cpufreq_conservative.c 18.3 KB
Newer Older
1 2 3 4 5 6
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
7
 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
A
Andrew Morton 已提交
18
#include <linux/cpu.h>
19 20
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
21
#include <linux/mutex.h>
22 23 24 25 26
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/sched.h>

27 28 29 30 31 32 33 34
/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)

35 36
/*
 * The polling frequency of this governor depends on the capability of
37
 * the processor. Default polling frequency is 1000 times the transition
38 39
 * latency of the processor. The governor will work on any processor with
 * transition latency <= 10mS, using appropriate sampling
40
 * rate.
41 42
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
43 44
 * All times here are in uS.
 */
45
static unsigned int def_sampling_rate;
46 47
#define MIN_SAMPLING_RATE_RATIO			(2)
/* for correct statistics, we need at least 10 ticks between each measure */
48
#define MIN_STAT_SAMPLING_RATE 			\
49 50 51
			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
#define MIN_SAMPLING_RATE			\
			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
52 53 54 55 56 57 58 59 60 61 62 63
/* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
 * Define the minimal settable sampling rate to the greater of:
 *   - "HW transition latency" * 100 (same as default sampling / 10)
 *   - MIN_STAT_SAMPLING_RATE
 * To avoid that userspace shoots itself.
*/
static unsigned int minimum_sampling_rate(void)
{
	return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
}

/* This will also vanish soon with removing sampling_rate_max */
64
#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
65
#define LATENCY_MULTIPLIER			(1000)
66 67
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
68
#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
69

D
David Howells 已提交
70
static void do_dbs_timer(struct work_struct *work);
71 72

struct cpu_dbs_info_s {
73 74 75
	cputime64_t prev_cpu_idle;
	cputime64_t prev_cpu_wall;
	cputime64_t prev_cpu_nice;
76
	struct cpufreq_policy *cur_policy;
77
	struct delayed_work work;
78 79
	unsigned int down_skip;
	unsigned int requested_freq;
80 81
	int cpu;
	unsigned int enable:1;
82 83 84 85 86
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);

static unsigned int dbs_enable;	/* number of CPUs using this policy */

87 88 89 90 91 92 93
/*
 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
 * lock and dbs_mutex. cpu_hotplug lock should always be held before
 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
 * is recursive for the same process. -Venki
94 95 96
 * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
 * would deadlock with cancel_delayed_work_sync(), which is needed for proper
 * raceless workqueue teardown.
97
 */
98
static DEFINE_MUTEX(dbs_mutex);
99

100 101 102
static struct workqueue_struct	*kconservative_wq;

static struct dbs_tuners {
103 104 105 106 107 108
	unsigned int sampling_rate;
	unsigned int sampling_down_factor;
	unsigned int up_threshold;
	unsigned int down_threshold;
	unsigned int ignore_nice;
	unsigned int freq_step;
109
} dbs_tuners_ins = {
110 111 112 113 114
	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
	.ignore_nice = 0,
	.freq_step = 5,
115 116
};

117 118
static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
							cputime64_t *wall)
119
{
120 121 122 123 124 125 126
	cputime64_t idle_time;
	cputime64_t cur_wall_time;
	cputime64_t busy_time;

	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
			kstat_cpu(cpu).cpustat.system);
127

128 129 130 131
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
132

133 134 135
	idle_time = cputime64_sub(cur_wall_time, busy_time);
	if (wall)
		*wall = cur_wall_time;
136

137 138 139 140 141 142 143 144 145 146 147
	return idle_time;
}

static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
	u64 idle_time = get_cpu_idle_time_us(cpu, wall);

	if (idle_time == -1ULL)
		return get_cpu_idle_time_jiffy(cpu, wall);

	return idle_time;
148 149
}

150 151 152 153 154 155 156 157 158
/* keep track of frequency transitions */
static int
dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
		     void *data)
{
	struct cpufreq_freqs *freq = data;
	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
							freq->cpu);

159 160
	struct cpufreq_policy *policy;

161 162 163
	if (!this_dbs_info->enable)
		return 0;

164 165 166 167 168 169 170 171 172 173
	policy = this_dbs_info->cur_policy;

	/*
	 * we only care if our internally tracked freq moves outside
	 * the 'valid' ranges of freqency available to us otherwise
	 * we do not change it
	*/
	if (this_dbs_info->requested_freq > policy->max
			|| this_dbs_info->requested_freq < policy->min)
		this_dbs_info->requested_freq = freq->new;
174 175 176 177 178 179 180 181

	return 0;
}

static struct notifier_block dbs_cpufreq_notifier_block = {
	.notifier_call = dbs_cpufreq_notifier
};

182 183 184
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
{
185 186 187 188 189 190 191 192
	static int print_once;

	if (!print_once) {
		printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
		       "sysfs file is deprecated - used by: %s\n",
		       current->comm);
		print_once = 1;
	}
193
	return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
194 195 196 197
}

static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
{
198 199 200 201 202 203 204
	static int print_once;

	if (!print_once) {
		printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
		       "sysfs file is deprecated - used by: %s\n", current->comm);
		print_once = 1;
	}
205
	return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
206 207
}

208 209
#define define_one_ro(_name)		\
static struct freq_attr _name =		\
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(sampling_rate_max);
define_one_ro(sampling_rate_min);

/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
(struct cpufreq_policy *unused, char *buf)				\
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
226
show_one(ignore_nice_load, ignore_nice);
227 228
show_one(freq_step, freq_step);

229
static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
230 231 232 233
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
234
	ret = sscanf(buf, "%u", &input);
235

236
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
237 238
		return -EINVAL;

239
	mutex_lock(&dbs_mutex);
240
	dbs_tuners_ins.sampling_down_factor = input;
241
	mutex_unlock(&dbs_mutex);
242 243 244 245

	return count;
}

246
static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
247 248 249 250
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
251
	ret = sscanf(buf, "%u", &input);
252

253
	if (ret != 1)
254
		return -EINVAL;
255 256

	mutex_lock(&dbs_mutex);
257
	dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
258
	mutex_unlock(&dbs_mutex);
259 260 261 262

	return count;
}

263
static ssize_t store_up_threshold(struct cpufreq_policy *unused,
264 265 266 267
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
268
	ret = sscanf(buf, "%u", &input);
269

270
	mutex_lock(&dbs_mutex);
271
	if (ret != 1 || input > 100 ||
272
			input <= dbs_tuners_ins.down_threshold) {
273
		mutex_unlock(&dbs_mutex);
274 275 276 277
		return -EINVAL;
	}

	dbs_tuners_ins.up_threshold = input;
278
	mutex_unlock(&dbs_mutex);
279 280 281 282

	return count;
}

283
static ssize_t store_down_threshold(struct cpufreq_policy *unused,
284 285 286 287
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
288
	ret = sscanf(buf, "%u", &input);
289

290
	mutex_lock(&dbs_mutex);
291 292 293
	/* cannot be lower than 11 otherwise freq will not fall */
	if (ret != 1 || input < 11 || input > 100 ||
			input >= dbs_tuners_ins.up_threshold) {
294
		mutex_unlock(&dbs_mutex);
295 296 297 298
		return -EINVAL;
	}

	dbs_tuners_ins.down_threshold = input;
299
	mutex_unlock(&dbs_mutex);
300 301 302 303

	return count;
}

304
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
305 306 307 308 309 310
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	unsigned int j;
311 312 313

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
314 315
		return -EINVAL;

316
	if (input > 1)
317
		input = 1;
318

319
	mutex_lock(&dbs_mutex);
320
	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
321
		mutex_unlock(&dbs_mutex);
322 323 324 325
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

326
	/* we need to re-evaluate prev_cpu_idle */
327
	for_each_online_cpu(j) {
328 329 330 331 332 333
		struct cpu_dbs_info_s *dbs_info;
		dbs_info = &per_cpu(cpu_dbs_info, j);
		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&dbs_info->prev_cpu_wall);
		if (dbs_tuners_ins.ignore_nice)
			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
334
	}
335
	mutex_unlock(&dbs_mutex);
336 337 338 339 340 341 342 343 344

	return count;
}

static ssize_t store_freq_step(struct cpufreq_policy *policy,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
345
	ret = sscanf(buf, "%u", &input);
346

347
	if (ret != 1)
348 349
		return -EINVAL;

350
	if (input > 100)
351
		input = 100;
352

353 354
	/* no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :) */
355
	mutex_lock(&dbs_mutex);
356
	dbs_tuners_ins.freq_step = input;
357
	mutex_unlock(&dbs_mutex);
358 359 360 361 362 363 364 365 366 367 368 369

	return count;
}

#define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(sampling_rate);
define_one_rw(sampling_down_factor);
define_one_rw(up_threshold);
define_one_rw(down_threshold);
370
define_one_rw(ignore_nice_load);
371 372
define_one_rw(freq_step);

373
static struct attribute *dbs_attributes[] = {
374 375 376 377 378 379
	&sampling_rate_max.attr,
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
380
	&ignore_nice_load.attr,
381 382 383 384 385 386 387 388 389 390 391
	&freq_step.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "conservative",
};

/************************** sysfs end ************************/

392
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
393
{
394
	unsigned int load = 0;
395
	unsigned int freq_target;
396

397 398
	struct cpufreq_policy *policy;
	unsigned int j;
399

400 401
	policy = this_dbs_info->cur_policy;

402
	/*
403 404 405 406
	 * Every sampling_rate, we check, if current idle time is less
	 * than 20% (default), then we try to increase frequency
	 * Every sampling_rate*sampling_down_factor, we check, if current
	 * idle time is more than 80%, then we try to decrease frequency
407
	 *
408 409
	 * Any frequency increase takes it to the maximum frequency.
	 * Frequency reduction happens at minimum steps of
410
	 * 5% (default) of maximum frequency
411 412
	 */

413 414 415 416 417
	/* Get Absolute Load */
	for_each_cpu(j, policy->cpus) {
		struct cpu_dbs_info_s *j_dbs_info;
		cputime64_t cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
418

419 420 421 422 423 424 425
		j_dbs_info = &per_cpu(cpu_dbs_info, j);

		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);

		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
				j_dbs_info->prev_cpu_wall);
		j_dbs_info->prev_cpu_wall = cur_wall_time;
426

427 428 429
		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
				j_dbs_info->prev_cpu_idle);
		j_dbs_info->prev_cpu_idle = cur_idle_time;
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
		if (dbs_tuners_ins.ignore_nice) {
			cputime64_t cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
					 j_dbs_info->prev_cpu_nice);
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

		load = 100 * (wall_time - idle_time) / wall_time;
	}

	/*
	 * break out if we 'cannot' reduce the speed as the user might
	 * want freq_step to be zero
	 */
	if (dbs_tuners_ins.freq_step == 0)
		return;
460

461 462
	/* Check for frequency increase */
	if (load > dbs_tuners_ins.up_threshold) {
463
		this_dbs_info->down_skip = 0;
464

465
		/* if we are already at full speed then break out early */
466
		if (this_dbs_info->requested_freq == policy->max)
467
			return;
468

469
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
470 471

		/* max freq cannot be less than 100. But who knows.... */
472 473
		if (unlikely(freq_target == 0))
			freq_target = 5;
474

475
		this_dbs_info->requested_freq += freq_target;
476 477
		if (this_dbs_info->requested_freq > policy->max)
			this_dbs_info->requested_freq = policy->max;
478

479
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
480 481 482 483
			CPUFREQ_RELATION_H);
		return;
	}

484 485 486 487 488 489
	/*
	 * The optimal frequency is the frequency that is the lowest that
	 * can support the current CPU usage without triggering the up
	 * policy. To be safe, we focus 10 points under the threshold.
	 */
	if (load < (dbs_tuners_ins.down_threshold - 10)) {
490
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
491

492
		this_dbs_info->requested_freq -= freq_target;
493 494
		if (this_dbs_info->requested_freq < policy->min)
			this_dbs_info->requested_freq = policy->min;
495

496 497 498 499 500 501
		/*
		 * if we cannot reduce the frequency anymore, break out early
		 */
		if (policy->cur == policy->min)
			return;

502
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
503
				CPUFREQ_RELATION_H);
504 505 506 507
		return;
	}
}

D
David Howells 已提交
508
static void do_dbs_timer(struct work_struct *work)
509
{
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	struct cpu_dbs_info_s *dbs_info =
		container_of(work, struct cpu_dbs_info_s, work.work);
	unsigned int cpu = dbs_info->cpu;

	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);

	delay -= jiffies % delay;

	if (lock_policy_rwsem_write(cpu) < 0)
		return;

	if (!dbs_info->enable) {
		unlock_policy_rwsem_write(cpu);
		return;
	}

	dbs_check_cpu(dbs_info);

	queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
	unlock_policy_rwsem_write(cpu);
531
}
532

533
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
534
{
535 536 537 538 539 540 541 542
	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	delay -= jiffies % delay;

	dbs_info->enable = 1;
	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
	queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
				delay);
543 544
}

545
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
546
{
547
	dbs_info->enable = 0;
548
	cancel_delayed_work_sync(&dbs_info->work);
549 550 551 552 553 554 555 556
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;
J
Jeff Garzik 已提交
557
	int rc;
558 559 560 561 562

	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);

	switch (event) {
	case CPUFREQ_GOV_START:
563
		if ((!cpu_online(cpu)) || (!policy->cur))
564 565 566 567
			return -EINVAL;

		if (this_dbs_info->enable) /* Already enabled */
			break;
568

569
		mutex_lock(&dbs_mutex);
J
Jeff Garzik 已提交
570 571 572 573 574 575 576

		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
		if (rc) {
			mutex_unlock(&dbs_mutex);
			return rc;
		}

577
		for_each_cpu(j, policy->cpus) {
578 579 580
			struct cpu_dbs_info_s *j_dbs_info;
			j_dbs_info = &per_cpu(cpu_dbs_info, j);
			j_dbs_info->cur_policy = policy;
581

582 583 584 585 586 587
			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&j_dbs_info->prev_cpu_wall);
			if (dbs_tuners_ins.ignore_nice) {
				j_dbs_info->prev_cpu_nice =
						kstat_cpu(j).cpustat.nice;
			}
588
		}
589 590
		this_dbs_info->down_skip = 0;
		this_dbs_info->requested_freq = policy->cur;
J
Jeff Garzik 已提交
591

592 593 594 595 596 597 598 599
		dbs_enable++;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
600 601 602
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
603

604
			def_sampling_rate =
605
				max(latency * LATENCY_MULTIPLIER,
606
				    MIN_STAT_SAMPLING_RATE);
607

608 609
			dbs_tuners_ins.sampling_rate = def_sampling_rate;

610 611 612
			cpufreq_register_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);
613
		}
614
		dbs_timer_init(this_dbs_info);
615

616
		mutex_unlock(&dbs_mutex);
617

618 619 620
		break;

	case CPUFREQ_GOV_STOP:
621
		mutex_lock(&dbs_mutex);
622
		dbs_timer_exit(this_dbs_info);
623 624
		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
		dbs_enable--;
625

626 627 628 629
		/*
		 * Stop the timerschedule work, when this governor
		 * is used for first time
		 */
630
		if (dbs_enable == 0)
631 632 633 634
			cpufreq_unregister_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);

635
		mutex_unlock(&dbs_mutex);
636 637 638 639

		break;

	case CPUFREQ_GOV_LIMITS:
640
		mutex_lock(&dbs_mutex);
641 642 643
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
644
					policy->max, CPUFREQ_RELATION_H);
645 646 647
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
648
					policy->min, CPUFREQ_RELATION_L);
649
		mutex_unlock(&dbs_mutex);
650

651 652 653 654 655
		break;
	}
	return 0;
}

656 657 658
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
#endif
659 660 661 662 663
struct cpufreq_governor cpufreq_gov_conservative = {
	.name			= "conservative",
	.governor		= cpufreq_governor_dbs,
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
664 665 666 667
};

static int __init cpufreq_gov_dbs_init(void)
{
668 669 670 671 672 673 674 675 676 677 678 679 680
	int err;

	kconservative_wq = create_workqueue("kconservative");
	if (!kconservative_wq) {
		printk(KERN_ERR "Creation of kconservative failed\n");
		return -EFAULT;
	}

	err = cpufreq_register_governor(&cpufreq_gov_conservative);
	if (err)
		destroy_workqueue(kconservative_wq);

	return err;
681 682 683 684
}

static void __exit cpufreq_gov_dbs_exit(void)
{
685
	cpufreq_unregister_governor(&cpufreq_gov_conservative);
686
	destroy_workqueue(kconservative_wq);
687 688 689
}


690
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
691
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
692 693
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
694
MODULE_LICENSE("GPL");
695

696 697 698
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall(cpufreq_gov_dbs_init);
#else
699
module_init(cpufreq_gov_dbs_init);
700
#endif
701
module_exit(cpufreq_gov_dbs_exit);