cpufreq_conservative.c 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ctype.h>
#include <linux/cpufreq.h>
#include <linux/sysctl.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/sysfs.h>
A
Andrew Morton 已提交
25
#include <linux/cpu.h>
26 27 28 29 30 31
#include <linux/sched.h>
#include <linux/kmod.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
32
#include <linux/mutex.h>
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)

/* 
 * The polling frequency of this governor depends on the capability of 
 * the processor. Default polling frequency is 1000 times the transition
 * latency of the processor. The governor will work on any processor with 
 * transition latency <= 10mS, using appropriate sampling 
 * rate.
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
 * All times here are in uS.
 */
static unsigned int 				def_sampling_rate;
52 53 54 55
#define MIN_SAMPLING_RATE_RATIO			(2)
/* for correct statistics, we need at least 10 ticks between each measure */
#define MIN_STAT_SAMPLING_RATE			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
#define MIN_SAMPLING_RATE			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
56
#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
57 58 59
#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
60 61 62 63 64 65 66 67 68
#define TRANSITION_LATENCY_LIMIT		(10 * 1000)

static void do_dbs_timer(void *data);

struct cpu_dbs_info_s {
	struct cpufreq_policy 	*cur_policy;
	unsigned int 		prev_cpu_idle_up;
	unsigned int 		prev_cpu_idle_down;
	unsigned int 		enable;
69 70
	unsigned int		down_skip;
	unsigned int		requested_freq;
71 72 73 74 75
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);

static unsigned int dbs_enable;	/* number of CPUs using this policy */

76 77 78 79 80 81 82 83
/*
 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
 * lock and dbs_mutex. cpu_hotplug lock should always be held before
 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
 * is recursive for the same process. -Venki
 */
84
static DEFINE_MUTEX 	(dbs_mutex);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL);

struct dbs_tuners {
	unsigned int 		sampling_rate;
	unsigned int		sampling_down_factor;
	unsigned int		up_threshold;
	unsigned int		down_threshold;
	unsigned int		ignore_nice;
	unsigned int		freq_step;
};

static struct dbs_tuners dbs_tuners_ins = {
	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
100 101
	.ignore_nice		= 0,
	.freq_step		= 5,
102 103
};

104 105 106 107
static inline unsigned int get_cpu_idle_time(unsigned int cpu)
{
	return	kstat_cpu(cpu).cpustat.idle +
		kstat_cpu(cpu).cpustat.iowait +
108
		( dbs_tuners_ins.ignore_nice ?
109 110 111 112
		  kstat_cpu(cpu).cpustat.nice :
		  0);
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
}

static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
}

#define define_one_ro(_name) 					\
static struct freq_attr _name =  				\
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(sampling_rate_max);
define_one_ro(sampling_rate_min);

/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
(struct cpufreq_policy *unused, char *buf)				\
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
142
show_one(ignore_nice_load, ignore_nice);
143 144 145 146 147 148 149 150
show_one(freq_step, freq_step);

static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);
151
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
152 153
		return -EINVAL;

154
	mutex_lock(&dbs_mutex);
155
	dbs_tuners_ins.sampling_down_factor = input;
156
	mutex_unlock(&dbs_mutex);
157 158 159 160 161 162 163 164 165 166 167

	return count;
}

static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

168
	mutex_lock(&dbs_mutex);
169
	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
170
		mutex_unlock(&dbs_mutex);
171 172 173 174
		return -EINVAL;
	}

	dbs_tuners_ins.sampling_rate = input;
175
	mutex_unlock(&dbs_mutex);
176 177 178 179 180 181 182 183 184 185 186

	return count;
}

static ssize_t store_up_threshold(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

187
	mutex_lock(&dbs_mutex);
188
	if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
189
		mutex_unlock(&dbs_mutex);
190 191 192 193
		return -EINVAL;
	}

	dbs_tuners_ins.up_threshold = input;
194
	mutex_unlock(&dbs_mutex);
195 196 197 198 199 200 201 202 203 204 205

	return count;
}

static ssize_t store_down_threshold(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

206
	mutex_lock(&dbs_mutex);
207
	if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
208
		mutex_unlock(&dbs_mutex);
209 210 211 212
		return -EINVAL;
	}

	dbs_tuners_ins.down_threshold = input;
213
	mutex_unlock(&dbs_mutex);
214 215 216 217

	return count;
}

218
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
219 220 221 222 223 224 225 226 227 228 229 230 231 232
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	unsigned int j;
	
	ret = sscanf (buf, "%u", &input);
	if ( ret != 1 )
		return -EINVAL;

	if ( input > 1 )
		input = 1;
	
233
	mutex_lock(&dbs_mutex);
234
	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
235
		mutex_unlock(&dbs_mutex);
236 237 238 239 240
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
241
	for_each_online_cpu(j) {
242 243
		struct cpu_dbs_info_s *j_dbs_info;
		j_dbs_info = &per_cpu(cpu_dbs_info, j);
244
		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
245 246
		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
	}
247
	mutex_unlock(&dbs_mutex);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

	return count;
}

static ssize_t store_freq_step(struct cpufreq_policy *policy,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf (buf, "%u", &input);

	if ( ret != 1 )
		return -EINVAL;

	if ( input > 100 )
		input = 100;
	
	/* no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :) */
268
	mutex_lock(&dbs_mutex);
269
	dbs_tuners_ins.freq_step = input;
270
	mutex_unlock(&dbs_mutex);
271 272 273 274 275 276 277 278 279 280 281 282

	return count;
}

#define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(sampling_rate);
define_one_rw(sampling_down_factor);
define_one_rw(up_threshold);
define_one_rw(down_threshold);
283
define_one_rw(ignore_nice_load);
284 285 286 287 288 289 290 291 292
define_one_rw(freq_step);

static struct attribute * dbs_attributes[] = {
	&sampling_rate_max.attr,
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
293
	&ignore_nice_load.attr,
294 295 296 297 298 299 300 301 302 303 304 305 306 307
	&freq_step.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "conservative",
};

/************************** sysfs end ************************/

static void dbs_check_cpu(int cpu)
{
	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
308
	unsigned int tmp_idle_ticks, total_idle_ticks;
309 310
	unsigned int freq_step;
	unsigned int freq_down_sampling_rate;
311
	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
312 313 314 315 316
	struct cpufreq_policy *policy;

	if (!this_dbs_info->enable)
		return;

317 318
	policy = this_dbs_info->cur_policy;

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	/* 
	 * The default safe range is 20% to 80% 
	 * Every sampling_rate, we check
	 * 	- If current idle time is less than 20%, then we try to 
	 * 	  increase frequency
	 * Every sampling_rate*sampling_down_factor, we check
	 * 	- If current idle time is more than 80%, then we try to
	 * 	  decrease frequency
	 *
	 * Any frequency increase takes it to the maximum frequency. 
	 * Frequency reduction happens at minimum steps of 
	 * 5% (default) of max_frequency 
	 */

	/* Check for frequency increase */
334
	idle_ticks = UINT_MAX;
335

336 337 338 339 340 341 342 343
	/* Check for frequency increase */
	total_idle_ticks = get_cpu_idle_time(cpu);
	tmp_idle_ticks = total_idle_ticks -
		this_dbs_info->prev_cpu_idle_up;
	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;

	if (tmp_idle_ticks < idle_ticks)
		idle_ticks = tmp_idle_ticks;
344 345 346 347

	/* Scale idle ticks by 100 and compare with up and down ticks */
	idle_ticks *= 100;
	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
348
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
349 350

	if (idle_ticks < up_idle_ticks) {
351
		this_dbs_info->down_skip = 0;
352 353
		this_dbs_info->prev_cpu_idle_down =
			this_dbs_info->prev_cpu_idle_up;
354

355
		/* if we are already at full speed then break out early */
356
		if (this_dbs_info->requested_freq == policy->max)
357 358 359 360 361 362 363 364
			return;
		
		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;

		/* max freq cannot be less than 100. But who knows.... */
		if (unlikely(freq_step == 0))
			freq_step = 5;
		
365 366 367
		this_dbs_info->requested_freq += freq_step;
		if (this_dbs_info->requested_freq > policy->max)
			this_dbs_info->requested_freq = policy->max;
368

369
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
370 371 372 373 374
			CPUFREQ_RELATION_H);
		return;
	}

	/* Check for frequency decrease */
375 376
	this_dbs_info->down_skip++;
	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
377 378
		return;

379 380 381 382 383
	/* Check for frequency decrease */
	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
	tmp_idle_ticks = total_idle_ticks -
		this_dbs_info->prev_cpu_idle_down;
	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
384

385 386
	if (tmp_idle_ticks < idle_ticks)
		idle_ticks = tmp_idle_ticks;
387 388 389

	/* Scale idle ticks by 100 and compare with up and down ticks */
	idle_ticks *= 100;
390
	this_dbs_info->down_skip = 0;
391 392 393 394

	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
		dbs_tuners_ins.sampling_down_factor;
	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
395
		usecs_to_jiffies(freq_down_sampling_rate);
396

397
	if (idle_ticks > down_idle_ticks) {
398 399
		/*
		 * if we are already at the lowest speed then break out early
400
		 * or if we 'cannot' reduce the speed as the user might want
401 402
		 * freq_step to be zero
		 */
403
		if (this_dbs_info->requested_freq == policy->min
404 405 406 407 408 409 410 411 412
				|| dbs_tuners_ins.freq_step == 0)
			return;

		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;

		/* max freq cannot be less than 100. But who knows.... */
		if (unlikely(freq_step == 0))
			freq_step = 5;

413 414 415
		this_dbs_info->requested_freq -= freq_step;
		if (this_dbs_info->requested_freq < policy->min)
			this_dbs_info->requested_freq = policy->min;
416

417
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
418
				CPUFREQ_RELATION_H);
419 420 421 422 423 424 425
		return;
	}
}

static void do_dbs_timer(void *data)
{ 
	int i;
426
	lock_cpu_hotplug();
427
	mutex_lock(&dbs_mutex);
428 429 430 431
	for_each_online_cpu(i)
		dbs_check_cpu(i);
	schedule_delayed_work(&dbs_work, 
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
432
	mutex_unlock(&dbs_mutex);
433
	unlock_cpu_hotplug();
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
} 

static inline void dbs_timer_init(void)
{
	INIT_WORK(&dbs_work, do_dbs_timer, NULL);
	schedule_delayed_work(&dbs_work,
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
	return;
}

static inline void dbs_timer_exit(void)
{
	cancel_delayed_work(&dbs_work);
	return;
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;

	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);

	switch (event) {
	case CPUFREQ_GOV_START:
		if ((!cpu_online(cpu)) || 
		    (!policy->cur))
			return -EINVAL;

		if (policy->cpuinfo.transition_latency >
				(TRANSITION_LATENCY_LIMIT * 1000))
			return -EINVAL;
		if (this_dbs_info->enable) /* Already enabled */
			break;
		 
471
		mutex_lock(&dbs_mutex);
472 473 474 475 476
		for_each_cpu_mask(j, policy->cpus) {
			struct cpu_dbs_info_s *j_dbs_info;
			j_dbs_info = &per_cpu(cpu_dbs_info, j);
			j_dbs_info->cur_policy = policy;
		
477
			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
478 479 480 481
			j_dbs_info->prev_cpu_idle_down
				= j_dbs_info->prev_cpu_idle_up;
		}
		this_dbs_info->enable = 1;
482 483
		this_dbs_info->down_skip = 0;
		this_dbs_info->requested_freq = policy->cur;
484 485 486 487 488 489 490 491 492
		sysfs_create_group(&policy->kobj, &dbs_attr_group);
		dbs_enable++;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
493 494 495
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
496

497
			def_sampling_rate = 10 * latency *
498
					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
499 500 501 502

			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
				def_sampling_rate = MIN_STAT_SAMPLING_RATE;

503 504 505 506 507
			dbs_tuners_ins.sampling_rate = def_sampling_rate;

			dbs_timer_init();
		}
		
508
		mutex_unlock(&dbs_mutex);
509 510 511
		break;

	case CPUFREQ_GOV_STOP:
512
		mutex_lock(&dbs_mutex);
513 514 515 516 517 518 519 520 521 522
		this_dbs_info->enable = 0;
		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
		dbs_enable--;
		/*
		 * Stop the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 0) 
			dbs_timer_exit();
		
523
		mutex_unlock(&dbs_mutex);
524 525 526 527

		break;

	case CPUFREQ_GOV_LIMITS:
528
		mutex_lock(&dbs_mutex);
529 530 531 532 533 534 535 536
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
				       	policy->max, CPUFREQ_RELATION_H);
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
				       	policy->min, CPUFREQ_RELATION_L);
537
		mutex_unlock(&dbs_mutex);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
		break;
	}
	return 0;
}

static struct cpufreq_governor cpufreq_gov_dbs = {
	.name		= "conservative",
	.governor	= cpufreq_governor_dbs,
	.owner		= THIS_MODULE,
};

static int __init cpufreq_gov_dbs_init(void)
{
	return cpufreq_register_governor(&cpufreq_gov_dbs);
}

static void __exit cpufreq_gov_dbs_exit(void)
{
	/* Make sure that the scheduled work is indeed not running */
	flush_scheduled_work();

	cpufreq_unregister_governor(&cpufreq_gov_dbs);
}


MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
MODULE_LICENSE ("GPL");

module_init(cpufreq_gov_dbs_init);
module_exit(cpufreq_gov_dbs_exit);