emulate, or -EFAULT if the associated
 * memory access caused an access fault.  Return zero on success.
 *
 * There are a couple of ways to do this, either "decode" the instruction
 * or directly match lots of bits.  In this case, matching lots of
 * bits is faster and easier.
850
 *
851 852 853 854 855 856 857 858 859 860 861
 */
static int emulate_string_inst(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 NB_RB = (instword >> 11) & 0x1f;
	u32 num_bytes;
	unsigned long EA;
	int pos = 0;

	/* Early out if we are an invalid form of lswx */
862
	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
863 864 865 866 867
		if ((rT == rA) || (rT == NB_RB))
			return -EINVAL;

	EA = (rA == 0) ? 0 : regs->gpr[rA];

868 869 870
	switch (instword & PPC_INST_STRING_MASK) {
		case PPC_INST_LSWX:
		case PPC_INST_STSWX:
871 872 873
			EA += NB_RB;
			num_bytes = regs->xer & 0x7f;
			break;
874 875
		case PPC_INST_LSWI:
		case PPC_INST_STSWI:
876 877 878 879 880 881 882 883 884 885 886
			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
			break;
		default:
			return -EINVAL;
	}

	while (num_bytes != 0)
	{
		u8 val;
		u32 shift = 8 * (3 - (pos & 0x3));

887 888 889 890
		/* if process is 32-bit, clear upper 32 bits of EA */
		if ((regs->msr & MSR_64BIT) == 0)
			EA &= 0xFFFFFFFF;

891 892 893
		switch ((instword & PPC_INST_STRING_MASK)) {
			case PPC_INST_LSWX:
			case PPC_INST_LSWI:
894 895 896 897 898 899 900 901
				if (get_user(val, (u8 __user *)EA))
					return -EFAULT;
				/* first time updating this reg,
				 * zero it out */
				if (pos == 0)
					regs->gpr[rT] = 0;
				regs->gpr[rT] |= val << shift;
				break;
902 903
			case PPC_INST_STSWI:
			case PPC_INST_STSWX:
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
				val = regs->gpr[rT] >> shift;
				if (put_user(val, (u8 __user *)EA))
					return -EFAULT;
				break;
		}
		/* move EA to next address */
		EA += 1;
		num_bytes--;

		/* manage our position within the register */
		if (++pos == 4) {
			pos = 0;
			if (++rT == 32)
				rT = 0;
		}
	}

	return 0;
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
{
	u32 ra,rs;
	unsigned long tmp;

	ra = (instword >> 16) & 0x1f;
	rs = (instword >> 21) & 0x1f;

	tmp = regs->gpr[rs];
	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
	regs->gpr[ra] = tmp;

	return 0;
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static int emulate_isel(struct pt_regs *regs, u32 instword)
{
	u8 rT = (instword >> 21) & 0x1f;
	u8 rA = (instword >> 16) & 0x1f;
	u8 rB = (instword >> 11) & 0x1f;
	u8 BC = (instword >> 6) & 0x1f;
	u8 bit;
	unsigned long tmp;

	tmp = (rA == 0) ? 0 : regs->gpr[rA];
	bit = (regs->ccr >> (31 - BC)) & 0x1;

	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];

	return 0;
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline bool tm_abort_check(struct pt_regs *regs, int cause)
{
        /* If we're emulating a load/store in an active transaction, we cannot
         * emulate it as the kernel operates in transaction suspended context.
         * We need to abort the transaction.  This creates a persistent TM
         * abort so tell the user what caused it with a new code.
	 */
	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
		tm_enable();
		tm_abort(cause);
		return true;
	}
	return false;
}
#else
static inline bool tm_abort_check(struct pt_regs *regs, int reason)
{
	return false;
}
#endif

980 981 982 983 984
static int emulate_instruction(struct pt_regs *regs)
{
	u32 instword;
	u32 rd;

985
	if (!user_mode(regs))
986 987 988 989 990 991 992
		return -EINVAL;
	CHECK_FULL_REGS(regs);

	if (get_user(instword, (u32 __user *)(regs->nip)))
		return -EFAULT;

	/* Emulate the mfspr rD, PVR. */
993
	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
994
		PPC_WARN_EMULATED(mfpvr, regs);
995 996 997 998 999 1000
		rd = (instword >> 21) & 0x1f;
		regs->gpr[rd] = mfspr(SPRN_PVR);
		return 0;
	}

	/* Emulating the dcba insn is just a no-op.  */
1001
	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1002
		PPC_WARN_EMULATED(dcba, regs);
1003
		return 0;
1004
	}
1005 1006

	/* Emulate the mcrxr insn.  */
1007
	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1008
		int shift = (instword >> 21) & 0x1c;
1009 1010
		unsigned long msk = 0xf0000000UL >> shift;

1011
		PPC_WARN_EMULATED(mcrxr, regs);
1012 1013 1014 1015 1016 1017
		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
		regs->xer &= ~0xf0000000UL;
		return 0;
	}

	/* Emulate load/store string insn. */
1018
	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1019 1020 1021
		if (tm_abort_check(regs,
				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
			return -EINVAL;
1022
		PPC_WARN_EMULATED(string, regs);
1023
		return emulate_string_inst(regs, instword);
1024
	}
1025

1026
	/* Emulate the popcntb (Population Count Bytes) instruction. */
1027
	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1028
		PPC_WARN_EMULATED(popcntb, regs);
1029 1030 1031
		return emulate_popcntb_inst(regs, instword);
	}

1032
	/* Emulate isel (Integer Select) instruction */
1033
	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1034
		PPC_WARN_EMULATED(isel, regs);
1035 1036 1037
		return emulate_isel(regs, instword);
	}

1038 1039 1040 1041 1042 1043 1044
	/* Emulate sync instruction variants */
	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
		PPC_WARN_EMULATED(sync, regs);
		asm volatile("sync");
		return 0;
	}

1045 1046
#ifdef CONFIG_PPC64
	/* Emulate the mfspr rD, DSCR. */
1047 1048 1049 1050
	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
		PPC_INST_MFSPR_DSCR_USER) ||
	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
		PPC_INST_MFSPR_DSCR)) &&
1051 1052 1053 1054 1055 1056 1057
			cpu_has_feature(CPU_FTR_DSCR)) {
		PPC_WARN_EMULATED(mfdscr, regs);
		rd = (instword >> 21) & 0x1f;
		regs->gpr[rd] = mfspr(SPRN_DSCR);
		return 0;
	}
	/* Emulate the mtspr DSCR, rD. */
1058 1059 1060 1061
	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
		PPC_INST_MTSPR_DSCR_USER) ||
	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
		PPC_INST_MTSPR_DSCR)) &&
1062 1063 1064
			cpu_has_feature(CPU_FTR_DSCR)) {
		PPC_WARN_EMULATED(mtdscr, regs);
		rd = (instword >> 21) & 0x1f;
1065
		current->thread.dscr = regs->gpr[rd];
1066
		current->thread.dscr_inherit = 1;
1067
		mtspr(SPRN_DSCR, current->thread.dscr);
1068 1069 1070 1071
		return 0;
	}
#endif

1072 1073 1074
	return -EINVAL;
}

1075
int is_valid_bugaddr(unsigned long addr)
1076
{
1077
	return is_kernel_addr(addr);
1078 1079
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
#ifdef CONFIG_MATH_EMULATION
static int emulate_math(struct pt_regs *regs)
{
	int ret;
	extern int do_mathemu(struct pt_regs *regs);

	ret = do_mathemu(regs);
	if (ret >= 0)
		PPC_WARN_EMULATED(math, regs);

	switch (ret) {
	case 0:
		emulate_single_step(regs);
		return 0;
	case 1: {
			int code = 0;
1096
			code = __parse_fpscr(current->thread.fp_state.fpscr);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
			_exception(SIGFPE, regs, code, regs->nip);
			return 0;
		}
	case -EFAULT:
		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
		return 0;
	}

	return -1;
}
#else
static inline int emulate_math(struct pt_regs *regs) { return -1; }
#endif

P
Paul Mackerras 已提交
1111
void __kprobes program_check_exception(struct pt_regs *regs)
1112
{
1113
	enum ctx_state prev_state = exception_enter();
1114 1115
	unsigned int reason = get_reason(regs);

1116
	/* We can now get here via a FP Unavailable exception if the core
1117
	 * has no FPU, in that case the reason flags will be 0 */
1118

1119 1120 1121
	if (reason & REASON_FP) {
		/* IEEE FP exception */
		parse_fpe(regs);
1122
		goto bail;
P
Paul Mackerras 已提交
1123 1124
	}
	if (reason & REASON_TRAP) {
1125 1126 1127
		/* Debugger is first in line to stop recursive faults in
		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
		if (debugger_bpt(regs))
1128
			goto bail;
1129

1130
		/* trap exception */
1131 1132
		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
				== NOTIFY_STOP)
1133
			goto bail;
1134 1135

		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1136
		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1137
			regs->nip += 4;
1138
			goto bail;
1139
		}
P
Paul Mackerras 已提交
1140
		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1141
		goto bail;
P
Paul Mackerras 已提交
1142
	}
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (reason & REASON_TM) {
		/* This is a TM "Bad Thing Exception" program check.
		 * This occurs when:
		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
		 *    transition in TM states.
		 * -  A trechkpt is attempted when transactional.
		 * -  A treclaim is attempted when non transactional.
		 * -  A tend is illegally attempted.
		 * -  writing a TM SPR when transactional.
		 */
		if (!user_mode(regs) &&
		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
			regs->nip += 4;
1157
			goto bail;
1158 1159 1160 1161 1162 1163 1164 1165 1166
		}
		/* If usermode caused this, it's done something illegal and
		 * gets a SIGILL slap on the wrist.  We call it an illegal
		 * operand to distinguish from the instruction just being bad
		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
		 * illegal /placement/ of a valid instruction.
		 */
		if (user_mode(regs)) {
			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1167
			goto bail;
1168 1169 1170 1171 1172 1173 1174
		} else {
			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
			       "at %lx (msr 0x%x)\n", regs->nip, reason);
			die("Unrecoverable exception", regs, SIGABRT);
		}
	}
#endif
P
Paul Mackerras 已提交
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	/*
	 * If we took the program check in the kernel skip down to sending a
	 * SIGILL. The subsequent cases all relate to emulating instructions
	 * which we should only do for userspace. We also do not want to enable
	 * interrupts for kernel faults because that might lead to further
	 * faults, and loose the context of the original exception.
	 */
	if (!user_mode(regs))
		goto sigill;

1186 1187 1188
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();
1189

1190 1191 1192 1193 1194 1195
	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
	 * but there seems to be a hardware bug on the 405GP (RevD)
	 * that means ESR is sometimes set incorrectly - either to
	 * ESR_DST (!?) or 0.  In the process of chasing this with the
	 * hardware people - not sure if it can happen on any illegal
	 * instruction or only on FP instructions, whether there is a
1196 1197
	 * pattern to occurrences etc. -dgibson 31/Mar/2003
	 */
1198
	if (!emulate_math(regs))
1199
		goto bail;
1200

P
Paul Mackerras 已提交
1201 1202
	/* Try to emulate it if we should. */
	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1203 1204 1205 1206
		switch (emulate_instruction(regs)) {
		case 0:
			regs->nip += 4;
			emulate_single_step(regs);
1207
			goto bail;
1208 1209
		case -EFAULT:
			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1210
			goto bail;
1211 1212
		}
	}
P
Paul Mackerras 已提交
1213

1214
sigill:
P
Paul Mackerras 已提交
1215 1216 1217 1218
	if (reason & REASON_PRIVILEGED)
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	else
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1219 1220 1221

bail:
	exception_exit(prev_state);
1222 1223
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/*
 * This occurs when running in hypervisor mode on POWER6 or later
 * and an illegal instruction is encountered.
 */
void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
{
	regs->msr |= REASON_ILLEGAL;
	program_check_exception(regs);
}

1234
void alignment_exception(struct pt_regs *regs)
1235
{
1236
	enum ctx_state prev_state = exception_enter();
1237
	int sig, code, fixed = 0;
1238

1239 1240 1241 1242
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

1243 1244 1245
	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
		goto bail;

1246 1247 1248
	/* we don't implement logging of alignment exceptions */
	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
		fixed = fix_alignment(regs);
1249 1250 1251 1252

	if (fixed == 1) {
		regs->nip += 4;	/* skip over emulated instruction */
		emulate_single_step(regs);
1253
		goto bail;
1254 1255
	}

1256
	/* Operand address was bad */
1257
	if (fixed == -EFAULT) {
1258 1259 1260 1261 1262
		sig = SIGSEGV;
		code = SEGV_ACCERR;
	} else {
		sig = SIGBUS;
		code = BUS_ADRALN;
1263
	}
1264 1265 1266 1267
	if (user_mode(regs))
		_exception(sig, regs, code, regs->dar);
	else
		bad_page_fault(regs, regs->dar, sig);
1268 1269 1270

bail:
	exception_exit(prev_state);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
}

void StackOverflow(struct pt_regs *regs)
{
	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
	       current, regs->gpr[1]);
	debugger(regs);
	show_regs(regs);
	panic("kernel stack overflow");
}

void nonrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
	       regs->nip, regs->msr);
	debugger(regs);
	die("nonrecoverable exception", regs, SIGKILL);
}

void trace_syscall(struct pt_regs *regs)
{
	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1293
	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1294 1295
	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
}
1296 1297 1298

void kernel_fp_unavailable_exception(struct pt_regs *regs)
{
1299 1300
	enum ctx_state prev_state = exception_enter();

1301 1302 1303
	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
			  "%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1304 1305

	exception_exit(prev_state);
1306 1307 1308 1309
}

void altivec_unavailable_exception(struct pt_regs *regs)
{
1310 1311
	enum ctx_state prev_state = exception_enter();

1312 1313 1314 1315
	if (user_mode(regs)) {
		/* A user program has executed an altivec instruction,
		   but this kernel doesn't support altivec. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1316
		goto bail;
1317
	}
1318

1319 1320 1321
	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1322 1323 1324

bail:
	exception_exit(prev_state);
1325 1326
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
void vsx_unavailable_exception(struct pt_regs *regs)
{
	if (user_mode(regs)) {
		/* A user program has executed an vsx instruction,
		   but this kernel doesn't support vsx. */
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
			"%lx at %lx\n", regs->trap, regs->nip);
	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
}

1341
#ifdef CONFIG_PPC64
1342
void facility_unavailable_exception(struct pt_regs *regs)
1343
{
1344
	static char *facility_strings[] = {
1345 1346 1347 1348 1349 1350 1351 1352
		[FSCR_FP_LG] = "FPU",
		[FSCR_VECVSX_LG] = "VMX/VSX",
		[FSCR_DSCR_LG] = "DSCR",
		[FSCR_PM_LG] = "PMU SPRs",
		[FSCR_BHRB_LG] = "BHRB",
		[FSCR_TM_LG] = "TM",
		[FSCR_EBB_LG] = "EBB",
		[FSCR_TAR_LG] = "TAR",
1353
	};
1354
	char *facility = "unknown";
1355
	u64 value;
1356 1357
	u8 status;
	bool hv;
1358

1359 1360
	hv = (regs->trap == 0xf80);
	if (hv)
1361
		value = mfspr(SPRN_HFSCR);
1362 1363 1364 1365 1366 1367 1368
	else
		value = mfspr(SPRN_FSCR);

	status = value >> 56;
	if (status == FSCR_DSCR_LG) {
		/* User is acessing the DSCR.  Set the inherit bit and allow
		 * the user to set it directly in future by setting via the
1369
		 * FSCR DSCR bit.  We always leave HFSCR DSCR set.
1370 1371
		 */
		current->thread.dscr_inherit = 1;
1372
		mtspr(SPRN_FSCR, value | FSCR_DSCR);
1373
		return;
1374 1375
	}

1376 1377 1378
	if ((status < ARRAY_SIZE(facility_strings)) &&
	    facility_strings[status])
		facility = facility_strings[status];
1379

1380 1381 1382 1383
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

1384 1385 1386
	pr_err_ratelimited(
		"%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
		hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1387 1388 1389 1390 1391 1392

	if (user_mode(regs)) {
		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
		return;
	}

1393
	die("Unexpected facility unavailable exception", regs, SIGABRT);
1394
}
1395
#endif
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM

void fp_unavailable_tm(struct pt_regs *regs)
{
	/* Note:  This does not handle any kind of FP laziness. */

	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
		 regs->nip, regs->msr);

        /* We can only have got here if the task started using FP after
         * beginning the transaction.  So, the transactional regs are just a
         * copy of the checkpointed ones.  But, we still need to recheckpoint
         * as we're enabling FP for the process; it will return, abort the
         * transaction, and probably retry but now with FP enabled.  So the
         * checkpointed FP registers need to be loaded.
	 */
1413
	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1414 1415 1416 1417 1418 1419 1420 1421
	/* Reclaim didn't save out any FPRs to transact_fprs. */

	/* Enable FP for the task: */
	regs->msr |= (MSR_FP | current->thread.fpexc_mode);

	/* This loads and recheckpoints the FP registers from
	 * thread.fpr[].  They will remain in registers after the
	 * checkpoint so we don't need to reload them after.
1422 1423
	 * If VMX is in use, the VRs now hold checkpointed values,
	 * so we don't want to load the VRs from the thread_struct.
1424
	 */
1425 1426 1427 1428 1429 1430 1431 1432
	tm_recheckpoint(&current->thread, MSR_FP);

	/* If VMX is in use, get the transactional values back */
	if (regs->msr & MSR_VEC) {
		do_load_up_transact_altivec(&current->thread);
		/* At this point all the VSX state is loaded, so enable it */
		regs->msr |= MSR_VSX;
	}
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
}

void altivec_unavailable_tm(struct pt_regs *regs)
{
	/* See the comments in fp_unavailable_tm().  This function operates
	 * the same way.
	 */

	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
		 "MSR=%lx\n",
		 regs->nip, regs->msr);
1444
	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1445
	regs->msr |= MSR_VEC;
1446
	tm_recheckpoint(&current->thread, MSR_VEC);
1447
	current->thread.used_vr = 1;
1448 1449 1450 1451 1452

	if (regs->msr & MSR_FP) {
		do_load_up_transact_fpu(&current->thread);
		regs->msr |= MSR_VSX;
	}
1453 1454 1455 1456
}

void vsx_unavailable_tm(struct pt_regs *regs)
{
1457 1458
	unsigned long orig_msr = regs->msr;

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	/* See the comments in fp_unavailable_tm().  This works similarly,
	 * though we're loading both FP and VEC registers in here.
	 *
	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
	 * regs.  Either way, set MSR_VSX.
	 */

	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
		 "MSR=%lx\n",
		 regs->nip, regs->msr);

1470 1471 1472 1473 1474 1475 1476 1477
	current->thread.used_vsr = 1;

	/* If FP and VMX are already loaded, we have all the state we need */
	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
		regs->msr |= MSR_VSX;
		return;
	}

1478
	/* This reclaims FP and/or VR regs if they're already enabled */
1479
	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1480 1481 1482

	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
		MSR_VSX;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

	/* This loads & recheckpoints FP and VRs; but we have
	 * to be sure not to overwrite previously-valid state.
	 */
	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);

	if (orig_msr & MSR_FP)
		do_load_up_transact_fpu(&current->thread);
	if (orig_msr & MSR_VEC)
		do_load_up_transact_altivec(&current->thread);
1493 1494 1495
}
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

1496 1497
void performance_monitor_exception(struct pt_regs *regs)
{
1498 1499
	__get_cpu_var(irq_stat).pmu_irqs++;

1500 1501 1502
	perf_irq(regs);
}

P
Paul Mackerras 已提交
1503
#ifdef CONFIG_8xx
1504 1505 1506 1507 1508 1509
void SoftwareEmulation(struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);

	if (!user_mode(regs)) {
		debugger(regs);
1510 1511
		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
			regs, SIGFPE);
1512 1513
	}

1514
	if (!emulate_math(regs))
1515
		return;
1516

1517
	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1518
}
P
Paul Mackerras 已提交
1519
#endif /* CONFIG_8xx */
1520

1521
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
{
	int changed = 0;
	/*
	 * Determine the cause of the debug event, clear the
	 * event flags and send a trap to the handler. Torez
	 */
	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1532
		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
#endif
		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
			     5);
		changed |= 0x01;
	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
			     6);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC1) {
1543
		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1544 1545 1546 1547 1548
		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
			     1);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC2) {
1549
		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1550 1551 1552 1553
		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
			     2);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC3) {
1554
		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1555 1556 1557 1558 1559
		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
			     3);
		changed |= 0x01;
	}  else if (debug_status & DBSR_IAC4) {
1560
		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1561 1562 1563 1564 1565 1566 1567 1568 1569
		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
			     4);
		changed |= 0x01;
	}
	/*
	 * At the point this routine was called, the MSR(DE) was turned off.
	 * Check all other debug flags and see if that bit needs to be turned
	 * back on or not.
	 */
1570
	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1571
			       current->thread.debug.dbcr1))
1572 1573 1574
		regs->msr |= MSR_DE;
	else
		/* Make sure the IDM flag is off */
1575
		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1576 1577

	if (changed & 0x01)
1578
		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1579
}
1580

1581
void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1582
{
1583
	current->thread.debug.dbsr = debug_status;
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
	 * on server, it stops on the target of the branch. In order to simulate
	 * the server behaviour, we thus restart right away with a single step
	 * instead of stopping here when hitting a BT
	 */
	if (debug_status & DBSR_BT) {
		regs->msr &= ~MSR_DE;

		/* Disable BT */
		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
		/* Clear the BT event */
		mtspr(SPRN_DBSR, DBSR_BT);

		/* Do the single step trick only when coming from userspace */
		if (user_mode(regs)) {
1600 1601
			current->thread.debug.dbcr0 &= ~DBCR0_BT;
			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
			regs->msr |= MSR_DE;
			return;
		}

		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
			       5, SIGTRAP) == NOTIFY_STOP) {
			return;
		}
		if (debugger_sstep(regs))
			return;
	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1613
		regs->msr &= ~MSR_DE;
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

		/* Disable instruction completion */
		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
		/* Clear the instruction completion event */
		mtspr(SPRN_DBSR, DBSR_IC);

		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
			       5, SIGTRAP) == NOTIFY_STOP) {
			return;
		}

		if (debugger_sstep(regs))
			return;

1628
		if (user_mode(regs)) {
1629 1630 1631
			current->thread.debug.dbcr0 &= ~DBCR0_IC;
			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
					       current->thread.debug.dbcr1))
1632 1633 1634
				regs->msr |= MSR_DE;
			else
				/* Make sure the IDM bit is off */
1635
				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1636
		}
1637 1638 1639 1640

		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
	} else
		handle_debug(regs, debug_status);
1641
}
1642
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

#if !defined(CONFIG_TAU_INT)
void TAUException(struct pt_regs *regs)
{
	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
	       regs->nip, regs->msr, regs->trap, print_tainted());
}
#endif /* CONFIG_INT_TAU */

#ifdef CONFIG_ALTIVEC
1653
void altivec_assist_exception(struct pt_regs *regs)
1654 1655 1656 1657 1658 1659
{
	int err;

	if (!user_mode(regs)) {
		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
		       " at %lx\n", regs->nip);
P
Paul Mackerras 已提交
1660
		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1661 1662
	}

1663 1664
	flush_altivec_to_thread(current);

1665
	PPC_WARN_EMULATED(altivec, regs);
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	err = emulate_altivec(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else {
		/* didn't recognize the instruction */
		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1679 1680
		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
				   "in %s at %lx\n", current->comm, regs->nip);
1681
		current->thread.vr_state.vscr.u[3] |= 0x10000;
1682 1683 1684 1685
	}
}
#endif /* CONFIG_ALTIVEC */

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
#ifdef CONFIG_VSX
void vsx_assist_exception(struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		printk(KERN_EMERG "VSX assist exception in kernel mode"
		       " at %lx\n", regs->nip);
		die("Kernel VSX assist exception", regs, SIGILL);
	}

	flush_vsx_to_thread(current);
	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
}
#endif /* CONFIG_VSX */

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
#ifdef CONFIG_FSL_BOOKE
void CacheLockingException(struct pt_regs *regs, unsigned long address,
			   unsigned long error_code)
{
	/* We treat cache locking instructions from the user
	 * as priv ops, in the future we could try to do
	 * something smarter
	 */
	if (error_code & (ESR_DLK|ESR_ILK))
		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
	return;
}
#endif /* CONFIG_FSL_BOOKE */

#ifdef CONFIG_SPE
void SPEFloatingPointException(struct pt_regs *regs)
{
1718
	extern int do_spe_mathemu(struct pt_regs *regs);
1719 1720 1721
	unsigned long spefscr;
	int fpexc_mode;
	int code = 0;
1722 1723
	int err;

1724
	flush_spe_to_thread(current);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

	spefscr = current->thread.spefscr;
	fpexc_mode = current->thread.fpexc_mode;

	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
		code = FPE_FLTOVF;
	}
	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
		code = FPE_FLTUND;
	}
	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
		code = FPE_FLTDIV;
	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
		code = FPE_FLTINV;
	}
	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
		code = FPE_FLTRES;

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	err = do_spe_mathemu(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, code, regs->nip);
	}
1760 1761 1762

	return;
}
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

void SPEFloatingPointRoundException(struct pt_regs *regs)
{
	extern int speround_handler(struct pt_regs *regs);
	int err;

	preempt_disable();
	if (regs->msr & MSR_SPE)
		giveup_spe(current);
	preempt_enable();

	regs->nip -= 4;
	err = speround_handler(regs);
	if (err == 0) {
		regs->nip += 4;		/* skip emulated instruction */
		emulate_single_step(regs);
		return;
	}

	if (err == -EFAULT) {
		/* got an error reading the instruction */
		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
	} else if (err == -EINVAL) {
		/* didn't recognize the instruction */
		printk(KERN_ERR "unrecognized spe instruction "
		       "in %s at %lx\n", current->comm, regs->nip);
	} else {
		_exception(SIGFPE, regs, 0, regs->nip);
		return;
	}
}
1794 1795
#endif

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
/*
 * We enter here if we get an unrecoverable exception, that is, one
 * that happened at a point where the RI (recoverable interrupt) bit
 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
 * we therefore lost state by taking this exception.
 */
void unrecoverable_exception(struct pt_regs *regs)
{
	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
	       regs->trap, regs->nip);
	die("Unrecoverable exception", regs, SIGABRT);
}

1809
#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
/*
 * Default handler for a Watchdog exception,
 * spins until a reboot occurs
 */
void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
{
	/* Generic WatchdogHandler, implement your own */
	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
	return;
}

void WatchdogException(struct pt_regs *regs)
{
	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
	WatchdogHandler(regs);
}
#endif
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

/*
 * We enter here if we discover during exception entry that we are
 * running in supervisor mode with a userspace value in the stack pointer.
 */
void kernel_bad_stack(struct pt_regs *regs)
{
	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
	       regs->gpr[1], regs->nip);
	die("Bad kernel stack pointer", regs, SIGABRT);
}
1838 1839 1840 1841

void __init trap_init(void)
{
}
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861


#ifdef CONFIG_PPC_EMULATED_STATS

#define WARN_EMULATED_SETUP(type)	.type = { .name = #type }

struct ppc_emulated ppc_emulated = {
#ifdef CONFIG_ALTIVEC
	WARN_EMULATED_SETUP(altivec),
#endif
	WARN_EMULATED_SETUP(dcba),
	WARN_EMULATED_SETUP(dcbz),
	WARN_EMULATED_SETUP(fp_pair),
	WARN_EMULATED_SETUP(isel),
	WARN_EMULATED_SETUP(mcrxr),
	WARN_EMULATED_SETUP(mfpvr),
	WARN_EMULATED_SETUP(multiple),
	WARN_EMULATED_SETUP(popcntb),
	WARN_EMULATED_SETUP(spe),
	WARN_EMULATED_SETUP(string),
1862
	WARN_EMULATED_SETUP(sync),
1863 1864 1865 1866 1867 1868 1869
	WARN_EMULATED_SETUP(unaligned),
#ifdef CONFIG_MATH_EMULATION
	WARN_EMULATED_SETUP(math),
#endif
#ifdef CONFIG_VSX
	WARN_EMULATED_SETUP(vsx),
#endif
1870 1871 1872
#ifdef CONFIG_PPC64
	WARN_EMULATED_SETUP(mfdscr),
	WARN_EMULATED_SETUP(mtdscr),
A
Anton Blanchard 已提交
1873
	WARN_EMULATED_SETUP(lq_stq),
1874
#endif
1875 1876 1877 1878 1879 1880
};

u32 ppc_warn_emulated;

void ppc_warn_emulated_print(const char *type)
{
1881 1882
	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
			    type);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
}

static int __init ppc_warn_emulated_init(void)
{
	struct dentry *dir, *d;
	unsigned int i;
	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;

	if (!powerpc_debugfs_root)
		return -ENODEV;

	dir = debugfs_create_dir("emulated_instructions",
				 powerpc_debugfs_root);
	if (!dir)
		return -ENOMEM;

	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
			       &ppc_warn_emulated);
	if (!d)
		goto fail;

	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
				       (u32 *)&entries[i].val.counter);
		if (!d)
			goto fail;
	}

	return 0;

fail:
	debugfs_remove_recursive(dir);
	return -ENOMEM;
}

device_initcall(ppc_warn_emulated_init);

#endif /* CONFIG_PPC_EMULATED_STATS */