cpufreq_conservative.c 20.3 KB
Newer Older
1 2 3 4 5 6
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
7
 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
A
Andrew Morton 已提交
18
#include <linux/cpu.h>
19 20
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
21
#include <linux/mutex.h>
22 23 24 25 26
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/sched.h>

27 28 29 30 31 32 33 34
/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)

35 36
/*
 * The polling frequency of this governor depends on the capability of
37
 * the processor. Default polling frequency is 1000 times the transition
38 39
 * latency of the processor. The governor will work on any processor with
 * transition latency <= 10mS, using appropriate sampling
40
 * rate.
41 42
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
43 44
 * All times here are in uS.
 */
45
#define MIN_SAMPLING_RATE_RATIO			(2)
46

47 48
static unsigned int min_sampling_rate;

49
#define LATENCY_MULTIPLIER			(1000)
50
#define MIN_LATENCY_MULTIPLIER			(100)
51 52
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
53
#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54

D
David Howells 已提交
55
static void do_dbs_timer(struct work_struct *work);
56 57

struct cpu_dbs_info_s {
58 59 60
	cputime64_t prev_cpu_idle;
	cputime64_t prev_cpu_wall;
	cputime64_t prev_cpu_nice;
61
	struct cpufreq_policy *cur_policy;
62
	struct delayed_work work;
63 64
	unsigned int down_skip;
	unsigned int requested_freq;
65 66
	int cpu;
	unsigned int enable:1;
67 68 69 70 71 72
	/*
	 * percpu mutex that serializes governor limit change with
	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
	 * when user is changing the governor or limits.
	 */
	struct mutex timer_mutex;
73
};
74
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75 76 77

static unsigned int dbs_enable;	/* number of CPUs using this policy */

78
/*
79
 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
80
 * different CPUs. It protects dbs_enable in governor start/stop.
81
 */
82
static DEFINE_MUTEX(dbs_mutex);
83

84 85 86
static struct workqueue_struct	*kconservative_wq;

static struct dbs_tuners {
87 88 89 90 91 92
	unsigned int sampling_rate;
	unsigned int sampling_down_factor;
	unsigned int up_threshold;
	unsigned int down_threshold;
	unsigned int ignore_nice;
	unsigned int freq_step;
93
} dbs_tuners_ins = {
94 95 96 97 98
	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
	.ignore_nice = 0,
	.freq_step = 5,
99 100
};

101 102
static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
							cputime64_t *wall)
103
{
104 105 106 107 108 109 110
	cputime64_t idle_time;
	cputime64_t cur_wall_time;
	cputime64_t busy_time;

	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
			kstat_cpu(cpu).cpustat.system);
111

112 113 114 115
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
116

117 118
	idle_time = cputime64_sub(cur_wall_time, busy_time);
	if (wall)
119
		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
120

121
	return (cputime64_t)jiffies_to_usecs(idle_time);;
122 123 124 125 126 127 128 129 130 131
}

static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
	u64 idle_time = get_cpu_idle_time_us(cpu, wall);

	if (idle_time == -1ULL)
		return get_cpu_idle_time_jiffy(cpu, wall);

	return idle_time;
132 133
}

134 135 136 137 138 139
/* keep track of frequency transitions */
static int
dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
		     void *data)
{
	struct cpufreq_freqs *freq = data;
140
	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
141 142
							freq->cpu);

143 144
	struct cpufreq_policy *policy;

145 146 147
	if (!this_dbs_info->enable)
		return 0;

148 149 150 151 152 153 154 155 156 157
	policy = this_dbs_info->cur_policy;

	/*
	 * we only care if our internally tracked freq moves outside
	 * the 'valid' ranges of freqency available to us otherwise
	 * we do not change it
	*/
	if (this_dbs_info->requested_freq > policy->max
			|| this_dbs_info->requested_freq < policy->min)
		this_dbs_info->requested_freq = freq->new;
158 159 160 161 162 163 164 165

	return 0;
}

static struct notifier_block dbs_cpufreq_notifier_block = {
	.notifier_call = dbs_cpufreq_notifier
};

166
/************************** sysfs interface ************************/
167 168
static ssize_t show_sampling_rate_max(struct kobject *kobj,
				      struct attribute *attr, char *buf)
169
{
170 171
	printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
		    "sysfs file is deprecated - used by: %s\n", current->comm);
172
	return sprintf(buf, "%u\n", -1U);
173 174
}

175 176
static ssize_t show_sampling_rate_min(struct kobject *kobj,
				      struct attribute *attr, char *buf)
177
{
178
	return sprintf(buf, "%u\n", min_sampling_rate);
179 180
}

181
#define define_one_ro(_name)		\
182
static struct global_attr _name =	\
183 184 185 186 187 188 189 190
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(sampling_rate_max);
define_one_ro(sampling_rate_min);

/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
191
(struct kobject *kobj, struct attribute *attr, char *buf)		\
192 193 194 195 196 197 198
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
199
show_one(ignore_nice_load, ignore_nice);
200 201
show_one(freq_step, freq_step);

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*** delete after deprecation time ***/
#define DEPRECATION_MSG(file_name)					\
	printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs "	\
		"interface is deprecated - " #file_name "\n");

#define show_one_old(file_name)						\
static ssize_t show_##file_name##_old					\
(struct cpufreq_policy *unused, char *buf)				\
{									\
	printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs "	\
		"interface is deprecated - " #file_name "\n");		\
	return show_##file_name(NULL, NULL, buf);			\
}
show_one_old(sampling_rate);
show_one_old(sampling_down_factor);
show_one_old(up_threshold);
show_one_old(down_threshold);
show_one_old(ignore_nice_load);
show_one_old(freq_step);
show_one_old(sampling_rate_min);
show_one_old(sampling_rate_max);

#define define_one_ro_old(object, _name)	\
static struct freq_attr object =		\
__ATTR(_name, 0444, show_##_name##_old, NULL)

define_one_ro_old(sampling_rate_min_old, sampling_rate_min);
define_one_ro_old(sampling_rate_max_old, sampling_rate_max);

/*** delete after deprecation time ***/

static ssize_t store_sampling_down_factor(struct kobject *a,
					  struct attribute *b,
					  const char *buf, size_t count)
236 237 238
{
	unsigned int input;
	int ret;
239
	ret = sscanf(buf, "%u", &input);
240

241
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
242 243
		return -EINVAL;

244
	mutex_lock(&dbs_mutex);
245
	dbs_tuners_ins.sampling_down_factor = input;
246
	mutex_unlock(&dbs_mutex);
247 248 249 250

	return count;
}

251 252
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
				   const char *buf, size_t count)
253 254 255
{
	unsigned int input;
	int ret;
256
	ret = sscanf(buf, "%u", &input);
257

258
	if (ret != 1)
259
		return -EINVAL;
260 261

	mutex_lock(&dbs_mutex);
262
	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
263
	mutex_unlock(&dbs_mutex);
264 265 266 267

	return count;
}

268 269
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
				  const char *buf, size_t count)
270 271 272
{
	unsigned int input;
	int ret;
273
	ret = sscanf(buf, "%u", &input);
274

275
	mutex_lock(&dbs_mutex);
276
	if (ret != 1 || input > 100 ||
277
			input <= dbs_tuners_ins.down_threshold) {
278
		mutex_unlock(&dbs_mutex);
279 280 281 282
		return -EINVAL;
	}

	dbs_tuners_ins.up_threshold = input;
283
	mutex_unlock(&dbs_mutex);
284 285 286 287

	return count;
}

288 289
static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
				    const char *buf, size_t count)
290 291 292
{
	unsigned int input;
	int ret;
293
	ret = sscanf(buf, "%u", &input);
294

295
	mutex_lock(&dbs_mutex);
296 297 298
	/* cannot be lower than 11 otherwise freq will not fall */
	if (ret != 1 || input < 11 || input > 100 ||
			input >= dbs_tuners_ins.up_threshold) {
299
		mutex_unlock(&dbs_mutex);
300 301 302 303
		return -EINVAL;
	}

	dbs_tuners_ins.down_threshold = input;
304
	mutex_unlock(&dbs_mutex);
305 306 307 308

	return count;
}

309 310
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
				      const char *buf, size_t count)
311 312 313 314 315
{
	unsigned int input;
	int ret;

	unsigned int j;
316 317 318

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
319 320
		return -EINVAL;

321
	if (input > 1)
322
		input = 1;
323

324
	mutex_lock(&dbs_mutex);
325
	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
326
		mutex_unlock(&dbs_mutex);
327 328 329 330
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

331
	/* we need to re-evaluate prev_cpu_idle */
332
	for_each_online_cpu(j) {
333
		struct cpu_dbs_info_s *dbs_info;
334
		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
335 336 337 338
		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&dbs_info->prev_cpu_wall);
		if (dbs_tuners_ins.ignore_nice)
			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
339
	}
340
	mutex_unlock(&dbs_mutex);
341 342 343 344

	return count;
}

345 346
static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
			       const char *buf, size_t count)
347 348 349
{
	unsigned int input;
	int ret;
350
	ret = sscanf(buf, "%u", &input);
351

352
	if (ret != 1)
353 354
		return -EINVAL;

355
	if (input > 100)
356
		input = 100;
357

358 359
	/* no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :) */
360
	mutex_lock(&dbs_mutex);
361
	dbs_tuners_ins.freq_step = input;
362
	mutex_unlock(&dbs_mutex);
363 364 365 366 367

	return count;
}

#define define_one_rw(_name) \
368
static struct global_attr _name = \
369 370 371 372 373 374
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(sampling_rate);
define_one_rw(sampling_down_factor);
define_one_rw(up_threshold);
define_one_rw(down_threshold);
375
define_one_rw(ignore_nice_load);
376 377
define_one_rw(freq_step);

378
static struct attribute *dbs_attributes[] = {
379 380 381 382 383 384
	&sampling_rate_max.attr,
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
385
	&ignore_nice_load.attr,
386 387 388 389 390 391 392 393 394
	&freq_step.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "conservative",
};

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/*** delete after deprecation time ***/

#define write_one_old(file_name)					\
static ssize_t store_##file_name##_old					\
(struct cpufreq_policy *unused, const char *buf, size_t count)		\
{									\
	printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs "	\
		"interface is deprecated - " #file_name "\n");	\
	return store_##file_name(NULL, NULL, buf, count);		\
}
write_one_old(sampling_rate);
write_one_old(sampling_down_factor);
write_one_old(up_threshold);
write_one_old(down_threshold);
write_one_old(ignore_nice_load);
write_one_old(freq_step);

#define define_one_rw_old(object, _name)	\
static struct freq_attr object =		\
__ATTR(_name, 0644, show_##_name##_old, store_##_name##_old)

define_one_rw_old(sampling_rate_old, sampling_rate);
define_one_rw_old(sampling_down_factor_old, sampling_down_factor);
define_one_rw_old(up_threshold_old, up_threshold);
define_one_rw_old(down_threshold_old, down_threshold);
define_one_rw_old(ignore_nice_load_old, ignore_nice_load);
define_one_rw_old(freq_step_old, freq_step);

static struct attribute *dbs_attributes_old[] = {
	&sampling_rate_max_old.attr,
	&sampling_rate_min_old.attr,
	&sampling_rate_old.attr,
	&sampling_down_factor_old.attr,
	&up_threshold_old.attr,
	&down_threshold_old.attr,
	&ignore_nice_load_old.attr,
	&freq_step_old.attr,
	NULL
};

static struct attribute_group dbs_attr_group_old = {
	.attrs = dbs_attributes_old,
	.name = "conservative",
};

/*** delete after deprecation time ***/

442 443
/************************** sysfs end ************************/

444
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
445
{
446
	unsigned int load = 0;
447
	unsigned int max_load = 0;
448
	unsigned int freq_target;
449

450 451
	struct cpufreq_policy *policy;
	unsigned int j;
452

453 454
	policy = this_dbs_info->cur_policy;

455
	/*
456 457 458 459
	 * Every sampling_rate, we check, if current idle time is less
	 * than 20% (default), then we try to increase frequency
	 * Every sampling_rate*sampling_down_factor, we check, if current
	 * idle time is more than 80%, then we try to decrease frequency
460
	 *
461 462
	 * Any frequency increase takes it to the maximum frequency.
	 * Frequency reduction happens at minimum steps of
463
	 * 5% (default) of maximum frequency
464 465
	 */

466 467 468 469 470
	/* Get Absolute Load */
	for_each_cpu(j, policy->cpus) {
		struct cpu_dbs_info_s *j_dbs_info;
		cputime64_t cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
471

472
		j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
473 474 475 476 477 478

		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);

		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
				j_dbs_info->prev_cpu_wall);
		j_dbs_info->prev_cpu_wall = cur_wall_time;
479

480 481 482
		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
				j_dbs_info->prev_cpu_idle);
		j_dbs_info->prev_cpu_idle = cur_idle_time;
483

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
		if (dbs_tuners_ins.ignore_nice) {
			cputime64_t cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
					 j_dbs_info->prev_cpu_nice);
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

		load = 100 * (wall_time - idle_time) / wall_time;
505 506 507

		if (load > max_load)
			max_load = load;
508 509 510 511 512 513 514 515
	}

	/*
	 * break out if we 'cannot' reduce the speed as the user might
	 * want freq_step to be zero
	 */
	if (dbs_tuners_ins.freq_step == 0)
		return;
516

517
	/* Check for frequency increase */
518
	if (max_load > dbs_tuners_ins.up_threshold) {
519
		this_dbs_info->down_skip = 0;
520

521
		/* if we are already at full speed then break out early */
522
		if (this_dbs_info->requested_freq == policy->max)
523
			return;
524

525
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
526 527

		/* max freq cannot be less than 100. But who knows.... */
528 529
		if (unlikely(freq_target == 0))
			freq_target = 5;
530

531
		this_dbs_info->requested_freq += freq_target;
532 533
		if (this_dbs_info->requested_freq > policy->max)
			this_dbs_info->requested_freq = policy->max;
534

535
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
536 537 538 539
			CPUFREQ_RELATION_H);
		return;
	}

540 541 542 543 544
	/*
	 * The optimal frequency is the frequency that is the lowest that
	 * can support the current CPU usage without triggering the up
	 * policy. To be safe, we focus 10 points under the threshold.
	 */
545
	if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
546
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
547

548
		this_dbs_info->requested_freq -= freq_target;
549 550
		if (this_dbs_info->requested_freq < policy->min)
			this_dbs_info->requested_freq = policy->min;
551

552 553 554 555 556 557
		/*
		 * if we cannot reduce the frequency anymore, break out early
		 */
		if (policy->cur == policy->min)
			return;

558
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
559
				CPUFREQ_RELATION_H);
560 561 562 563
		return;
	}
}

D
David Howells 已提交
564
static void do_dbs_timer(struct work_struct *work)
565
{
566 567 568 569 570 571 572 573 574
	struct cpu_dbs_info_s *dbs_info =
		container_of(work, struct cpu_dbs_info_s, work.work);
	unsigned int cpu = dbs_info->cpu;

	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);

	delay -= jiffies % delay;

575
	mutex_lock(&dbs_info->timer_mutex);
576 577 578 579

	dbs_check_cpu(dbs_info);

	queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
580
	mutex_unlock(&dbs_info->timer_mutex);
581
}
582

583
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
584
{
585 586 587 588 589 590 591 592
	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	delay -= jiffies % delay;

	dbs_info->enable = 1;
	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
	queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
				delay);
593 594
}

595
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
596
{
597
	dbs_info->enable = 0;
598
	cancel_delayed_work_sync(&dbs_info->work);
599 600 601 602 603 604 605 606
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;
J
Jeff Garzik 已提交
607
	int rc;
608

609
	this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
610 611 612

	switch (event) {
	case CPUFREQ_GOV_START:
613
		if ((!cpu_online(cpu)) || (!policy->cur))
614 615
			return -EINVAL;

616
		mutex_lock(&dbs_mutex);
J
Jeff Garzik 已提交
617

618
		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
J
Jeff Garzik 已提交
619 620 621 622 623
		if (rc) {
			mutex_unlock(&dbs_mutex);
			return rc;
		}

624
		for_each_cpu(j, policy->cpus) {
625
			struct cpu_dbs_info_s *j_dbs_info;
626
			j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
627
			j_dbs_info->cur_policy = policy;
628

629 630 631 632 633 634
			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&j_dbs_info->prev_cpu_wall);
			if (dbs_tuners_ins.ignore_nice) {
				j_dbs_info->prev_cpu_nice =
						kstat_cpu(j).cpustat.nice;
			}
635
		}
636 637
		this_dbs_info->down_skip = 0;
		this_dbs_info->requested_freq = policy->cur;
J
Jeff Garzik 已提交
638

639
		mutex_init(&this_dbs_info->timer_mutex);
640 641 642 643 644 645 646 647
		dbs_enable++;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
648 649 650
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
651

652 653 654 655 656 657 658
			rc = sysfs_create_group(cpufreq_global_kobject,
						&dbs_attr_group);
			if (rc) {
				mutex_unlock(&dbs_mutex);
				return rc;
			}

659 660 661 662 663 664 665 666 667 668 669 670
			/*
			 * conservative does not implement micro like ondemand
			 * governor, thus we are bound to jiffes/HZ
			 */
			min_sampling_rate =
				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
			/* Bring kernel and HW constraints together */
			min_sampling_rate = max(min_sampling_rate,
					MIN_LATENCY_MULTIPLIER * latency);
			dbs_tuners_ins.sampling_rate =
				max(min_sampling_rate,
				    latency * LATENCY_MULTIPLIER);
671

672 673 674
			cpufreq_register_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);
675
		}
676
		mutex_unlock(&dbs_mutex);
677

678 679
		dbs_timer_init(this_dbs_info);

680 681 682
		break;

	case CPUFREQ_GOV_STOP:
683
		dbs_timer_exit(this_dbs_info);
684 685

		mutex_lock(&dbs_mutex);
686
		sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
687
		dbs_enable--;
688
		mutex_destroy(&this_dbs_info->timer_mutex);
689

690 691 692 693
		/*
		 * Stop the timerschedule work, when this governor
		 * is used for first time
		 */
694
		if (dbs_enable == 0)
695 696 697 698
			cpufreq_unregister_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);

699
		mutex_unlock(&dbs_mutex);
700 701 702
		if (!dbs_enable)
			sysfs_remove_group(cpufreq_global_kobject,
					   &dbs_attr_group);
703 704 705 706

		break;

	case CPUFREQ_GOV_LIMITS:
707
		mutex_lock(&this_dbs_info->timer_mutex);
708 709 710
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
711
					policy->max, CPUFREQ_RELATION_H);
712 713 714
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
715
					policy->min, CPUFREQ_RELATION_L);
716
		mutex_unlock(&this_dbs_info->timer_mutex);
717

718 719 720 721 722
		break;
	}
	return 0;
}

723 724 725
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
#endif
726 727 728 729 730
struct cpufreq_governor cpufreq_gov_conservative = {
	.name			= "conservative",
	.governor		= cpufreq_governor_dbs,
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
731 732 733 734
};

static int __init cpufreq_gov_dbs_init(void)
{
735 736 737 738 739 740 741 742 743 744 745 746 747
	int err;

	kconservative_wq = create_workqueue("kconservative");
	if (!kconservative_wq) {
		printk(KERN_ERR "Creation of kconservative failed\n");
		return -EFAULT;
	}

	err = cpufreq_register_governor(&cpufreq_gov_conservative);
	if (err)
		destroy_workqueue(kconservative_wq);

	return err;
748 749 750 751
}

static void __exit cpufreq_gov_dbs_exit(void)
{
752
	cpufreq_unregister_governor(&cpufreq_gov_conservative);
753
	destroy_workqueue(kconservative_wq);
754 755 756
}


757
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
758
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
759 760
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
761
MODULE_LICENSE("GPL");
762

763 764 765
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall(cpufreq_gov_dbs_init);
#else
766
module_init(cpufreq_gov_dbs_init);
767
#endif
768
module_exit(cpufreq_gov_dbs_exit);